
ANON-LINE SYMBOLIC MATHEMATICS SYSTEM
USING HAND-PRINTED TWO-DIMENSIONAL NOTATION*

Frederick W. Blackwell

Robert H. Anderson

The RAND Corporation
Santa Monlca, Californla

Summary

This paper describes a system that is
being developed at The RAND Corporation
for the on-line manipulation of symbolic
mathematical expressions. The primary
input consists of the user's expressions
hand-printed on a RAND tablet in ordinary
two-dimensional mathematical notation.
The system recognizes the characters and
interprets the whole expression from the
spatial relationships present in ac-
cordance with a previously input syntax.
The user at the console directs symbolic
transformations upon his input expressions
by instructing the computer to selectively
attempt to apply various rules of mathe-
matics; these rules have been previously
entered into the system in the same manner
as the expressions. A transformed ex-
pression resulting from the application
of a rule or group of rules is displayed
on the IBM 2250 graphic console. An ex-
perimental version of the system is in
operation at the present time.

Introduction

Most programming languages employ
linear notation for algebraic formulas
not only because it is much easier to im-
plement, but also because the relatively
few distinct types of two-dimensional con-
figurations which normally occur can be
readily represented in linear form. Fa-
miliar examples are the use of the slash
for division and the use of the double
asterisk or some special character for ex-
ponentlation. While the programmer and
non-programmer alike adapt to this linear
notation, we asst~ne that both would usu-
ally prefer a language in which it is
possible to write in ordinary two-di-
mensional mathematical notation. Examples

of how this can be done for typewriter-
like devices are provided b X the work of

Klerer and May (1) and Wells (2), and for
more general input devices by the work of

Anderson (3) and Bernstein and Williams (4).
The latter systems are complicated by the
fact that the user prints his symbols on
a RAND tablet or similar device; the
characters must be individually recognized,
and then the whole formula must be properly
interpreted from the spatial relationships
present. The development of formula-
manipulating languages, in which the data
and results are often inherently two-
dimensional, has created additional demand
(intensified in an on-line environment)for
explicit two-dimensional representations
in communicating with the computer.

This paper describes a system that is
being developed at The RAND Corporation
for the on-line manipulation of symbolic
mathematical expressions. The primary
input is the user's expressions hand-
printed on a RAND tablet, and the primary
output consists of transformed expressions
which appear on the IBM 2250 graphical
display console. Both input and output
are in two-dimensional mathematical no-
tation. The person at the console directs
the transformations upon his expressions.
Thus the system provides a kind of "so-
phisticated scratchpad" for the user.

System Design

The goals of the system are several.
First, it is hoped that it will be a use-
ful mathematical tool for RAND scientists.

*The work described in this paper was supported under Air Force Project RAND and
under contract to ARPA.

551

If it is to do this, it must have the
virtues of availability, convenience and
ease of use~ and of course speed and
accuracy. The system provides con-
siderable opportunity for experimentation,
and it is intended that this attitude be
maintained even as the system becomes
more refined. In particular, the design
of the system makes it possible to put
together complex sequences of relatively
simple mathematical transformation rules
for later automatic execution. The synthe-
sis of efficient sequences for problem-
solving in particular areas can, in part,
be determined by experimentation at the
console. Finally, the system provides
additional experience and guidelines that
are useful in understanding the nature
and means of solving problems in inter-
active computer systems, especially those
in which the information being manipulated
is two-dimensional or graphic in nature.

At present, the system described
herein runs on a 256K-byte IBM 360 model
40, to which is attached a RAND tablet,
and IBM 2250, a typewriter, four disk
files, and several 2260's. Interaction
with the programs, which will be described
in some detail later, is by means of
function keys and 2250 "light buttons",
as well as by direct input via the RAND
tablet. Most of the system was written
in PL/I, using the facilities of SGS
(Simultaneous Graphics System); the latter
is a RAND-developed time-sharing system
which allows multiple users at 2260 ter-
minals to create and update files at the
same time that a normal background job

is running. (5)

Engeli remarks that "the problem
space of formula manipulation is quite
large and of such diversity that even
today there is relatively little overlap
i~ the goals and achievements of different

systems. ''(6j " At the outset, then, it is
useful to put our system into perspective
by briefly comparing its intent with that
of certain other systems. Basically, our
system is one for manipulating mathe-
matical expressions in accordance with
rules which the user supplies. In this
respect it is much akin to the spirit of

Fenichel's FAMOUS system (7j . ~ This con-
trasts somewhat with systems such as

Engelman's MATHLAB (8) and Martin's Sym-

bolic Mathematics Laboratory (9j l , in which
there are built-in high-level imperatives
like SOLVE. It is also quite different

from a system such as FORMAC ~10j," " in which
the formula-manipulating capabilities ap-
pear as an extension of a general program-
ming language. Our system does give the
user the ability to program sequences of
transformations at the console, somewhat

like that of Blackwell's system (II) that

was based on the Culler-Fried system(12).
While this may not result in particularly
efficient procedures, it does allow a
user a relatively convient method of
building toward higher-level operations
such as SOLVE.

Input and Recognition

After loading the symbolic mathematics
system and pressing an appropriate func-
tion key at the 2250 console, the user can
write his expressions on the RAND tablet.
(An "expression" as used here may be
either an equation or a replacement rule
to be used in a simplification process.)
As each character is printed (in any size
and at any location on the tablet surface)

it is sent to Groner's character recognizer

(13); if it is recognized as a valid
character, its "ink track" on the CRT is
replaced by a vector-drawn stylized charac-
ter of the same size and at the same
location. A scrub character may be used
to remove one or more previously recog-
nized characters. The order in which the
characters are drawn is not significant.

During the character input phase, a
light button labelled PARSE is displayed.
When that button is hit with the tablet
stylus, the character configuration
currently displayed on the screen is syn-
tactically analyzed; if it is a valid
equation or replacement rule, a charac-
ter string equivalent is produced. The
two-dimensional syntactic analysis is
performed by Anderson's recognition

3) algorithm k . This analysis is entirely
syntax-directed; that is, it is governed
by a set of replacement rules which de-
scribes the valid two-dimensional charac-
ter configurations which can be recognized
and converted into character strings.

552

Upon completion of a successful
syntactic analysis, the character con-
figuration is enclosed by a displayed
rectangle, the character string equi-
valent is placed beneath the rectangle,
and two light buttons are available:
EDIT and OK. The user may verify that
the character string is a correct inter-
pretation of his hand-prlnted expression.
He may modify the expression by touching
EDIT; control is returned to the charac-
ter input phase, allowing him to scrub
and rewrite parts of the existing two-
dimensional expression. If the OK button
is hit, the character string meaning of
the expression is transmitted as input
to the system. The system then displays
a message asking the user if he wishes
to name the expression; the user can re-
ply by writing any alphanumeric name on
the tablet. It is usually desirable to
name an expression for later reference,
unless it is one which is to be used im-
mediately. Figure i contains four sample
displays generated during the operation
of the input phase of the symbolic mathe-
matics system.

As mentioned above, the recognition
of two-dimensional character configurations
is entirely syntax-directed. The recog-
nition system is therefore extremely
flexible; individual users can modify and
extend the mathematical notation which the
system can recognize merely by changing
the syntax which governs the recognition.
Although not done at present, we plan to
allow the user to make these syntax modi-
fications on-line.

The flexibility of the parser will
allow the system to be expanded in several
ways by a user:

(i) he may add new symbols denoting
operators (or operands), such as defining
the symbol ~ to mean matrix multipli-
cation;

(2) he may define new configurations
of symbols, such as parsing the configu-
ration

-x y. 6-

0 z x

into the string

TRIDIAG(x, y, z, 0).

That is, the interpretation would be a
functional notation describing a tri-
diagonal matrix (of unspecified size)
with upper, center, and lower diagonals
filled with x, y, and z respectively
(where x, y, z could be arbitrary arith-
metic expressions) and zeros filled else-
where. Syntaxes have, in fact, been
written and tested for the parser which
handle most matrix notation, and even
arbitrary directed line graphs. Therefore,
it is possible for the user to print a
wide variety of mathematically interesting
constructions, to have them parsed into a
character string, and to perform groups of
manipulations on the resulting string.
The symbolic manipulation of matrices and
graph structures raises many questions;
for example, how are intermediate results
shown? How are forms too large to be dis-
played at once shown? The authors do not
at present know the best answers to these
questions, but there is sufficient flexi-
bility in the specification of the syntax
of input configurations to allow eventual
experimentation with symbolic manipulation
of these "very two-dimensional" structures.

Transformation and display

The basic expression manipulation
capability of the system is that of search-
ing a given expression and attempting to
match all or part of it with the left-
hand side of a given rule, where both the
expression and rule have been input as
previously described. A variable in a
rule may match an entire subexpression.
If the match succeeds, a replacement is
made in accordance with the right-hand
side of the rule. Substitution of one ex-
pression for another is done similarly.
Expressions may also be transformed di-
rectly through on-line editing operations
of insertion, deletion, and rearrangement.
While the operations of substitution,
editing and rule application are conceptu-
ally different, from a user's point of

553

view they are simply means to the same
end: transformingmathematical expres-
sions in meaningful ways.

A simple example that illustrates
the basic types of on-line transformations
will probably best convey the flavor of
the system. Figure 2 shows the sequence
of expressions which is generated on the
2250 display graphic console as various
operations are performed on a given ex-
pression. Previous expressions are not
automatically erased, so at the end of
the sequence all expressions of Figure 2
(but without identification numbers) will
appear on the 2250.

The first expression (I) is entered
directly, or is the result of the previous
computation, or is called up by name from
the expression storage space. By writing
expression (2) on the tablet and pressing
the "substitute" function key, expression
(3) results. (If (2) had been previously
stored, the user could call it by name
instead of rewriting it.) The parentheses
in expression (i) are superfluous after
the substitution, and are automatically
removed in (3). Next, if the user wishes
to differentiate the expression with re-
spect to t, he has the computer make a
copy of the expression and then he simply
writes the indicated differentiation on
the tablet in the usual manner; this is an
example of the editing operation of in-
sertion. The parser recognizes the new
expression, and the stylized version (4)
appears. By indicating a name (either via
typewriter or by writing at the bottom of
the tablet) and pressing the "apply" func-
tion key, the user calls forth a rule ex-
pressing the distributivity of differen-
ration over addition. The result is
expression (5), to which is then applied
the rule given in Figure i (d) and the
rule that the derivative of a constant is
zero. By pressing another function key,
the user instructs the computer to reduce
the intermediate form (6) to the final
expression (7). This latter simplifi-
cation is the result of the straightfor-
ward application of a sequence of elementa-
ry rules of algebra, and occurs only if
desired by the user. In fact, the user
has the ability to synthesize such sequences
of rules, and can therefore maintain as
much control over the computer transfor-
mations as he desires. The only simplifi-
cations which the system automatically

performs are arithmetic operations, re-
dundant parenthesis removal, and the
placement of a ~nerical coefficient
first in a term~ Thus, a term 2(A)3
which might ariSe in a computation would
immediately be converted to 6A. Expres-
sions or parts of expressions are not
reordered by the system, with the~x -
ception just noted. However, in attempt-
ing to apply a rule involving a commut-
ative operator, the system will commute
the appropriate operands if this permits
the rule to be applied when it would not
otherwise apply. The user has the abili-
ty to input his own operators and to
declare certain of their properties, such
as commutativity.

The aggregation of transformation
rules into a sequence for later appli-
cation by just one reference to the set
is accomplished by pressing a "group"
function key, and then simply naming the
rules that constitute the sequence; the
group itself is then given a name. It
is also possible to read in groups of
rules from cards. A given rule may be a
member of more than one group, and groups
may be nested. At any time the user may
ask for a display of rules or group of
rules. In addition, he may have a rule
or its name displayed as it is applied.

When the user calls for the appli-
cation of a group of rules, the computer
applies these rules cyclically until no
further changes occur. Experimentation
with the order and structure of rule
application, such as that which has been

done by Fenichel (7), will permit us to
define a broader capability for automatic
rule application in groups.

The interpretation of an expression
in the computer is left to the user. For
example, the equation

2 2
x - y = (x+y) (x- y)

may be the current expression being trans-
formed. It may also represent a substi-
tution to be made whenever the particular

symbols (x 2 - y2) appear in an expression.
Finally, it may represent a general trans-
formation rule, in which x and y them-
selves stand for expressions. Note that
an expression may be numerically evaluated
(or its number of variables reduced) by
substituting numbers for variables.

554

The user has control over what he
wants displayed; in partlcular, he can
call for display after each transformation,
as in the example, or omit the display of
intermediate results such as expressions
(5) and (6) in Figure 2. He may move for-
ward and backward through his list of
expressions, and so his previous work is
available to him as long as there is
memory space. Named expressions are always
saved, but the oldest unnamed ones may be
deleted if the space is needed for current
expressions. Of course, the user may de-
lete an expression or rule at any time, in
which case its storage space is released.

The display of large expressions
which cannot be entirely contained on the
face of the 2250 is presently handled by
having the system write the expression on
successive "pages", which are then dis-
played under user control. Splitting the
expression logically (as determined from
the Polish form) and varying the charac-
ter size of parts of the expression
("zooming") are two techniques being con-
sidered to further aid in the display of
large expressions. An expression could
also be displayed in tree form, as in

Millen's CHARYBDIS (14) We have yet to
develop a full two-dimensional display

Martin (
9

%

capability such as that of), but
the subscripting, superscripting, and
spacing present in our displayed expres-
sions make most of them quite readable.
In displays, the user may choose whether
or not he wishes to have simple juxtaposi-
tion denote multiplication. An explicit
multiplication sign between factors is
necessary when multi-character names are
used; such names must be declared by the
user, as well as all names that represent
symbolic constants.

Internal structure

This paper is mainly concerned with
the system description from a user's
point of view, but certain internal
features may be of general interest. Ex-
pressions are stored in one-way list
structures that correspond to a modified
delimiter Polish prefix notation. Internal-
ly, a binary minus becomes a plus followed
by a unary minus; a similar statement holds

for the division operation. This kind
of representation permits the retention
of symmetry which may be present in an
expression. As an example of this
notation, the external expression a-b+c+d
becomes the list structure equivalent of
the delimiter Polish form +a-bcd), where
the right parenthesis denotes the scope
of the "continuing" operator plus. No
attempt is made to retain an expression
in its external two-dimensional form; the
relative ease of manipulation of Polish
notation seems to justify the conversion
required whenever input/output operations
occur. Displayed expressions converted
from internal Polish may look slightly
different from their original input form,
but (as noted before) reordering is not
done.

The system uses floating-point
arithmetic for number storage and com-
putation, although an integer or a number
which differs from an integer by a pre-
scribed tolerance is displayed as an
integer with no decimal point. We plan
to incorporate into the system a rational
arithmetic using the "decimal arithmetic"
feature of System/360.

The progranTning of the graphics
parts of the system was facilitated by
the use of the RAND Integrated Graphics

System (IGS) LI5)" " a set of subroutines
which permit easy on-line communication
between the computer, the 2250, and the
RAND tablet.

System status

The implementation of almost all of
the features described in this paper is
complete, and useful system experiment-
ation and resultant modification have
begun. In addition, the following im-
provements and extensions are contemplated:
complete two-dimensional output and edit-
ing; a better structure for applying
rules conditionally so that very complex
operators can be built up; a "designation"
facility that makes it easier to operate
on parts of expressions, including greater
use of the tablet stylus for this purpose;
and provision for efficiently transferring
expressions between core and disk. The
system may also be adapted to handle more
general algebras. Of particular importance

555

is the development of provision for 5.
smooth dialogue between the user and the
system. A possible way of achieving this
goal might be an increased use of light
buttons a~d menus and a corresponding
decrease in reliance on function keys
and the typewriter. The system will be 6.
used to test various alternative data
input and display techniques, so that the
most natural man-machine dialogue might
be achieved.

It is intended that this symbolic 7.
mathematics system will be implemented
on an experimental Videographic system
currently being developed at RAND in
conjunction with IBM. This system uses
television monitors for inexpensive
graphic display, with provision for tablet
and keyboard input devices at a terminal. 8.
The set of subroutines (IGS) currently
being used for communication with the
IBM 2250 graphic terminal will also pro-
vide the interface to the Videographic
system, so minimal program conversion
will be necessary.

References

i. Klerer, M. and F. Grossman, "Further
Advances in Two-Dimensional Input-
Output by Typewriter Terminals,"
Proceedings of the Fall Joint
Computer Conference, Vol. 31,
Part I, pp. 675-687. Thompson
Books, Washington, D.C., 1967.

2. Wells, M. B., "MADCAP: A Scientific
Compiler for a Displayed Formula
Textbook Language," Con~nunications
of the ACM, Vol. 4, pp. 31-36, 1961.

. Anderson, R. H., "Syntax-Directed
Recognition of Hand-Printed TWo-
Dimensional Mathematics," Inter-
active Systems for Experimental
Applied Mathematics, (Klerer, M.
and J. Reinfelds, editors), pp.
436-459. Academic Press, New York,
1968.

. Bernstein, M. I. and T. G. Williams,
"A Two-Dimensional Programming
System," Proceedings of IFIP Congress
68. North-Holland Publishing Co.,
Amsterdam.

Balzer, R. and W. Josephs, SGS -- RAND
Simultaneous Graphics System,
RM-5612-ARPA, The RAND Corporation,
Santa Monica, California, February
1969.

Engeli, M. E., "Achievements and
Problems in Formula Manipulation,"
Proceedings of IFIP Congress 68.
North-Holland Publishing Co.,
Amsterdam.

Fenichel, R. R., An On-Line System
for Al~ebraic Manipulation, Ph.D.
dissertation, Division of Engineer-
ing and Applied Physics, Harvard
University, Cambridge, Massachusetts,
July 1966.

Engelman, C., "MATHLAB 68," Proceed-
ings of IFIP Congress 68. North-
Holland Publishing Co., Amsterdam.

9. Martin, W. A., Symbolic Mathematical
Laboratory, Ph.D. dissertation,
Dept. of Electrical Engineering,
Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts,
January 1967. Also M.I.T. Project
MAC report no. MAC-TR-36.

i0. Sammet, J. E. and E. R. Bond,
"Introduction to FORMAC," IEEE Trans-
actions on Electronic Computers,
Vol. EC-13, pp. 386-394, 1964.

ii. Blackwell, F. W., "An On-Line Symbol
Manipulation System," Proceedings
of the 22nd National ACM Conference,
pp. 203-209. Thompson Book Co.,
Washington, D.C., 1967.

12. Culler, G. J. and B. D. Fried,
"The TRW Two-Station On-Line
Scientific Computer," Computer
Augmentation of Human Reasoning,
(Sass, M. A. and W. D. Wilkinson,
editors), pp. 65-87. Spartan Books,
Washington, D.C., 1965.

13. Groner, G. F. "Real-Time Recognition
of Handprinted Text," Proceedings
of the Fall Joint Computer Conference,
Vol. 29, pp. 591-601. Spartan Books,
Washington, D.C., 1966.

14. Millen, J. K., "CHARYBDIS: A LIST
Program to Display Mathematical
Expressions on Typewriter-like

556

15.

Devices," Interactive Systems
for Experimental Applied Mathe-
matics (Klerer, M. and J. Reinfelds,
editors), pp. 155-163. Academic
Press, New York, 1968.

Brown, G. D. and C. H. Bush, The
Integrated Graphics System for the
IBM 2250, RM-5531-ARPA, The RAND
Corporation, Santa Honica, Cali-
fornia, October 1968. Also CFSTI
report no. AD 677 464.

557

