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ABSTRACT
Interaction in Virtual Reality environments is still a challenging task.  Static hand posture recognition is currently the most common
and widely used method for interaction using glove input devices. In order to improve the naturalness of interaction, and thereby
decrease the user–interface learning time, there is a need to be able to recognize dynamic gestures.

Dynamic Gesture Recognition (DGR) is difficult for various reasons. The large variations in the speed of execution of various
phases of a gesture is one such reason.  Another is the quality and positions of the physical properties describing a gesture them-
selves.  These problems are then exaggerated by the differences which arise when various people attempt the same gesture, as well
as when the same person attempts repeated executions of the same gesture.  Other factors effecting the difficulty of DGR are the
emotional state of the person doing the gesture and the accuracy of the input device used.  And finally, a large amount of data has
to be processed in real time because of large variances in the length of time to execute a gesture.

In this paper we describe our approach to overcoming the difficulties of  DGR using neural networks.  Backpropagation neural
networks have already proven themselves to be appropriate and efficient for posture recognition. However, the extensive amount
of data involved in DGR requires a different approach.  Because of features such as topology preservation and automatic-learning,
Kohonen Feature Maps are particularly suitable for the reduction of the high dimensional data space which is the result of a dynamic
gesture, and are thus implemented for this task.

1. INTRODUCTION
Current state–of–the–art graphics workstations allow us to create almost photorealistic images in real time. In addition the multi-
media technology enables the integration of sound and video. Virtual reality makes use of these capabilities in order to give the
user the sensation of being part of an environment in which (s)he is able to manipulate virtual objects directly. The key issue for
the user therefore is to explore virtual environments rather than learning how to do something. To make this easy for both casual
and professional users, the actions possible in the artificial environment must be similar to the respective actions in the real world.
For example, grabbing an object should resemble the physiological action in reality. In addition users must receive an expectable
behavior naturally presented as feedback from the objects in the virtual environment. For example, releasing an object should be
followed by the natural fall of that object guided by the laws of the gravitational force.

Graphical 3D scene output technology and the usage of various media including audio (speech, sound and music) and video (still
and moving image) are already relatively mature fields. What is lacking are paradigms, techniques and toolkits for well–integrated
3D input styles, and their relationship to the environmental behavior. This is the field where we are mainly concentrating our re-
search. Our goal is to develop user interfaces which require a minimal learning time and a small amount of perceptual power to
understand the interaction techniques.  See 10  and 11 for discussion about human factors of 3D interaction and 14,21 and 22 for
examples of advanced interactions.

2. GESTURE BASED INTERACTION
Gestures are body movements which are used to convey some kind of information from one person to another. Usually this informa-
tion is easily understood by other humans (at least of the same cultural origin19). Although the execution of gestures is not very
exact in its nature, in most cases the meaning of them is deterministic. In human-computer-interaction gestures can be used to con-
vey information from the user to the computer system. In this case, however, the information given by the gesture has to be fixed
(it should still be possible to make ”more or less” –types of gestures, but the meaning of these
gestures must be exactly defined because of the deterministic nature of the computer input).

2.1. Static gestures (postures)

The use of postures is very common in a lot of VR–Systems. Mostly the users wear some kind
of glove and can control actions of  the VR–System with hand–postures. The pointing posture
has been well established for navigation (Fig. 1). Figure 1: Pointing gesture
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We were able to experience the usability of static gestures with our VR–Toolkit GIVEN (Gesture–based Interactions in Virtual
ENvironments) and achieved the following results (for more detail, see 20),
• Hand and arm get tired after a long continuous period of use

• It is difficult to make exact manipulations in the space

• Force feedback (which is missing in our dataglove) is essential for more ”reality” (especially for certain tasks such as

grabbing an object)

• The environmental interaction and object manipulation is considered easy and intuitive in most parts

• It helps to have metaphors related to each gesture. For instance, increasing the speed of navigation is related to ”pressing
the accelerator pedal” in a car, i.e. the speed increases when the thumb is brought near to the palm.

2.2. Dynamic gestures

Static gestures do not cover the full potential of gesture–based interaction. We assume that for a lot of interactions the naturalness
and the intuitivness could be improved when using dynamic gestures. This is supposed to be true at least because the process of
interaction is dynamic in both worlds – in the real and in the virtual world.  What we understand by dynamic gestures are the move-
ments of the fingers in addition to the trajectory of the hand in a sequence of time steps.

Therefore we focus currently with our research on dynamic gestures. We have to find ”good” translations for actions represented
by these gestures.  In addition new recognition methods for dynamic gestures have to be developed and investigated. The purpose
of this paper is to describe our approach to dynamic gesture recognition.

2.3. Future challenges

We believe that the use of dynamic gestures is one step further in the direction of more intuitive and more natural man–machine–in-
terfaces. However, in our opinion the optimal interaction from the human factor point of view should not require any remembrance
from the user. The user should know how to perform actions just by his/her (life)experience.

The opening of a door in a virtual environment might be performed as follows:
1) detecting the collision between the cursor e.g. a virtual hand and the door–handle

2) grabbing the door–handle or pushing down the handle

3) either pushing or pulling the door–handle for actually opening the door.

Although this procedure is similar to the real world, from the technical point of view the realization of this relatively simple interac-
tion is much more sophisticated than it seems at first. Two examples may underline the difficulties: first, the collision detection
must be very precise in order to realize a collision between hand and door handle which is adequate for grabbing conditions. Second,
if the user grabs the door handle and pushes the door, the door cannot follow the movement of the user directly because the door
is usually fixed on a wall with two hinges.

The control of such kind of interactions could be simplified if the context of the interaction is taken into account. For instance,
if the system knows based on the body movement of the user that he/she wants to open the door the system can react in a ”smarter”
way. The body movement can be considered as a dynamic gesture which is performed unconsciously by the user in order to execute
an interaction. Therefore the result of dynamic gesture recognition can be used as one input channel for the context information.

Thus, we believe that the research done in the field of dynamic gesture recognition will play a significant role for the advanced
interaction construction in the future.

3. FUNDAMENTALS OF THE KOHONEN MAP
The following chapter describes some fundamentals of the Kohonen Feature Map (KFM) which we use for our approach to gesture
recognition, a detailed description of the KFM can be found in 15,16.

The KFM is a self-organizing network which is basically trained without supervision. The input patterns are organized in a topologi-
cal structure. This structure is represented by the weight vectors between neurons of the KFM, where the relationships between
different patterns are preserved.
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The Kohonen Map is a two-layer network. The first layer receives the input
data, the second (competitive) layer is entirely connected to the first layer
(Fig. 2). In the second (usually two-dimensional) output layer only one
single neuron is active at a time. The spatial distance of two neurons react-
ing on different input patterns is the measure for the similarity of the two
patterns.

The training of the network is done by presenting data vectors to the input
layer. Based on the training rules the values of the connection weight vec-
tors of the competitive neurons are changed. The connection weight vectors
are initialized with random values. The competitive neuron with the mini-
mal distance to the input vector is then activated. A distance could be de-
fined for instance as the Euclidean distance di between the input vector x
and the connecting weight vector mi with

di � �x–m i� � �
N

j � 1

(x j–mij)� ���

while N is the dimension of the data,

dc � min
i

(di) ���

The neuron c with the minimal distance dc will be activated.

The learning process is performed by the modification of the connection weight vectors from a subset of output neurons. After
identifying the active output neuron for the current input vector, a modification of the connection weight vectors in the proximity
Nc(t) of the active neuron c is performed. The modification of the weights will be done in such a manner that the distance to the
input vector decreases (Equation 3).

m(t�1)
ij

� m(t)
ij
� �

(t)(x(t)
j

–m(t)
ij
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Where α(t) represents the time–dependent learning rate.

The size of the proximity Nc(t) is reduced with the training time t. Fig. 3 shows the re-
duction of the size for an example of rectangle proximity.

After the learning process (which can also be called ”clustering”) each neuron in the
output layer corresponds to a cluster of the input data space.

In order to use the KFM for classification we have to map a class to each cluster and
therefore to each output neuron. A common way for mapping between output neurons
and classes is to use recorded training samples as input. Since the classes of these sam-
ples are defined, the labeling can be performed by a majority voting of each stimulated
neuron.

This can be performed by an interactive selection of training areas and by a majority
voting of each stimulated neuron. This process is called labeling.

The goal during the organization process was not to find optimal placements of the deci-
sion boundaries. Thus error classifications may occur based on this. Proceeding from
the self–organization the weight vectors can be modified, according to their class affilia-
tion, in a way that they approach the decision boundaries. This method is called Learning–Vector–Quantization (LVQ). In contrast
to non–supervised self–organization the weight vectors are not modified according to topological aspects, but the two weight vec-
tors nearest to the input pattern are examined in connection to their class relation each time 12.

Input layer

Output layer

Figure 2: Kohonen Feature Map
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4. INPUT PROCESSING

This chapter discusses the general problems concerning the input data for DGR as well as the realized methods to deal with these
problems during training, classification and recording of training samples.

4.1. Input data

The major problems of dynamic gesture recognition (DGR) are the unknown data types, the variance and the quality of input data.

4.1.1. Unknown type of input data

The input data for gesture recognition is widely unknown. Since gestures may last several seconds all input data of this time interval
has to be considered for DGR. Since the interdependences (correlation) between the input sensors are unknown and an extended
examination of the input data space would have been too expensive, all input sensors were used. So the number of data which have
to be processed is up to 200 times as high as it is for posture recognition. However only a small part of this data is significant for
the recognition of a certain gesture. The distribution of the input data in the high dimensional input data space is unknown.

4.1.2. Variance of input data

At the execution of a gesture there is large variance not only in the duration of the gesture but also relating to the curve described
by the hand. For most gestures the direction (especially within the horizontal plane) in which they are executed and the size of the
described curves are irrelevant. Since there is usually only a small number of training samples (which are not representative for
all feasible types of a certain gesture) those variations very often cause an incorrect recognition of a gesture. It usually is impossible
to consider all these variations during the learning phase since the execution of a given gesture depends on the person who executes
it as well as their emotional state.

4.1.3. Quality of  input data

Another large problem in gesture recognition is the quality of input data, the number of input training samples and whether they
are representative for the gestures. With the currently used input devices (VPL–Dataglove, VT–Cyberglove and 6D trackers), input
data of two identically executed gestures can differ widely. Moreover in some cases spasmodic changes of the sensor inputs as well
as unintentional interdependences among the sensors can be observed (the sensor value of the finger bending changes when the
fingers are spread). The input data of two executions of the same gesture may vary widely because of the bad repetition accuracy
of the input devices.
Another problem is that
many people tend to
omit the beginnings and
endings of gestures, so
these parts cannot be
used to trigger the rec-
ognition.

4.1.4. Preprocessing

An essential improve-
ment of the data quality
can be achieved by pre-
processing the input
data. Disregarding the
calibration of the input
device, we can distin-
guish between  two dif-
ferent kinds of prepro-
cessing. On the one
hand the immediate
connecting and proces-
sing of the sensor input

Vertical 
preprocessor

Input values

Input device

Horizontal
preprocessor

t

t

Figure 4: Preprocessing
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at each discrete time step (vertical
preprocessing) (e.g., scaling, con-
verting radians to degrees), on the
other hand the transformation and
connection of input data of a certain
period, i.e., a certain number of time
steps (horizontal preprocessing)
(Fig. 4). Examples for horizontal pre-
processing are filters (e.g., low pass
and high pass) and derived data (e.g.,
relative instead of absolute data and
speed). In order to have a universal
and flexible preprocessing mecha-
nism, a transformation pipeline,
which can be configured, was devel-
oped. Based on a library of trans-
formation algorithms, the input data
streams can be connected hierarchi-
cally to new data streams.

4.1.5. Recording of training samples

Before starting the training proce-
dure, suitable training samples have
to be recorded. As an input device
several types of data gloves (see
4.1.3.) where used. The angles of the
fingers and the hand as well as the
orientation and position of the hand
are recorded at discrete time steps.
We realized two different methods for
recording gestures: training samples
may be recorded supervised (by a se-
cond person) or they can be recorded
automatically. Automatic recording requires definite and well defined starting and ending postures of a gesture to identify the ges-
ture. In order to find the exact triggering point a neural network which already has been used for posture recognition 20 can be
applied. However most of the real gestures do not have definite starting and ending postures (especially the ending posture is very
often used within the gesture, which leads to a premature suspension of the recording). Users tend to omit these postures or do not
perform them very exactly. Independent of the used recording method, the quality of the training samples can be enhanced consider-
ably by additional manual clipping (Fig. 5).

5. OUR APPROACHES

Since the data space has a very high number of dimensions (one dimension for each input sensor and the time = 30 dimensions)
– at which a high correlation rate between some of these dimensions can be suspected – the KFM seems to be the best choice for
data reduction. Another important advantage of the KFM is that there is no need for extensive examinations of the data space, be-
cause of the unsupervised self–organization mechanism of the KFM. Using a universal implementation of the KFM, which was
originally limited to two dimensions in the output layer, it is possible to achieve higher dimension (more complex) projections.

For DGR two different approaches were realized: one approach based on direct mapping by the KFM and another approach based
on dividing the gestures into parts.

Recording
Logic

Manual clipping

Automatic recording Manual recording

Learning Database

Recording
Tool

Gesture Input

Neural Net

Recognition of starting
and ending positions

t

Figure 5: Recording procedure
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5.1. Direct mapping approach

5.1.1. Training and recognition

The training of the KFM usually is divided into four phases. Dur-
ing the training the recorded samples are presented to the KFM in
random order. Since the input sensors were recorded at discrete
points only, the input layer of the KFM represents a matrix of the
dimensions:
     [number of input sensors] � [number of time steps] (Fig. 6).

The first training phase serves as the coarse structuring of the
KFM, whereas the second phase is used for fine tuning. In these
two phases there is no classification, but only a clustering of the
input data. The third phase is the labeling of the clusters to the cor-
responding gesture classes. The fourth phase is used for an opti-
mization of the connection weights with LVQ.

When the KFM is used for recognizing (classifying) gestures, the
input data is stored temporally in a buffer that is presented to the
KFM. The classification is achieved by referring to the gesture
class, which was used for the labeling of the corresponding (active) cluster.

5.1.2. The problem of variation in the speed of execution

Using the approach described above the main problem is the large variation in the
speed of execution. On the one hand there are very large differences in the length of
two different gestures, on the other hand the time of execution of
a certain gesture may vary depending on the person. This brings up the question of the
suitable (and optimal) size of the buffer (time window). How many input values of
each sensor should be presented to the KFM at each time step?

Whereas large buffer sizes lead to an insufficient recognition of short term gestures
(since the user usually will do arbitrary movements before and after performing a ges-
ture), short buffer sizes come along with problems for long term gestures, because the
gesture is not presented to the KFM at once (only parts of the gesture) (Fig. 7).

5.1.3. Creating time intervals

To solve these problems and the problem of individual execution speed, it seems to be
a good approach to present several sized buffers to the KFM at each time step. This
requires a determination of minimal and maximal execution times for all gestures. The
maximal duration of a gesture determines the size of the buffer. Starting with the whole buffer, shrinking parts of it are presented
to the KFM one after another, always using only the last (most relevant) data of the buffer. The smallest part of the buffer presented
to the KFM corresponds to the gesture with the shortest execution time which can still be recognized (Fig. 8).

It is possible to use one KFM for each time interval, in which case the size of the input layer would refer to the length of the interval
(length of the buffer part). This can cause recognition problems if the execution time of a gesture differs widely from the execution
time of the training samples (only one part of the gesture is presented to the trained KFM and the whole gesture is presented to
another KFM, which was not trained on this pattern). Another possibility is standardizing the intervals presented to the KFM to
the size of the input layer. This leads to an independence between the number of time steps (length of the interval) and the size
of the input layer of the KFM, which allows us to use a smaller input layer from the beginning. Thus we used this alternative in
our realization.

5.1.4. The problem of hyper sensitivity

During the labeling of the KFM clusters there are usually several clusters (especially between the real class areas) which do not
belong to any gesture. They are labeled as the refusing class (these clusters were never activated during the labeling of the KFM).
During gesture recognition (classification) these clusters
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(when they become active) are interpreted as arbitrary
movements. However the KFM very often recognizes
gestures even when the user does not seem to do anything.
Especially during short term recognition (short time in-
terval presented to KFM), the KFM is almost constantly
recognizing a gesture since the extracted data with a lack
of distinguishing details is much closer to one of the
trained gestures than it is to one of the patterns of the re-
fusing class.

5.1.5. Suppressing the classification

One possibility to omit hyper sensitivity was already
mentioned before: by presenting large intervals to the
KFM first, long gestures (with many more details) are
recognized before short (and sometimes wrong) gestures.
It is possible to improve this approach, so short gestures
will not be recognized until it is guaranteed that they are
not the beginning of a larger (longer) gesture. It is even
possible to ensure the recognition by demanding that no
part of a short gesture may be a part of long gesture. The
resulting problem is obvious: the recognition of almost
every gesture (except that of the buffer length) is delayed
for the execution time of the longest gesture (maximal
time interval). Even if this time is reduced to a short inter-
val (so only very short gestures can be recognized) there
will be a break in interaction coming along with a loss of
intuitivness for the user.

Another possibility is the use of threshold values. Thresh-
old values are an appropriate method to avoid hyper sen-
sitivity, although the extensive use of them restricts the
universality of recognition. To solve this problem, it is
necessary to use one threshold value for each interval
length instead of one value for the KFM. The shorter the
time interval is, the higher the threshold value should be.

The third possibility to avoid hyper sensitivity is to use
special training data representing arbitrary movements. This data should be recorded from short and simple movements as well
as resting positions. Due to the self–organization of the KFM it is not necessary to consider more than one special class for the
classification of this data.

5.2. Dividing into gesture parts

Another approach implemented is based on dividing the gestures into parts. First the gesture parts are recognized and finally they
are composed into the whole gesture.

5.2.1. The dividing procedure

In general there are two different methods to obtain gesture parts: On the one hand the gestures that should be recognized have
to be analyzed to define a set of gesture parts. All gestures must consist of these parts. Thus it is not possible to train any gestures,
which are not (or not completely) composed of these gesture parts. For that the set has to be extended. On the other hand it is possible
to generate gesture parts according to a number of (abstract) rules. The simplest example for a rule is the division into equidistant
time intervals: for each discrete time step the input data is classified as a posture (this is not a real posture, since it does not make
any sense on its own). Since gestures are in general not a sequence of certain postures (see 4.1. and 5.1.2.) this is not suitable for
a universal dividing method.
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Figure 8: Creating time intervals

I1 – I5: intervals 1 – 5



Published at SPIE Conference Electronic Imaging Science & Technology, San Jose California, USA, Feb. 1994.

A universal dividing mechanism which can be configured
freely and which is based on a large number of dividing
criteria (such as minimum, maximum, threshold values,
time–out mechanisms, etc.) is used for that (Fig. 9). This
mechanism can be applied on any kind of data stream
(i.e., input data or data streams resulting from horizontal
preprocessing (see 4.1.4.).

5.2.2. Training and clustering

For this approach the KFM is used for recognition of ges-
ture parts only. Since these parts are not known before
(i.e., the gesture class of the training data in unknown),
the KFM can be used for clustering only. The training
consists of two phases, in which the gesture parts of all
training gestures are presented in randomized order to the
KFM. Our realization allows to present the input data of
the gesture part as well as derived data (obtained from the
gesture part data by the horizontal preprocessor). The
preprocessor already allows a data reduction, so that it is
possible to present only some significant values of the gesture part to the KFM.

The presentation of the input data (or derived data) to the KFM results in a sequence of active clusters (output neurons). If the
gesture is very short or simple (or if it is a posture) only one cluster will become active.

5.2.3. Combining the gesture parts

For the actual recognition of the gestures it is necessary
to combine the gesture parts to one single gesture again.
Since one gesture may be represented by different se-
quences of active clusters, a second neural net seems to
be the best choice to combine them.

As input for the second NN the sequence of active clus-
ters of the KFM is used. Each cluster is represented by its
index. Since the index numbers of two clusters do not
give any information about their similarity (their distance
within the output layer of the KFM) a better approach is
to use the coordinates of the clusters (according to the di-
mensions of the output layer) instead.

Since the number of gesture parts (i.e., the length of the
cluster sequence) may vary widely (depending on the
gesture, its execution and the criterion used for the parti-
tion), a special presentation method for the second NN
has to be found. One possibility (in analogy to the first ap-
proach) is to present sequences of different length to the
NN. Another possibility is to use a recurrent NN com-
bined with a ’short’ gesture part window (Fig. 10).

Although the recognition method used for this approach
tends less to hyper sensitivity, the methods described
above (see 5.1.5.) to avoid this (late recognition, thresh-
old values and training of arbitrary movements) improve
the recognition quality as well.
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5.3. Results

Realizing these two approaches we got the following results:

Both approaches allow real gesture recognition and have to deal with the same basic problems, such as insufficient training and
input data. For real (universal) gesture recognition the number of training samples as well as the size (and dimensions) of the NN
have to be extended. At the moment this is a problem of machine power, since the DGR has to be performed in real time to guarantee
a natural (intuitive) interaction.

6. RESULTS

The two approaches discussed in Chapter 5 are implemented in the system Gesture Tool (for implementation details see 5). The
results we achieved will be presented in this chapter.

With this implementation we have shown that both approaches work for dynamic gesture recognition. The first approach is more
general and therefore would also be adequate for classification and recognition of other time dependent data.The second approach
is more specific for gesture recognition. For this approach it must be possible to extract break points for gesture parts from the input
data. The extraction is based on criteria such as extreme values which have to be defined in advance.

In the first approach there is no data reduction during the preprocessing phase. Therefore a great amount of data is passed to a large
input layer ( e.g., 20 input sensors, sampling rate 30 Hz, maximum gesture length 3 s results in 20 � (30 � 3) = 1800 inputs). The
number of distinguishable classes depends highly on the size and dimension of the output layer. The experience showed us that
networks configured as in the example above and even with a 2D–output layer (8 � 8) did not perform in real time an a workstation
(SUN Sparc 10). A configuration which was suitable for 10 gestures was achieved by reducing the sampling rate to 10Hz and the
number of input sensors to 15.

Due to the more specific nature of the second approach, it is from the performance point of view better than the first. The reason
for this is the division of the input data stream into small intervals. This requires only a small input layer of the KFM, which can
be processed in real time. This enables us to use a 3D–output layer which is able to represent more complex topologies. Since the
layers of the second NN can be very small (dimensions of the KFM output layer � max. number of gesture parts or width of the
time window � 30 for the input layer and number of gestures for the output layer) its performance is not relevant to the recognition
time.

However, for using the recognition output of our system Gesture Tool as an input to a VR–System we need to improve the speed
of the implementations, especially in the first approach. Although the recognition is done in real-time, there is still a remarkable
lag between execution of gestures and recognition. In fact the highly dimensioned networks which are appropriate for this problem
need a remarkable amount of hardware power.

The main advantage of our approaches compared to others is that we do not make any limitation concerning the gestures. Most
other approaches require a well defined start and end posture. In order to avoid these limitations we need either a sophisticated
preprocessing technique or  huge networks.

7. RELATED WORK

Since the invention of the dataglove people have been trying to use it to recognize postures and gestures.  These other projects could
generally be classified into two groups:  those which incorporate neural nets and those which do not.

An example of a non-neural-net approach was the work done by M. Bordegoni at the Rutherford Appleton Laboratory3.  In this
system certain postures would be denoted as the start and end of a gesture.  The teaching phase consisted of creating and storing
a range of sensor values at certain time intervals over the ”life” of the gesture; since the gesture was repeated many times, the ranges
of sensor values at the time intervals would acquire a minimum and maximum.  Then during the recognition phase the system would
continually try to match the current posture to any of its gestures’ start postures and, after one was found, would keep checking
the sensor data at the time intervals to make sure it all stayed within the range expected at that relative interval.

This led to a simple, fast gesture recognition system, which was rather successful in the laboratory.  The disadvantage however
is that the beginning and end postures had to be rigorously set and remembered by the users:  if the start posture was not correct
the gesture was never started, and if the end posture was not executed correctly, the whole gesture was lost.
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Under the heading of neural network approaches falls the work done by M. Ala-Rantala1.  This system was originally set up as
a neural network for static posture recognition, and was very successful in this respect.  In order to apply the system to gesture
recognition, the number of input neurons was increased by n so that the same amount of information used to recognize postures
could be stored over a continually-shifting ”time window” of  n intervals; this information was then fed into the neural network.

While it enjoyed limited success, this approach led quickly to some problems.  Because of the lack of sophisticated preprocessing,
recognition of the gesture is very dependent on its execution time: if the same gesture is done more quickly there is less of a chance
that it will be recognized.

An example of a project ranging into the very complex neural network area was the work done by K. Murakami and H. Taguchi18.
This approach used recurrent neural networks, feeding the ”hidden layer” back into itself as input neurons in order to retain a longer
history of sensor data.  One may also wish to look into the project done by F. Camplani at the University of Mailand in Italy7 for
an example of a yet more complex approach.

8. FUTURE WORK

Our future work will be directed at the improvement of the speed of recognition in order to reduce the gap between execution of
gestures and recognition. The success of the recognition in both approaches depends basically on the preprocessing method used,
the network configuration and the classification parameters, such as threshold values and maximal gesture length. Therefore re-
search has to be conducted in order to find an optimal or at least acceptable solution. For the evaluation of the system a user test
has to be performed.

In the future we also want to investigate dynamic gestures from the human factors point of view.  Therefore we have to find mean-
ingful translations for gestures to their functionality. This investigation will be performed by connecting the developed Gesture
Tool to our VR-Toolkit GIVEN2.
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