
1

SMARTPAPER:
An Interactive and User

Friendly Sketching System

Presented by Brian
Williamson

Written by: Amit
Shesh and Baoquan

Chen

Presentation Overview

• Introduction to the problem
• 3D rendering techniques using sketch

based interfaces
• SMARTPAPER’s features
• Processing Pipeline

– 2D processing
– 3D Geometry Reconstruction

• Feedback/Cutting/Joining/Rendering
• Conclusion

2

Introduction

• It is natural to sketch out a 3D object
conceptually

• Current methods involve taking a
conceptual sketch and using a complex
system (such as CAD) to create it

• A better design would be to allow the
sketched interface to immediately translate
to a 3D object

Free Form recognition (TEDDY)

• Draw any design
• Used fewer

gestures
• May want simple

ways for primitive
objects

• Algorithm may
create “cartoon
looking” models

3

Gesture Rendering (SKETCH)

• Uses several
gestures

• Simple to
create
primitives

• May be
unintuitive
(depends on
gesture set)

2D Graph Formation

• Proposed by Lipson
(1996)

• Scanned in 2D
sketches

• Built 2D graph
information
(vertices, edges)

• Render from graph

4

Introducing SMARTPAPER

• A combination of
the other
techniques

• Allow free form
drawing

• Allow gesture
manipulation

• Render from 2D
graphs

Object Creation
• Can draw an object
• Use an arrow to

extrude it out
• Object can be

primitive or freeform
• Can perform

incremental
construction

5

Attaching Objects

• Can attach an
object with a line

• The line determines
which face of the
object attaches

• Example shows
ground plane

Object Cutting

• Cut an object by
drawing into it

• Can draw an
extrusion line to
completely remove

6

Putting it all together (Lamp
example)

The Base The Stand The Shade The Lamp

How is this done?

7

Clean Sketch and
Recognize Gestures

Form 2D
Graph

Determine
Faces

3D
Reconstruction

Determine Cutting
Planes and cut solid

User Feedback, Cluster Threshold, and face
determination method selection

Processing Pipeline

Example Stages

• Input Sketch
– Rough Drawing

• Cleaned Sketch
– Remove Overtracing
– Clean Imperfections

• Recognized Faces
– Create 2D graph

• Recognized Object
– Built from 2D graph

8

Pre-Processing: Over Tracing
• Remove Over Tracing

– A pair of strokes A,B are
over tracing if:

– They have nearly equal
slopes

– One End Point of A lies in
the X and Y ranges of the
endpoints of B

• Once found, a connection is
made in two passes, A’s starting
point to B’s ending point

Over tracing Example

Pre-Processing: Gesture
Recognition

• Arrow was recognized as proof of concept
– Has to be drawn in two strokes
– Both recognizer and cutting modules query if

this gesture was drawn
– Either recognizer or cutting module is called

depending on the operation

9

2D Graph Generation

• Graph is generated with a connectivity matrix,
each vertex contains (x,y) coordinates

• Imagine taking the endpoints from each line to
create vertices

• If performing extrusion, a copy of one graph is
made along the direction of the extrusion arrow
and edges are connected

• Then use “clustering” to determine proximity and
combine graphs

• We assume all sketches are closed objects
– All vertices must have at least a degree of 3
– Remove any vertex that does not meet this rule

Clustering Method

• As edges are added to the graph, all end
points with a distance of some threshold
sigma from an existing vertex are grouped
with it.

• Sigma can be changed in the feedback
system

Sigma

10

3D Reconstruction: Face
Determination

• All Faces are Cycles
• Not all cycles are faces though
• Using the closed object assumption

– All edges of graph G are part of exactly two faces
– The shortest path of any two vertices V1, V2 is the

same length as the path in the face F
– Proof by contradiction (Available in backup slides)

• Two algorithms are used to determine faces
– Edge Coherence Algorithm
– Modified Dijkstra Algorithm

Edge Coherence Algorithm
• 3D objects are not drawn randomly
• Chances are, faces are drawn together
• First Pass: O(e)

– Can check for cycles in sequential edges for the
possibility of a face

– If two edges do not connect, use a lookahead (1 in the
paper) to find a connection

– With connected edges, attempt to close the temporary
face

• Second Pass: O(e1 * n^2)
– For all unclosed faces and edges not part of two faces
– Find shortest path of the two vertices

• Works most of the time, but erasing strokes and
redrawing strokes will not determine faces

11

Edge Coherence Pseudo Code

Modified Dijkstra Algorithm

• Take an edge E and find the shortest path
from one end point to the other

• Modified in a way that all edges already
determined for a face are removed, and
cannot be used in the algorithm

12

Dijkstra Pseudo Code

3D Reconstruction
• “Inflate” the object by assigning Z values using

geometric properties
– Use planarity of faces, parallelism, etc

• Make use of compliance function
• F(Z) = W * SUM(A)
• Where A is the vector of all factors, W is a

weighting function and Z is the z value for all
vertices

• This is an N-dimensional optimization problem
– Used Brent’s Minimization technique to reduce to

several 1-dimensional optimization problems
– Go cyclically, Vertex by Vertex, attempting to approach

equilibrium
• User can provide hints (dotted lines) to help with

reconstruction

13

More on 3D Reconstruction
• Using hints, create three Z layers

– One layer consists of vertices to which only hidden
edges are incident

– Second layer is of vertices to which only visible
edges are incident

– Third layer is all other vertices
• These layers give each vertex an initial Z value
• The 3D object is finally represented as a new graph,

similar to boundary representation (B-Rep)
– Boundary Representation is a representation of faces,

edges, and vertices. It is currently used in CAD systems.

• Use this graph to reproject when using different
viewpoints

Reconstruction Example

14

Offering User Feedback

• Clustering may be
incorrect

• Leads to incorrect
Faces

More User Feedback

• Can switch face
detection algorithm

15

Cutting
• Performed by drawing on a 3D object
• Convert strokes to 2D graph
• Cast ray from eye position through both end

vertices of each edge
• Arrow uses ray casting to determine direction
• Cut from the object once the plane has been

generated
• Cutting algorithm discussed in “Boolean

Operations of 2-Manifolds through vertex
neighborhood classification”
– Uses Boolean operations to cut from 3D B-Rep graph

representation

Joining

• Uses the line to attach two objects
• Perform coordinate transformation to cause

the two objects to “stick”
• Any transformation done to one object is

automatically performed with the other

16

Rendering

• Non-photo realistic techniques
• Two pass algorithm

– First pass, render all faces
– Render edges as textured quads

User Study

• SMARTPAPER shown to ten students and
one faculty member in the Architecture
Department

• Appreciated the ease of use and
functionality over designing in CAD

• No real data presented

17

Conclusions

• Seems useful, though not compared with
other sketching systems only CAD

• Cannot evaluate curved 3D objects
• Could make use of more gestures
• Thresholds and constraints often used
• Focuses on architectural design techniques

Questions?

18

BACKUP SLIDES

Proof of Definition A

19

Modified Dijkstra Example

