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Abstract

We present a novel sketch-based system for the interactive model-
ing of a variety of free-form 3D objects using just a few strokes.
Our technique is inspired by the traditional illustration strategy for
depicting 3D forms where the basic geometric forms of the sub-
jects are identified, sketched and progressively refined using few
key strokes. We introduce two parametric surfaces, rotational and
cross sectional blending, that are inspired by this illustration tech-
nique. We also describe orthogonal deformation and cross sectional
oversketching as editing tools to complement our modeling tech-
niques. Examples with models ranging from cartoon style to botan-
ical illustration demonstrate the capabilities of our system.

CR Categories: I.3.5 Computer Graphics Geometric algorithms,
languages, and systems I.3.6 Computer Graphics Interaction tech-
niques

Keywords: sketch-based interfaces/modeling, free-form surfaces

1 Introduction

In traditional illustration, the depiction of 3D forms is usually
achieved by a series of drawing steps using few strokes. The artist
initially draws the outline of the subject to depict its basic masses
and boundaries. This initial outline is known as constructive curves
and usually results in very simple geometric forms. Outline details
and internal lines are then progressively added to suggest features
such as curvatures, wrinkles, slopes, folds, etc [Dease et al. 1999;
Goldstein 1999; Guptill 1977]. Three examples of methods typi-
cally used to achieve such drawing progression are shown in Fig-
ure 1:

The spiral method, where shape depiction is achieved by the use
of quickly formed spiral strokes connecting the constructive curves,
creating a visual “blend” of the overall volume between the con-
structive curves. Spiral strokes are helpful when irregular rounded
forms are involved, such as fruits, vegetables, animals, and people.

The scribble method, involves the use of continuous stroke(s)
placed between constructive curves. The scribbled strokes are typ-
ically used to depict specific folds, bumps, etc., across the subject.
In Figure 1, a single scribbled stroke defines the fold pattern at the
boundary end of the skirt.

The bending (or distortion) method, adds unique variations to the
initial sketch of the subject. These variations aid on depicting the
overall shape of subjects which naturally present a large variety of

Spiral method

Scribble method

Bending (or distortion) method

Figure 1: Traditional hand-drawn techniques for progressive shape
depiction [Dease et al. 1999; Goldstein 1999; Guptill 1977]. Skirt
drawing, Copyright 1998-2004 Rio Aucena. Used with permission.

twists, turns, and growth patterns, such as botanical and anatomical
parts.

In this paper we present a sketch-based modeling system inspired
by the three traditional illustration methods above. We have de-
veloped new algorithms to facilitate the rapid modeling of a wide
variety of free-form 3D objects, constructed and edited from just a
few freely sketched 2D line segments, without imposing any con-
straints regarding the order in which lines are entered as well as
their spatial relationship.

Our system takes as input strokes sketched by the user using a
mouse or tablet. Each stroke is then captured and properly filtered
(Section 3) to allow efficient and robust modeling of 3D objects,
represented as parametric surfaces, in two phases, creation and edit-
ing. The techniques we developed, at each phase, were inspired
by the traditional shape sketching methods of spiral, scribble and
bending (Figure 1). In the creation phase (Section 4), surfaces can
be generated using techniques for two types of parametric surfaces,
rotational blending surface (Section 4.1) − approximating the spi-
ral method −, and cross sectional blending surface (Section 4.2)
− approximating the scribble method. In the editing phase (Sec-
tion 5), subtle or drastic variations to the surfaces can be added by
using a single deformation stroke (Section 5.1)− approximating the
bending method. Surfaces can also be modified by oversketching
cross-sections of the model (Section 5.2) − also related to the scrib-
ble method.

The rest of this paper is organized as follows: related research is
reviewed in Section 2. Details of our approach are provided in Sec-
tions 3, 4 and 5. Results are discussed in Section 6, and conclusions
presented in Section 7. An appendix is also provided with mathe-
matical details of the techniques presented in Sections 4 and 5.
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2 Related Work

Sketch-based systems are a relatively new area in modeling, in par-
ticular for 3D content creation of free-form objects in design, pro-
duction and science. The main goal of sketch-based systems is to al-
low the creation of 3D models by using strokes extracted from user
input and/or existing drawing scans. Refer to [Naya et al. 2002] for
a complete classification of sketch-based systems. Our system fits
in the sketch-based category of gestural modeling where hand ges-
tures are used as commands for generating and editing 3D shapes
from 2D line segments.

SKETCH [Zeleznik et al. 1996] combines mouse gestures and sim-
ple geometric recognition to create and modify 3D models. To this
end, SKETCH uses a gesture grammar to create simple extrusion-
like primitives in orthogonal view. It is also possible to specify CSG
operations and defining quasi- free-form shapes such as ducts in a
limited manner.

Quick-Sketch [Eggli et al. 1997] is based on parametric surfaces.
The system creates extrusion primitives from sketched curves,
which are segmented into line and circle primitives with the help
of constraints. They also consider surfaces of revolution and ruled
surfaces for creating more free-form shapes. In all cases, a com-
bination of line segments, arcs and B-Spline curves are used for
strokes. Although this system can be used for sketching engineer-
ing parts and some simple free-form objects, it is hard to sketch
more complicated free-form objects such as in Figure 1.

Teddy [Igarashi et al. 1999] is a sketch based system that allows
the user to easily create free-form 3D models. The system allows
creating a surface, by inflating regions defined by closed strokes.
Strokes are inflated, using chordal axis transform, so that portions
of the mesh are elevated based on their distance from the stroke’s
chordal axis. Teddy also allows users to create extrusions, pockets
and cuts to edit the models in quite flexible ways. Teddy’s main
limitation lies in that it is not possible to introduce sharp features
or creases directly on the models except through cuts. Furthermore,
the system only allows editing a single object at a time.

Owada et al. [2003] proposed a sketch-based interface similar to
Teddy that can model 3D solid objects and their internal structures.
Sketch-based operations similar to those in Teddy are used to define
volume data. The authors take advantage of spatially-enumerated
representation for performing volume editing operations including
extrude and sweep. Extruding connects a volumetric surface to a
new branch, or to punch holes through the surface. Sweep allows
creating a second surface on top of the original. This is accom-
plished by drawing the cross section of where the two surfaces are
to meet, and a sweep path to define the place of the second surface.
Using an ingenious command to hide portions of the surface, the
system makes it possible to “see inside” the surface. By hiding por-
tions of a model, and then using extrusions, the user can specify
hollow regions inside an object. However, this system is also not
suitable for editing sharp features or creases.

Karpenko et al. [2002] use variational implicit surfaces [Turk and
O’Brien 1999] for modeling blobs. They organize the scene in a
tree hierarchy thus allowing users to edit more than one object at a
time. Also, their system allows constrained move operations be-
tween tree nodes. Another interesting feature is using guidance
strokes for merging shapes. Like Teddy, this system is not clearly
suited to editing sharp features or creases into objects.

BlobMaker [de Araujo and Jorge 2003] also uses variational im-
plicit surfaces as a geometrical representation for free-form shapes.
Shapes are created and manipulated using sketches on a perspective
or parallel view. The main operations are inflate, which creates 3D

forms from a 2D stroke, merge which creates a 3D shape from two
implicit surface primitives, and oversketch which allows redefining
shapes by using a single stroke to change their boundaries or to
modify a surface by an implicit extrusion. This system improves on
Karpenko’s and Igarashi’s by performing inflation independently
of screen coordinates and a better approach to merging blobs. Like
other systems previously reviewed, BlobMaker does not provide
tools to create sharp features.

Ijiri et al. [2004] present a sketch–based system for specialized edit-
ing of leaf-like objects combining free-form modeling with bend-
ing operations. However, the interface is limited to model floral
features such as leaves or petals using specific interaction idioms.

Duncan and Swain [2004] present SketchPose, a system that al-
lows designers to quickly sketch control points using a pen. Like
our approach, they have derived novel techniques drawn from con-
ventional pencil-and-paper cartooning methods. Moreover, their
technique also stresses sketching on the view plane. This greatly
simplifies positioning and deforming objects, thus expediting the
definition of poses for animated characters.

Varley et al. [2000] present a method to generate a 3D mesh based
upon user-input strokes. Their method assumes that the output
mesh is geometrically similar to a pre-defined template. The cam-
era position and orientation are estimated based upon the spatial
layout of the strokes and the template. The authors discuss various
methods of extracting and reconstructing meshes using the cam-
era and stroke information. They again use the template to deter-
mine where each of these reconstruction methods is applicable. The
mesh is ultimately constructed as a collection of Coon’s patches or
by a method of B-Rep reconstruction using similar stroke data. Var-
ley et al. also present a novel stroke capturing algorithm which they
use in both their B-Rep and 3D mesh methods. This algorithm al-
lows the user to draw strokes in a style similar to the one many
artists and engineers use when they sketch on paper. In this style,
many shorter sub-strokes are used to compose each stroke. They
refer to the group of sub-strokes as a “bundle of strokes.” Their
algorithm interprets each “bundle of strokes” as a single stroke. In
their method, only intersecting strokes are considered to be part of
the same bundle.

There are several commercial packages which use sketching for ge-
ometric modeling. SketchUp [2005] is a direct manipulation pack-
age with a very well thought-out interface that allows architects to
quickly sketch 3D drawings of buildings using plane faces and ex-
trusion, with no support for curved surfaces. VRMesh [2005] is
able to create triangular meshes from sketches using an inflation
approach similar to Teddy. Curvy 3D [2004] models surfaces using
2D sketches.

Another approach for creating 3D objects and adding surface details
is by painting with height, or depth [Curvy 3D 2004; Lawrence and
Funkhouser 2003; Z-Brush 2005].

The systems we have reviewed fall roughly into three categories.
(1) Extrusion-based systems such as Sketch, GIDeS [Pereira et al.
2004] and Quick-Sketch are able to create simple ideal solids and
duct-like shapes, but are not suited for editing free-form objects.
(2) Blob editing systems allow users to create soft blobby surfaces,
but are not very good of creating blade-like shapes or patches. Fi-
nally, (3) reconstruction-based systems [Naya et al. 2002; Varley
et al. 2000] are better suited for creating 3D solids from wire-frame
drawings and thus better at creating mechanical engineering parts,
but not free-form objects.

In contrast to previous approaches, our system provides the means
to (1) generating a large variety of 3D parametric surface objects
with curved and creased features. Furthermore, (2) few strokes are
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required to create and edit the surfaces. Also, by following tradi-
tional methods gleaned from pen and paper, (3) we have devised
simple interaction idioms to allow efficient and robust stroke cap-
turing. Finally, (4) our boundary and surface editing paradigm is
quite fl exible to support the application of both subtle and drastic
variations to instances of sketched objects. In the next sections we
discuss the methods that support these contributions.

3 Stroke Capture

Stroke capture is the act of recording strokes from an input device
such as a pen or mouse. It is necessary in any sketch-based system
because strokes are the elementary data type of such systems. In
contrast, other forms of modeling use points, polygons or density
values as the defining units.

We want our strokes to be in parametric form, because this will
naturally lead to parametric surfaces. Parametric surfaces are desir-
able for many reasons. We can evaluate them an arbitrary number
of times to create a mesh with many or few polygons, as needed.
Also, it is easy to generate texture coordinates for parametric sur-
faces. Finally, many parametric surfaces, including ours, can triv-
ially be rendered as triangle strips. Stripped geometry can render
about three times as quickly as its non-stripped counterpart.

In our system, sketched strokes start as raw data from the mouse or
pen (Figure 2, left). This data is an ordered set of points. Although
this raw data could be interpreted as a parametric curve, this in-
terpretation causes three problems. First, the points are very noisy
due to the shaky nature of handling the input devices. Second, the
points are irregularly distributed along the drawing path due to vari-
ations in drawing speed. Third, there will be a very large number of
points because the input device sends data many times per second.

Classical approaches to stroke filtering reduce the noise and com-
plexity in separate steps. The first pass applies point reduction
and dehooking while the second step uses line segment approxima-
tion [Douglas and Peucker 1973]. We chose to implement a single
pass technique to yield a smooth and compact approximation to the
input stroke using a simpler technique.

We would like to fit a B-Spline curve with a low number of control
points to our stroke data. B-Splines have a guaranteed degree of
continuity, which resolves the difficulty with noise. The problem
of point distribution is easily solved with B-Splines because it is
straightforward to evenly distribute points along the B-Spline by
evaluating it at evenly spaced intervals.

To find the B-Spline curve, one may use least squares to obtain
the optimal curve [Eggli et al. 1997; Samavati and Mahdavi-Amiri
2000]. However, even in the best case scenario, the least squares
model must be converted to a linear system. In our application real-
time feedback is essential and solving a system of linear equations
is simply not fast enough. We have used reverse Chaikin subdivi-
sion to efficiently create a denoised B-Spline with evenly spaced
control points [Bartels and Samavati 2000; Samavati and Bartels
2004].

A reverse subdivision scheme decomposes the fine resolution data
to a coarse approximation and a set of details. These details usually
show the high frequency information of the data. In our case, the
high frequency data consist mostly of noise and can be discarded.
Since Chaikin subdivision is based on a quadratic B-Spline, we can
interpret the coarse information as control points of a quadratic B-
Spline curve.

If we denote the fine points by p0, p1...pn to and the coarse points
by q0,q1...qm then the general case of the reverse Chaikin scheme
is:

q j = −
1
4

pi−1 +
3
4

pi +
3
4

pi+1 −
1
4

pi+2 (1)

where the step size of i is two. The cardinality of the coarse points
is almost half that of the fine points. Notice that reverse Chaikin
subdivision contains only very simple operations. This is the source
of its efficiency.

Figure 2: Stroke capture: unfiltered stroke (left), after applying the
reverse Chaikin filter (middle) and the final stroke showing its con-
trol points (right).

Each time the reverse subdivision is applied to the control points,
the resulting curve becomes smoother, although it deviates further
from the original stroke. We have found in our experiments that
running the subdivision three times provides sufficient denoising
while the deviation from the input stroke is not noticeable. Figure 2
shows this process.

4 Creation Phase

As we discussed in Section 1, sketching few numbers of strokes
is a natural way of making surfaces. There are several types of
surfaces, called common surfaces, that are defined based on a very
small number of simple curves. Surface of revolution, ruled sur-
face, general cylinder and Coons surface are important examples
of common surfaces. Although they have very simple and efficient
parametric descriptions, they are not sufficient for modeling various
objects.

Particularly, the surface of revolution is a perfect model from the
sketch-based interaction point of view [Eggli et al. 1997]. The user
just needs to draw a curve and identify an axis of rotation. Fur-
thermore, extruded objects, as a special case of ruled surfaces, have
been broadly used in sketch-based systems because again it can be
easily defined by one stroke [Eggli et al. 1997]. However, the scope
of these surfaces is too limited. It is possible to enlarge the model-
ing capacity by using free-form surfaces such as general B-Splines
and NURBS, but this reduces the capability of making surfaces with
“ small” number of strokes.

It is possible to arrange the control points of a NURBS or sim-
ilar patch using a sketch-based interface, but this would require
many strokes to accomplish (at least one for each row of points
in the patch). In this work, we introduce two kinds of new common
surfaces that approximates the artistic description of objects (Sec-
tion 1, Figure 1). Using these surfaces, we are able to model many
objects around us with few numbers of strokes.
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4.1 Rotational Blending Surface

This first technique of the creation phase was inspired by the tradi-
tional spiral method for preliminary sketching (Section 1, Figure 1).
In this method, the artist depicts the basic 3D form of the subject
by quickly sketching spirals or any ring-shaped curves to visually
“ blend” the 3D masses between the two constructive curves [Gup-
till 1977].

Our approach to approximate the traditional spiral method was to
combine the surface of revolution and the ruled surface to find the
parametric description of a rotational blending surface. Let ql(u)
and qr(u) be the co-planner 2D curves (strokes) defined by the user
(Section 3). We would like to use ql(u) and qr(u) as the construc-
tive curves (outlined form) of the rotational blending surface. Let
℘ denote the plane of the curves and c(u) be the curve formed by
the midpoint of ql(u) and qr(u) at each u (Figure 3). Assume that
tu(v), for fixed u, parameterizes the circle perpendicular to ℘ with
the center c(u) and passing through ql(u) and qr(u) at each u, as
follows:

tu(0) = ql(u)

tu(π) = qr(u)

tu(2π) = ql(u).

Figure 3 illustrates how the curve tu(v) is generated from the con-
structive curves. The desired surface is formed by moving this cir-
cle along c(u) by changing u

S(u,v) = tu(v). (2)

Figure 3: A rotational blending surface. The left and middle im-
ages show the constructive curves (green), ql(u) and qr(u), the cen-
ter curve c(u) (blue), and a circular slice of the surface, denoted
tu(v). The right image shows a completed surface overlayed with
the blending curves formed by holding v constant.

For fixed v and variable u, a set of rotational blending curves from
ql(u) to qr(v) and vice versa are generated (Figure 3, middle). Note
that surfaces of revolution can be generated by rotational blending
surfaces; for this, the second curve should be a rotated version of
the first curve. A more formal mathematical description for the con-
struction of rotational blending surfaces is presented in Appendix
A.

The rotational blending surface can create a variety of models, as
shown in Figure 4. This shows a good fl exibility in comparison with
other common surfaces. In addition, as an important advantage, the
surface follows the input strokes. This shows that the surface is
acting in a predicted way and respects the user’s intention. Fur-
thermore, when the constructive curves have corner points or sharp
feature, the final surface will also have sharp features and rotational
creases, as shown in the candle in Figure 4.

Figure 4: A variety of shapes is possible using few strokes (top row)
by using rotational blending surfaces. We created the pear in four
strokes, the candle in eight and the laser gun in six strokes.

4.2 Cross Sectional Blending Surfaces

This second technique of the creation phase was inspired by the
traditional scribble method (Section 1, Figure 1). In this method,
the artist adds details to the overall 3D shape of the subject by freely
sketching one or few strokes within its outlined form (constructive
curves) [Goldstein 1999; Guptill 1977]. Next, we will describe our
approach to approximate the traditional scribble method.

Although the rotational blending surface is the default surface gen-
erator in our system, and it is more fl exible than other common
surfaces, still it can not make every free-form surface by its na-
ture. In order to increase the fl exibility of our surface generator as
well as keeping the number of input strokes very small, we have
introduced our second type of common surface. It is a simple mod-
ification of the rotational blending surface that allows the user to
change the shape of the cross section from circle to an arbitrary 2D
curve. Mathematically, this means that tu(v), for a fixed u, does
not necessarily parameterize a circle anymore but the curve which
is provided by the user (see Figures 5, 6). Again, the surface can
be defined by changing u, or equivalently by moving tu(v) along
c(u). A more formal mathematical description for the construction
of cross sectional blending surfaces is presented in Appendix A.

Figure 5: From left to right: sketching two constructive strokes
(black), one cross sectional stroke (red) and the resulting leaf model
in front and side views.

Figures 5 and 6 shows the model of a leaf and a sword blade, respec-
tively, created using cross sectional blending surface. We may have
given an option to the user to have control over several cross sec-
tions. However, we found this less interesting because it increases
the number of strokes. In addition, when we have more than two
sections we needed to use a kind of smooth transition between them
and this is well fitted to free-form surface modeling with B-Spline
and NURBS.
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Figure 6: Modeling a sword blade using cross sectional blending
surfaces. Top row, left to right: drawing the constructive curves only
(dotted lines) results in a perfectly rounded object. Sketching the
cross sectional outline (red line) results in a better, sharper, faceted
blade. Bottom row: the sword in a different view. Notice the final
surfaces, with sharper features

5 Editing Phase

In the editing phase, the user can modify the model that he/she con-
structed in the creation phase. This fits very well with the artistic
design process of progressive drawing refinement, which is partic-
ularly prevalent in various sketching techniques (Section 1, Fig-
ure 1). We are free to use parametric or mesh representation at
the editing stage. Consequently, any technique for mesh editing
can be also employed here [Lawrence and Funkhouser 2003; Var-
ley et al. 2000; Zorin et al. 1997]. However, we prefer to use the
stroke based parametric representation again, which is consistent
with our creation phase. This allows us to design editing operations
that complement our creation phase. In addition, it enables us to
keep the advantages of parametric representation, as we discussed
in Section 3. The next subsections focus on describing two major
parametric editing methods which are crucial for our system.

Figure 7: The orthogonal deformation stroke in action. (a) the sur-
face we wish to deform; (b) its constructive curves ql(u), qr(u),
the center curve c(u), and a cross section of the surface tu(v); (c)
the surface as viewed from the side, notice that ql(u), qr(u) and
c(u) are all the same, straight line when viewed from this angle; (d)
the deformation stroke; (e) the cross section and the strokes mor-
phing to the deformation stroke (the camera angle has been slightly
altered for clarity); (f) the final, deformed surface.

Figure 8: Left: perspective view of three deformation strokes (in
white) applied to the single leaf model of Figure 5. Right: artis-
tic composition using our system illustrating the shape and color
progression of autumn leaf. The stem was modeled as a rotational
blending surface. The leaf of Figure 5 is placed at the top of the
stem. The other three leaves are deformations of this top leaf using
three different orthogonal deformation strokes.

5.1 Orthogonal Deformation Stroke

This first technique of the editing phase was inspired by the tra-
ditional bending (or distortion) method (Section 1, Figure 1). In
this method, the artist adds variations to the overall 3D shape of
the subject by distorting with few strokes its outlined form [Dease
et al. 1999]. Next, we describe how our approach approximates the
traditional bending method.

In the creation phase, the user specifies the surface with strokes
by 2D drawing operations in the xy plane. This helps the user to
have a natural drawing feeling while using our system, very similar
to traditional pen-and-paper drawing. However, the drawback of
this advantage is on the lack of fl exibility for editing our models
in the third dimension. In order to solve this problem, we propose
a mechanism to allow the user to deform the model in a direction
orthogonal to the drawing plane.

We begin by rotating the model so that we can see it from the side.
Let ℘′ be the new view plane. Note that all three curves ql(u) ,
qr(u) and c(u) form an identical vertical line segment l(u) in this
plane. The user enters the deformation stroke d(u) in ℘′ as illus-
trated in Figures 7 and 8. From the user perspective, this stroke
shows the skeleton (the axis) of the deformed surface.

Based on our discussion in Section 4, the original surface S(u,v)
is formed by moving the cross section curve tu(v) along c(u) (see
Figures 3 and 7). Note that this is true for both surfaces of the cre-
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Figure 9: A skirt modeled with cross sectional oversketch. Top row,
left to right: starting with a simple tube, the user selects a cross
section of the surface. Next, the user redraws a section of it and
this edits the surface. Bottom row: the surface is rotated and drawn
upon further, and the results are shown with both toon and Gouraud
shading for clarity.

ation phase. We use the deformation stroke d(u) to transform cross
sections of S(u,v) to a new set of curves that create the deformed
surface Ŝ(u,v). More specifically, for every fixed u, we transform
the cross section curve tu(v) to a new curve t̂u(v). The appropri-
ate transformation is determined by the relative situation of c(u) (or
l(u)) and d(u) in the new view plane℘′. For this, let (l(u),Tl(u),V )
denote the source frame formed at l(u). In this notation, Tl(u) is the
unit tangent vector of l(u) and V is the view vector. The destina-
tion frame is (d(u),Td(u),V ), where Td(u) is the unit tangent vector
of d(u). Let M(u) be the the transformation that maps the source
frame to the the destination frame for every u. Consequently, for
each u, M(u) is a 4x4 transformation matrix consisted of a trans-
lation and a rotation. If we assume that both t̂u(v) and tu(v) are
represented in the homogenous coordinate system, then we have

t̂u(v) = M(u)tu(v) (3)

Again by changing u, the resulting curves t̂u(v) construct the de-
formed surface Ŝ(u,v) as illustrated in Figures 7 and 8.

5.2 Cross Sectional Oversketch

This second technique of the editing phase is related to the tradi-
tional scribble method (Section 1, Figure 1), in a similar way as
described for cross sectional blending surfaces (Section 4.2).

In our system, the user defines the cross section strokes in the draw-
ing plane ℘. Again, this fits to the artistic approach for depicting
3D forms (Section 1, Figure 1). This assumption is a good selection
for the default objects. However, there is a certain limitation due to
the 2D mode of interaction. For example, it is hard to control the
behavior of the cross section curve near to the intersections.

We have designed a simple method that allows the user to change
the cross section stroke for any view. In this method, the user can
rotate the object and change the view, and then he/she can select a
cross section on the surface. This is done by setting the parameter u
(Section 4.1) proportional to the mouse position. Then we highlight
the corresponding cross section tu(v) on the surface that forms a
visible interaction. At this stage, we map the changes given by the

user to the cross section. This is an operation that allows the user to
edit a surface by oversketching. As shown in Figure 9, we simply
insert the new portion of the stroke, and delete the old one.

Figure 10: Modeling a dagger handle. From left to right: starting
with the existing drawing Gunner’s Dagger (Copyright 1998-2004
Rio Aucena. Used with permission), the user sketches 11 strokes
for each of five specific parts of the original drawing. The blade
is modeled as a cross sectional blending surface (3 strokes) and
the other four parts are modeled as rotational blending surfaces (2
strokes per surface). The final model is then rendered with both
Gouraud and non-photorealistic shading.

6 Results and Discussion

All the results were generated on an AMD Anthlon 2800 with a
GeForce 5900 XT, 512 MB card, with quad meshes from our para-
metric representation rendered in OpenGL. We created 3D mod-
els using few strokes representing subjects of cartoon styles (Fig-
ures 4, 6, 9, 10, 11) and botanical illustrations (Figures 5, 8, 12, 13).
We were able to construct models with sharp corners (i.e. candle in
Figure 4), facets (i.e. sword in Figure 6), and bumps (i.e. pumpkin
in Figure 11).

We observed that, in many cases, some models such as the pear,
candle, laser gun, sword, leafy stalk, and pumpkin are particularly
fast to create (around less than a minute). More complex models
took longer because they relied more upon the assembly of parts
(fitting each surface together). However, our research focused on
steps of the modeling rather than the assembly process. Therefore,
we implemented standard techniques for assembling 3D parts, in
which the user directs translation and rotation by clicking and drag-
ging with the mouse. We found this kind of assembly interface
to be the major bottleneck of our creative process. When creating
models of the wizard, Vulpix, and the bad guy (Figure 11), and
for the yellow berries (Figure 13), over 60% of the time was spent
on assembling the parts. The wizard took about an hour to create,
of which about 35 minutes were spent assembling the parts. The
yellow berries took around two hours to create with approximately
80 minutes spent on assembling the leaves and berries to the stem.
This shows that the assembly process requires further streamlining
and is in need of a new kind of interface, perhaps sketch- and/or
rule-based.

We also noticed that we were able to create many of our models
more quickly than we could have hand-drawn and shade the same
objects. For instance, the constructive lines (contour) of a pear
took the same amount of time on computer as on paper, but the
computer-generated pear is quicker to create because it is automat-
ically shaded. This is notable because it usually takes longer to
model something on a computer than to sketch it on paper. This is
one of the reasons artists draw “ concept sketches” on paper rather
than “ concept models” on a computer.
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7 Conclusions and Future Work

This paper presented a novel sketch-based system that allows inter-
active modeling of many free-form 3D objects with few numbers
of strokes. Our technique draws on conventional drawing methods
and workfl ow to derive interaction idioms that should be familiar
to illustrators. We have developed algorithms for parametric sur-
faces using rotational and cross sectional blending. Although we
were inspired by traditional pencil and paper drawing techniques,
our methods allow either subtle or incremental (as with paper) or
large-scale changes to the objects. Our results with cartoon-like
features show that it is possible to model quite convoluted shapes
with a small number of strokes. This differs from classical anima-
tion systems that require lots of menu selections and data entry to
accomplish even the simplest tasks.

There are interesting directions for future work. As we mentioned
in Section 6, the assembly of parts needs a more streamlined form
of user interaction. A sketch- and/or rule-based solution might be
appropriate, and perhaps the best solution would combine transla-
tion and rotation into a single operation. Another important feature
we are considering is to support parametric representations with
branching structures, to simplify modeling of more complex ob-
jects. We also plan on conducting a formal system evaluation with
users with no-artistic background as well as with trained artists and
illustrators in various domains (i.e. 3D content creation, cartoon,
technical/scientific illustration).
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A Formal Construction of Blending Surfaces

Rotational

Let (x,y) be a coordinate system consisting of two orthogonal unit
vectors in the plane ℘. Recalling Section 4.1, ℘ is the plane in
which the left and right constructive curves ql(u) and qr(u) lie. Let
z be x× y so that (x,y,z) forms a coordinate system for 3D space.

In order to define S(u,v) in a more formal way, we show that S(u,v)
can be formed by a series of affine transformations on the circular
cross sections of a cylinder. Let Q(u,v) be the unit cylinder in the
3D space

Q(u,v) =







cos(v)
u

sin(v)
1






,

0 ≤ u ≤ 1
0 ≤ v ≤ 2π

,

and define

pl(u) = Q(u,π), (A-1)

pr(u) = Q(u,0), (A-2)

pc(u) =
1
2

pl(u)+
1
2

pr(u). (A-3)

In our construction of S(u,v), pl(u) is mapped to ql(u), pr(u) to
qr(u) and pc(u) to c(u). For any fixed u, we have a unit circle in
Q(u,v) and a general circle in S(u,v) and we wish to map the unit
circle to the general one. This can be done by applying an affine
transformation Ms(u) to Q(u,v)

S(u,v) = Ms(u)Q(u,v). (A-4)
Notice Ms(u) consists of two affine transformations

Ms(u) = M2(u)M1(u)

where M1(u) is a scaling about pc(u) with the following parame-
ters:

scalex = ‖qr(u)−ql(u)‖
scaley = 1
scalez = ‖qr(u)−ql(u)‖.

And M2(u) is a frame transformation [Angel 2002] from
(pc(u),x,y,z) to (c(u),x′(u),y′(u),z) where

x′(u) =
qr(u)−ql(u)

‖qr(u)−ql(u)‖
,

and
y′(u) = z× x′(u).

Cross Sectional

Using a similar approach, we can define our cross sectional blend-
ing surface. For this surface, we replace Q(u,v) by a ruled surface.

Let t(v) =

[

x(v)
z(v)

]

,0 ≤ v ≤ 2π be the cross sectional curve. Then

Q(u,v) =







x(v)
u

z(v)
1







0 ≤ v ≤ 2π

0 ≤ u ≤ 1 .

We define pl(u), pr(u), and pc(u) exactly as in equations A-1, A-
2, and A-3. Consequently, the cross sectional blending surface is
resulted by the equation A-4.
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Figure 12: Rose, modeled in 23 strokes. The petals and the three
stems were generated in 2 strokes each using rotational blending
surfaces. Each leaf was generated with 3 strokes using cross sec-
tional blending surfaces (Figure 5), distorted (Section 8) and inter-
actively placed at the stem using standard rotation/translation mod-
eling tools. Bottom image: (left) the two strokes sketched for the
rose petals; (middle and right) real botanical illustrations were used
as templates for sketching over the leaves (two middle leaves [West
1983] and a sample from a painting).

Figure 13: Pyramidalis Fructu Luteo (yellow berries), modeled in
33 strokes. The berries and the stem were generated in 2 strokes
each using rotational blending surfaces. Each leaf was generated
with 3 strokes using cross sectional blending surfaces (Figure 5).
Bottom left image: The user sketched directly over nine specific
parts of a real botanical illustration of yellow berries (Copyright
2004 Siriol Sherlock. Used with permission.): one stem, three
leaves and five berries (right image). In the model, all leaves and
berries are instances of these nine sketched-based objects. Each of
the leaf instances was properly distorted (Section 8) and both leaves
and berries were then placed at the stem by the user with standard
modeling tools.
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