A review of: A Sketch-Based Interface for the Design and Analysis of Simple Vibratory Mechanical Systems

Chris Ellis
October 31, 2007

Sketch-based Design of Vibratory Mechanical Systems

- Rapidly construct diagrams of mechanical systems
- Simulate the motion of the system
- Graphs the results
Sketch-based Interface

- Can draw masses, springs, dampers, forces, and grounds
- Can use any number of strokes in any order
- Can process and interpret strokes as simulated vibratory system

Sketch-based Interface (cont.)

- Labels recognized symbols
- User can tap symbols and change parameters (also sketch-based)
- User can toggle between ink and “beautified” mode
Mark-group-recognize

- Pull out easy-to-recognize symbols
- Cluster remaining strokes into symbols
- Perform more difficult recognition on remaining strokes

Marking Step

- Extract masses
 - Determine closed loop by finding minimum endpoint distance to close stroke chain
 - Threshold by 10% of total stroke length
 - Limit 5 strokes

- Allows for arbitrary stroke order, direction, and shape
Marking Step (cont.)

- Extract grounds
 - Test if separation between pair of most distant consecutive strokes < twice the average separation
 - Test if hashes all point to same quadrant (NW, NE, SW, SE)
 - Skeleton length w/in 5% of length of line from first hash to last
 - Find minimum of 4 hatch strokes meeting above criteria
 - Add hatches until a stroke breaks the pattern

Grouping Step

- Still need to identify springs, dampers, and forces

- Concerns:
 - Can be arbitrarily close
 - Can be arbitrary size, shape, number of strokes
 - Do not know number of clusters
Grouping Step (cont.)

- Uses domain specific knowledge
 - Clusters are spatially distinct
 - Clusters do not overlap
- Use agglomerative hierarchical clustering
 - Each point initially belongs to its own group
 - Merge the two nearest-neighbor groups until dissimilarity score jumps drastically

Recognition Step

- For each cluster
 - Find segment points (speed/angle cusps)
 - Use least squares to fit arcs and lines to ink between the segment points
 - Extract nine features
 - (e.g. # of strokes, # line segments, # arc segments, # L intersections, # X intersections, # T intersections, # pairs of parallel lines, # pairs of perpendicular lines, avg distance between endpoints)
- Classify
Recognition Step (cont.)

- Classification Assumptions
 - Assumes training features are distributed normally (Gaussian)
 - Assumes features are statistically independent
 - Neither assumption is true, but good enough
- Use Naïve Bayesian Classifier

\[
P(x_j | D_i) = \frac{1}{\sigma_{ij} \sqrt{2\pi}} \exp\left[-\frac{(x_j - \mu_{ij})^2}{2\sigma_{ij}^2}\right]
\]

Connectivity

- Similar to Grouping Step, connects nearest components together
 - Euclidian distance
 - bounding box center for mass
 - endpoints for others
 - Additional constraints
 - Springs or dampers connected to exactly one mass or ground
 - Mass or ground may have any number of springs or dampers
Finally…

- Results of the recognition used to construct motion equations
- Equations described as matrices and vectors
- Matrices and Vectors passed to Matlab
- Displacement vector returned
 \[D = \{d_0(t),d_1(t),\ldots,d_{m-1}(t)\} \]

Evaluation

- Testers generally had little to no experience with Tablet PCs
- Given ~30s of practice time
- No explanation of system functions
Evaluation (cont.)

- Worked correctly for majority of subjects
- Errors from unexpected input
 - Symbols too close
 - Symbols drawn strangely
 - False positives for masses

The End

Or is it?

(Yes it is)