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Abstract

Handwritten notes are complex structures which in-
clude blocks of text, drawings, and annotations. The
main challenge for the newly emerging tablet computer
is to provide high-level tools for editing and authoring
handwritten documents using a natural interface. One
frequent component of natural notes are lists and hier-
archical outlines which correspond directly to the bul-
leted lists and itemized structures in conventional text
editing tools. We present a system which automatically
recognizes lists and hierarchical outlines in handwritten
notes, and then computes the correct structure. This
inferred structure provides the foundation for new user
interfaces and facilitates the importation of handwrit-
ten notes into conventional editing tools.

1. Introduction

Spontaneous on-line ink notes taken on a tablet PC
frequently have hierarchical structures. Users typically
write out paragraphs which are composed of lines, lines
which are composed of words, and words which are
composed of strokes. It is also very common that users
create hierarchical structures between paragraphs us-
ing different indentation and/or bullet schemes. Auto-
matically interpreting these hierarchical structures al-
lows for complex high-level manipulations such as in-
sertion of a line, moving or collapsing sub-trees, and
porting ink into text preparation systems like Microsoft
Word with appropriate formatting.

This paper focuses on outline parsing , the prob-
lem of segmenting a block of text lines into para-
graphs and determining the hierarchical structures be-
tween the paragraphs. Each paragraph has certain
formatting attributes such as its bullet and indenta-
tion styles(see Figure 1)1. After parsing, the resulting

1This definition includes a list item as a special case.

outline tree has a single invisible ROOT node and a
number of paragraph nodes, each containing at least
one line and possibly a number of children nodes.
The presented outline parser assumes that graphical
elements have been filtered out, strokes have been
grouped correctly into words, lines and blocks, and an-
notations have been segmented and removed. These
pre-processing modules are beyond the scope of this
paper and will be described elsewhere.

Two observations make outline parsing much sim-
pler. The first is that the lines within each block are
naturally ordered from top to bottom and that the
nodes in the tree have the same depth first order2.
The second observation implies that the hierarchical
structure can be encoded by assigning each line a la-
bel. The labels encode both the depth of the node
in the tree and whether the line is a continuation of
the same paragraph (see Figure 1). Given these two
observations, the inference of the outline tree can be
achieved as a line classification problem, where each
line is classified into one of N depths and as a contin-
uation or non-continuation. From the classification for
each line the tree structure can be computed in one
pass.

We take a learning approach to the line classification
problem, in particular, we adopt the Markov model-
ing framework introduced by Collins [2]. The Collins
model is a powerful generalization of a Hidden Markov
Model [8]. Like a hidden Markov model, a Collins
model discovers from a training set of examples the
key regularities necessary to label additional examples.

In order to understand the necessity of this model,
let us review alternative simpler models. The first ap-
proach might be to classify each line based on features
computed from that line alone. As described in Sec-
tion 3, a total of 57 features are computed for each
line. Examples include: “left indent”, “right indent”,
“left indent relative to the previous line”, “is a bullet

2Depth first order on a tree is the order of encountered nodes
during a depth first search.



Figure 1. An example outline. Each line is la-
belled with its depth and if it is a continuation.
A line given the label 3c is at depth 3 in the
tree and is a continuation of the paragraph.
This example has 6 paragraphs (nodes).

present”, etc. Using these features one can attempt to
learn a function which will correctly classify the line’s
depth and continuation. This simple scheme, because
it is independent from line to line, has a difficult prob-
lem in labeling lines because context is very important.

One simple extension is called “stacking”. In this
case the features of the current line and the features
of the surrounding lines are used as input to the
classifier for each line (the features are “stacked” into a
single input vector). While this improves performance,
the dependence between labels is not modelled.

The most powerful model is one that both stacks in-
put features and propagates label dependencies. Hid-
den Markov models are potentially appropriate for
this process, but one technical assumption is violated,
the independence of the observations given the hidden
state. Since the input features are stacked, the same
feature value appears many times for different input
times. This is a serious violation of independence. Re-
cently several types of models have been proposed that
do not require observation independence, these include
Conditional Random Fields [5], the Collins model, and
other non-generative Markov processes [1, 10]. The
Collins model is by far the simplest, so we use it for
this application.

2. Collins Model for Markov Chains

The formal justifications for the Collins’ model and
related models are beyond the scope of this paper.
Only the details necessary for understanding the op-
eration and training of the model will be summarized.

The model operates as follows: given a sequence of
observations st we attempt to find a sequence of labels
lt. A Collins model utilizes a set of features fi(l′, l′′, s, t)

which are binary functions of a pair of labels, a se-
quence of observations s, and the time (or position in
the sequence). The cost of a label sequence is defined
as:

C(L, s) =
∑

t

∑

i

λifi(lt, lt−1, s, t) (1)

where L is a sequence of labels in time {lt}, and λi are
model parameters. Given many labeled training exam-
ples {Lk, sk}, the learning process attempts to find a
set of weights {λi} such that L̂k = arg minL C(L, sk)
is equal to Lk.

Notice that each feature depends only on a pair of
adjacent states. As a result terms from the summation
may be divided into independent groups. This leads to
an efficient minimization using dynamic programming
(the algorithm is essentially equivalent to Vitterbi de-
coding of HMMs).

The features as expressed above are in an abstract
form which does not provide much intuition for their
operation. Let us consider the following examples in or-
der to build intuition. Without much loss in generality
we will consider only binary features which return ei-
ther 0 or 1. Consider a particular form of feature which
ignores the observations and time altogether. These
could be rewritten as fi(lt, lt−1). One particular fea-
ture, call it fT14, returns the value 1 if lt−1 = 1 and
lt = 4 and 0 otherwise (i.e. the state has transitioned
from a line at depth 1 to depth 4). This transition is
impossible due to the nature of the outline tree. To en-
sure that the model never outputs impossible labels the
learning process could assign the corresponding weight
λT14 a very large positive value. As a result any hypo-
thetical label sequence including this transition is as-
signed a high cost. Conversely, fT12 (which tests for a
transition from depth 1 to 2) is a common occurrence
which could be assigned a negative or small positive
weight.

Another type of feature can be used to encourage
particular states. For example the hypothetical fea-
ture fS1 Indent<20 returns 1 if the current state is 1
and the left indent of the current line is less than 20
millimeters. This is a fairly common occurrence and
it should be assigned a negative weight. The feature
fS1 Indent>500is an uncommon occurrence and should
be assigned a large positive weight.

The most complex type of feature relates two labels
given some property of the observation. For example
fT11 RelIndent < 20 returns 1 if the current and previous
labels are both 1 and the relative indent between the
lines is less than 20 millimeters. This too is a common
occurrence and it should be assigned a negative weight.

Of course none of these weights are assigned by
hand. Given a large set of features and a large set
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of examples, the Collins model is trained iteratively
by gradually adjusting the weight vector until conver-
gence.

3. Line Features

The input to the feature extractor is a block of cor-
rectly grouped lines which have similar but otherwise
arbitrary orientation. The first preprocessing step is to
compute the line rotation angles and define the block
coordinate. Then we can compensate for the rotation
angle and proceed assuming all lines are horizontal and
up-right.

There are a set of basic line features from which
we derive all other features. We call these features
raw features. They include: the left, right, top and
bottom line bounds, indent level and bullet type. Cal-
culating the line bounds is straightforward (although
care needs to be taken in computing the top and bot-
tom bounds because ink lines are not straight and the
ascenders and descenders can be quite irregular). The
procedures for indent level estimation and bullet detec-
tion are described below.

Indent Level Estimation. Indent levels are quan-
tized left indentations. Although the indent lengths
may differ greatly between examples, the indent lev-
els are relatively stable, roughly corresponding to the
outline depths (see examples in Figure 4). We use
the K-means algorithm for this quantization problem:
starting with equal-sized bins, assign the observations
to the nearest bin centers, update the bins with the
new members and iterate until they no longer change
[3]. It is often observed in ink notes that the indent
lengths of the same level gradually drift down the page.
In such cases, quantizing the absolute indents directly
may bury actual levels in spurious detections. To al-
leviate this problem, we carry out quantization in two
passes. The first pass quantizes relative indents and
groups neighboring lines which have zero relative in-
dents. The second pass quantizes the average absolute
indents of the line groups.

Bullet Detection. Lists are very common struc-
tures in ink notes. Bullets signal the start of list items
(paragraphs) and their presence can greatly reduce the
uncertainty of outline labeling. We have developed a
rule-based bullet detector which recognizes a small set
of symbols and symbol-embellishment patterns, and
exploits consistency between bullets to boost detection
confidence. The algorithm comprises four steps. First,
for each line we generate several bullet candidates from
the stroke clusters at the beginning of the line. Sec-
ondly, for each candidate we compute features (such as
width, height, aspect ratio, spatial and temporal dis-

tances to the rest of the line, etc.), try to recognize it
as one of the types such as “dash” or “ending with a
parenthesis” (e.g., “1.a)”), and assign it a score in [0,1]
indicating the certainty of the candidate being a bullet.
Thirdly, a score in [0, 1] is computed for each pair of
candidates indicating the degree of similarity between
them. The final score of each candidate is a weighted
sum of its self-score and all of its pair-scores, reflecting
that the more the candidate looks like of a known bul-
let type AND the greater number of other candidates
which resemble it, the more likely this candidate is an
actual bullet. We then accept a candidate and remove
all of its conflicting candidates in a highest-confidence-
first fashion, until all candidates have been processed
or the highest score falls below a certain value. Prelimi-
nary experimental results have shown that this method
is effective in detecting common ink bullets such as
dashes, dots, alphanumeric-dot combinations and even
bullets of unknown types. The features it computes
can also be utilized in learning-based bullet recogni-
tion which we are currently investigating.

Context Features Normalization
(∆t = 0) Line height 0, 1

Line width 0, 1
Left indent 0, 1
Right indent 0, 1
Indent level
Is the first line in the block
Is a bullet present
Is the bullet of type X
Right indent normalized by
the block width

(∆t = 1) Relative left indent 0, 1
Relative right indent 0, 1
Inter-line distance 0, 1, 2, 3
Same “is a bullet present”
status
Same bullet type
Relative indent level
Is relative indent level
positive/zero/negative
The pair’s line height ratio
Relative right indent normalized
by the larger line width

(∆t > 1) Is the indent level different
from its 4 neighbors’
Is the line continuation of a
list item
Ratio between the next and
previous inter-line distances

Table 1. Primitive line features. Normalization
schemes: 0 – not normalized, 1 – by average
line height, 2 – by the minimum interline dis-
tance, 3 – by the median interline distance.
All listed schemes for a feature are used.
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3.1. Primitive Line Features

Table 1 shows the primitive line features that were
used to produce the results reported in this paper. We
divide these features into three categories depending
on how much context ∆t is used in their computation:
(∆t = 0) means only the raw features of line t are
used; (∆t = 1) means the previous or next neighbor’s
raw features are also used, and so on. Length features
can be normalized by various global statistics such as
the average line height in the block.

Apparently, there are many meaningful ways of com-
bining raw/derived features and what Table 3 enu-
merates is merely a small portion. Instead of hand-
engineering more features, we take a systematic ap-
proach to this problem.

3.2. Combining Primitive Features into
Collins Model Features

Recall that the Collins model requires features of
the form fi(l′, l′′, s, t) which are dependent both on the
current state (or pair of states) and the observation
sequence. These features are formed from the primitive
features using the training set.

Combination Filters. Based on the initial set of
hand constructed filters, a set of combination filters
are constructed. Each computes a random linear com-
bination of a random subset of the hand constructed
filters.

Binary Features. The mean and the variance
for each continuous valued filter is estimated from the
training set. The range is then portioned into 6 bins
each 1 standard deviation in width. A total of 6 binary
features are created from each continuous feature. The
binary feature takes on the value 1 if the continuous
feature falls in the corresponding bin, and zero other-
wise.

Observation Features. One feature is generated
for each triple {s, i, v}. The feature returns 1 if the
current state is s and binary feature i equals v. Only
those features which return 1 for some example in the
training set are retained.

Transition Features. One feature is generated for
each quadruple {s, s′, i, v}. The feature returns 1 if the
current state is s, the previous state is s′, and binary
feature i equals v. Only those features which return 1
for some example in the training set are retained.

4. Experiments

Our experimental data are a collection of 522 ink
files created in Windows Journal r© on the TabletPC.

All these files contain substantial handwritten script
showing interesting outline structures. The median
and maximum numbers of lines in a block from this
set are 15 and 66 respectively. Each line is labeled
with its depth and if it is a continuation: title lines are
labeled as 0 or 0c, the rest lines are labeled as 1, 1c, 2,
2c and so on. Five examples are given in Figure 3 and
Figure 4.

We partition the data into three sets: 371 for train-
ing, 75 for evaluation (observing if accuracy improves
with the number of iterations) and 76 for final testing.
The following parameters are used in training: learn-
ing rate 0.2, decay rate 0.9 and number of iterations
10. The total number of filters used by the Collins
model is 6058, which includes 57 raw line features, 228
“stacked” filters, 1135 binarized filters. The remain-
ing filters are equally split between OBSERVATION
and TRANSITION. All experiments were carried out
on an Intel 3GHz PC with 2GB RAM. Training takes
about 28 minutes for 446 examples. Decoding is fast,
taking 0.9 seconds for the largest file (66 lines). Note
that neither the training nor the decoding program has
been optimized for speed, and none of the parameters
has been finely tuned.

Train Eval. Test
Number of examples 371 75 76
Avg. %. of misclassified lines 7.1 11.4 10.4
% of files having 0% error 38.4 28.0 34.2
% of files having ≤ 20% errors 88.2 80.0 84.2

Table 2. Paragraph segmentation results.

Figure 2. Sorted errors on the evaluation and
testing examples. 82% (124 out of 151) exam-
ples have 20% or less misclassified lines.

Paragraph Segmentation. We first test out our
line labelling system on the paragraph segmentation
problem – labelling each line as 1 (paragraph start) or
1c (paragraph continued). Finding paragraphs is a sig-
nificant problem by itself and paragraph features can
be very useful for outline classification. Furthermore,
compared to outline inference, paragraph segmentation
is a more suitable test bed for our algorithmic frame-
work because there is much less labelling ambiguity
(see the Outline Inference section) and we have more
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(a) (b) (c)

Figure 3. Paragraph segmentation examples. Groundtruth labels are shown in Arial. Predicted labels,
if different from the groundtruth, are shown in Italian Times New Roman below the groundtruth.

data relative to the number of classes and hence the
results more truthfully represent the algorithm perfor-
mance.

Our outline classification code can work di-
rectly on paragraph segmentation after mapping the
groundtruth labels from {0, 0c, 1, 1c, 2, 2c, . . . } to
{1, 1c}. We measure the error on each example by the
percentage of misclassified lines. Three types of error
statistics are summarized in Table 2. Figure 2 is a plot
of sorted errors on the 151 evaluation and testing ex-
amples. The curve remains low and flat except for a
sharp rise towards the end, meaning that our algorithm
performs fairly well on the majority of notes and errors
concentrate on a very small set of cases.

When examining the failure cases, three factors
emerged as the major sources of errors. The first is
bullet detection error. The only misclassification in
Figure 3(b) is due to the arrow bullet not being rec-
ognized. We expect to significantly reduce such errors
with the introduction of more powerful bullet detection
algorithms. The second cause is that currently our sys-
tem does not consider interaction between the outline
structure and the rest of the page. The errors around
the middle section in Figure 3(c) are largely due to the
removal of the graphical strokes and annotation by the
side (in the dashed polygon). One of our future work
items is to exploit more features including contextual
features. The third cause is ambiguity without full
recognition. Our technique mainly relies on geometric
features and it can only do as well as one browsing ink
notes without carefully reading into the content. For
example, Figure 3(a) shows an example with no errors.
At a glance, the results look right. However, once we
read the sentences, it becomes clear that the 5th and
the 6th lines should actually be labeled as 1. Such
ambiguous cases are hard to label as well as to infer.
Refining features and collecting more training data will

help disambiguate some of the cases. Potentially the
error patterns can also be incorporated into UI design
and user adaptation to improve parsing accuracy and
end-to-end inking experience.

Outline Inference. By first running the para-
graph segmentation algorithm, some paragraph fea-
tures can be added to the outline labeling system (Ta-
ble 1), and then the same training and decoding pro-
grams apply. Currently, the only primitive paragraph
feature we include is “is this line a paragraph start”.
Again, we measure the error on each example by the
percentage of misclassified lines and report the error
statistics in Table 3.

Train Eval. Test
Number of examples 371 75 76
Avg. %. of misclassified lines 32.7 39.6 48.1
% of files having 0% error 17.5 17.3 9.2
% of files having ≤ 20% errors 43.2 34.7 34.2

Table 3. Outline inference results.

(a) (b)

Figure 4. Outline inference examples. See
Figure 3 caption.

It is important to point out that there is a consider-
able amount of ambiguity in outline structures and it
makes data labeling, training and performance evalua-
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tion much harder than in the paragraph segmentation
problem. Our ground truth data is labeled by hand,
and is necessarily subjective and includes significant
variations. We have frequently observed variation be-
tween such alternative decisions for different example
in our labeled data. This obscures boundaries between
classes and makes training less effective. Figure 4(a) is
an example that is almost correct and Figure 4(b) is
an example that is almost entirely wrong. However a
closer examination reveals that these two files actually
have similar structures and similar inference results.
The discrepancy in the error rates is largely due to la-
beling ambiguities: (i) by labeling the title line in Fig-
ure 4(b) 1 instead of 0, most results are off by one depth
level from the groundtruth; (ii) the 3rd line in Figure
4(a) requires understanding the content to parse right;
(iii) the user intention for the 5th and 6th lines is un-
clear even after careful reading – both the groundtruth
and the inferred results seem plausible. When exposed
through well designed UIs, many “errors” such as (i)
may not even be noticeable by the user. In addition,
users’ tolerance of errors increases with the amount of
ambiguities; errors such as (ii) and (iii) are unlikely
to cause much annoyance. The simplistic error metric
we used to produce the numbers in Table 3 does not
reflect user experience well and should be interpreted
with caution.

5. Related Work

Literature on on-line ink layout analysis is scarce
and no previous work exists on parsing hierarchical ink
notes. Earlier papers in the human computer interac-
tion area are more concerned with user interface design
and the developed ink analysis algorithms are usually
simple in comparison [7]. Jain et. al. [4] describes an
ink notes analysis system which classifies strokes into
text and non-text, groups text strokes into lines, and
partitions the page into text, diagram and table re-
gions, under some restrictive assumptions such as hor-
izontal baselines. Shilman et. al. describe a pars-
ing component supporting freeform inking which was
shipped with Version 1 Microsoft Windows Journal r©
[9]. It performs writing/drawing classification, word,
line and paragraph grouping under arbitrary inking ori-
entations. A seemingly highly related area is document
image analysis (DIA) which deciphers the structure in
scanned images of printed documents. In particular,
the work presented in [6] formulates line/paragraph
segmentation as a sequence labeling problem and solves
it in an optimization framework. Nonetheless, our opti-
mization framework is drastically different from theirs
and in general existing DIA methods cannot be ap-

plied to ink parsing because online handwritten data
are far more variable and heterogeneous. The work
that inspired us to adopt Conditional Random Fields
for our problem is [5], which proposes maximum en-
tropy Markov models for text segmentation.

6. Conclusions

Hierarchical outline structure commonly occurs in
user notes. Users want a scheme for editing the struc-
ture of these outlines, and perhaps for exporting them
to word processing programs. We have presented a
system which interprets handwritten outline and au-
tomatically extracts the correct structure with good
reliability.

The described system attempts to label each line
in a block of text with its “depth” in the outline tree
and flags those lines which are part of the same tree
node. A Markov model introduced by Collins is used
to classify the lines. This model combines all available
line features, such as indentation and bullets, to find
a globally consistent assignment of line labels. The
parameters of the Collins model are learned from a set
of training data. As a result the system is easier to
construct and extend than a hand engineered system.
Computation of the line labels is fast, requiring less
than 0.1 seconds on typical ink pages.

We are currently experimenting with more line fea-
tures and different bullet detection and training meth-
ods, which are expected to improve the performance
significantly. We are also investigating other appli-
cations of Collins’ models for ink interpretation. For
many of these problems the distribution of ink is in-
herently two dimensional. Inference and learning on
the resulting 2D Markov net is much more difficult.
We are investigating schemes for doing this efficiently.
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