Sketch Recognition for Course of Action Diagrams

Kevin Stolt

Presented by Freddie Santiago

Introduction

 A course of action(COA) diagram is created by military planners when they are formulating a battle plan.

• COA diagrams consist of symbols representing military units and the actions they perform.

 Many COA diagrams today are created using pen and paper, overlay maps and grease pencils, post-its, and pushpins.

 Many computerized attempts at speeding up the process have been rejected because of the awkwardness of mice and menus versus hand sketching.

Visual Classification Motivation

Shimon Ullman (Nature Neuroscience Journal) found that the features of intermediate complexity are most optimal for object classification because of specificity and relative frequency

- When a human looks at a picture or sketch, they perform object classification quickly, easily recognizing familiar object in the picture.
- Research suggests that human visual processing begins by using simple local features, then subsequently representing more complex features.

(define shar	De Irrow
(descripti	on "An arrow with an open head")
(component	(Path shaft) (Line head1) (Line head2))
(constrain	its
(coincid	lent shaft.pl head1.pl)
(coincid	lent shaft.pl head2.pl)
(coincid	lent headl.pl head2.pl)
(equal-1	length head1 head2)
(acute-r	meet headl shaft)
(acute-r	meet shaft head2))
(aliases	Point head shaft.pl) (Point tail shaft.p2))
(display	
(origina	al-strokes shaft) (cleaned-strokes head1 head2) (color
red))	
(editing	
((trigge	er (click_hold_drag shaft))
(actio	on (translate this) (set-cursor DRAG)
11tmian	(Show-handle MOVE tall head)))
	r (click_hold_drag head))
(accit	(act-gurger DBAG)))
(Itriage	(click hold drag tail))
(action	(rubber-band this tail head) (show-bandle MOVE tail)
(00010	(ret purper DD20)))))

Course of Action Diagram

 Military Symbolic language to visually represent various aspects of military operations.

 Unit Symbol represents unit's strength, size, branch, affiliation, dimension, composition.

Operation Symbol – tasks to be performed.

System Functionality Sketch

Shape creation

- Can draw strokes in any order and at any scale.
- Strokes replaced by an image

Deletion

Scribble

Moving

- Touch pen on unit for half a second, cursor switches
- Drag the pen to new location

Used to communicate information which may be too difficult or impossible to communicate through pen-based input.

Naming

- Talk button
 "This is <symbol name>", while clicking once on the symbol.
- Talk button

Copy/Move

- "Copy this unit here", while clicking once for the unit, and once for the destination
- Talk

System Components

Three main system components:

- Sketch Recognizer recognizes COA sketched shapes
- COA Domain Handler ensures only valid sketch combinations are recognized
- COA Multimodal Recognizer combines pen and speech input

Sketch Recognizer

Three components:

- Primitive Recognizer
- Intermediate Feature Recognizer (IFR)
- Domain (LADDER) Recognizer

Domain Recognizer

- Uses the LADDER shape definition it recognizes the symbols
- The collection of shapes used to recognize the symbol are placed in the Visible Shape Collection (VSC)
- When new shape added, the DR attempts to combine it with other shapes in the VSC to produce a more complex shape. If it can, all components are removed from the VSC, and the new complex shape is added.

Domain R Arrow E	ecognizer Example
shaft headOne headTwo	(define shape Arrow (components (Line shaft) (Line headOne) (Line headTwo)) (constraints (coincident shaft.p1 headOne.p1) (coincident shaft.p1 headTwo.p1) (coincident shaft.p1 headTwo.p1) (coincident headOne.p1 headTwo.p1) (equal-length headOne headTwo) (acute-meet headOne shaft) (acute-meet shaft headTwo))

LADDER Problem

LADDER works fine when there is a single way of defining a shape

Has a hard time defining shapes that could have variable construction.

LADDER Problem

 20 unique orders to draw the shape

 Defining a shape based on a change from a previous shape would restrict the system.

 Solve this by recognizing things on the context of a frame

COA Domain Handler

DH also interprets the scene.

- internal representation of each symbol
- updates information about them whenever changes occur.
- Aggressor/Defender

Multimodal Recognizer

Speech Input

- Speech is broken down into small units of sound called phonemes
- A sequence of matches is used to produce and n-best list of candidate sentences accompanied by a score.

Combining Speech and Pen

- A type of command is matched with an expected number of inputs from the pen.
- If there is a match, then the action is performed, Otherwise, nothing is done.

Conclusion

Seems like a fairly straightforward system, but where are the performance numbers?

- User tests?
- Recognition percentages?
- Learning curve of spoken commands?
- How does expensive in "online" recognition of this kind, since every stroke has to be compare to existing features in the VSC during the IFR and COA domain recognizer?

Improvements

 Add Zoom functionality so that macro and micro echelon battle strategies are displayed as you zoom