
Proceedings of Graphics Interface ‘99, Kingston, Ontario, June 1999, pp. 84–91.

A Handwriting-Based Equation Editor

Steve Smithies
Department of Computer Science

University of Otago
Dunedin, New Zealand

smithies@cs.otago.ac.nz

Kevin Novins
Department of Computer Science

University of Otago
Dunedin, New Zealand
novins@cs.otago.ac.nz

James Arvo
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125, USA
arvo@cs.caltech.edu

Abstract
Current equation editing systems rely on either text-

based equation description languages or on interactive
construction by means of structure templates and menus.
These systems are often tedious to use, even for experts,
because the user is forced to “parse” the expressions men-
tally before they are entered. This step is not normally
part of the process of writing equations on paper or on a
whiteboard. We describe a prototype equation editor that
is based on handwriting recognition and automatic equa-
tion parsing. It is coupled with a user interface that incor-
porates a set of simple procedures for correcting errors
made by the automatic interpretation. Although some
correction by the user is typically necessary before the
formula is recognized, we have found that the system is
simpler and more natural to use than systems based on
specialized languages or template-based interaction.

Key words: equation editing, equation parsing, handwrit-
ing recognition, human-computer interaction, pen-based
computing, pen-based input

1 Introduction

We describe a prototype equation editor that allows a user
to enter handwritten mathematical formulæ using a pen
and tablet. The system uses on-line character recogni-
tion software and a graph grammar to generate an internal
parse tree of the input, which can then be converted into
output representations such as LATEX, Mathematica, or a
LISP-like notation.

On-line character recognition and handwritten formula
parsing are notoriously difficult problems. Resolving am-
biguities in the input often requires the use of high-level
context [16]. Even humans will make occasional errors
interpreting handwritten equations. For this reason, an
essential part of any handwriting-based equation editor is
a facility for easy correction of input that has been incor-
rectly interpreted.

Our system is currently based on relatively simple
recognition and parsing modules. While these modules
frequently cause handwritten user input to be misinter-

preted, the resulting formula entry system nevertheless
quite natural and easy to use. Users of the system have
found it preferable to conventional equation editors, de-
spite the need to periodically correct recognition and in-
terpretation failures.

2 Previous Work

The earliest approaches to online mathematical formula
entry involved the use of specialized equation descrip-
tion languages. Using a LISP-like syntax, an entire
parse tree for a formula can be expressed in a linear,
text-based form [12]. Modern derivatives of this ap-
proach include Mathematica’s description language [20]
and LATEX’s math mode commands [9]. An advantage
of such a system is that keyboard entry is easy and fast.
Experts can use the syntax and keywords of these lan-
guages with relative ease, although the learning curve can
be quite steep. The main drawback of these linearized
languages is that the user must collapse the inherent two-
dimensional structure of a mathematical formula. The
user is forced to analyze the syntactic structure of the
equation in advance. In effect, the user performs a mental
“parse” of the equation before entry.

More recent commercial systems allow formula entry
using a structure editor that is based around a graphical
user interface [15, 20]. The user selects equation struc-
ture templates from pop up menus, and then fills in the
blanks with constants and variable names. This allows
the user to “see” the structure evolve in two dimensions.
However, the order in which structure templates are cho-
sen must be directed by the user’s understanding of the
global structure of the equation, and changing the struc-
ture, once imposed, can be extremely difficult. Further-
more, repeated searching of menus for templates and spe-
cial symbols coupled with the constant shifting between
mouse and keyboard can become quite tedious.

Given the relative ease with which users can write for-
mulæ on a piece of paper, a handwriting based system
seems a natural choice for an interface. Research in hand-
written formula recognition began in the 1960’s and is a

continuing area of study [11, 13, 16, 19]. Most systems
have focused on off-line processing of scanned input. A
notable exception is the work by Littin [11], which com-
bines an on-line character recognition system with a 2D
geometric extension of an LR parser. A drawback of Lit-
tin’s system is that the grammar requires that symbols be
drawn in a particular sequence. Littin’s claim that this or-
dering corresponds to the “natural” handwritten sequence
is probably justified in most cases. However, this con-
straint means that the editing of equations is restricted to
the modification of the last symbol drawn; thus, it is pri-
marily an equation entry system, as opposed to an equa-
tion editor.

3 The Recognition System

Any system for handwritten formula recognition must in-
corporate algorithms for recognizing handwritten sym-
bols and for formula parsing; moreover, to attain the
greatest accuracy, these processes must be coupled to
some degree. In this section we describe previous ap-
proaches to handwritten formula recognition, and then
describe the automatic methods that we employ in our
prototype system. Section 4 then describes the interac-
tive interface that we have built around these elements.

3.1 Character Recognition
At the lowest-level, recognition in our system is per-
formed at the level of symbols, which are encoded as col-
lections of polylines representing individual user-drawn
strokes. We employ an extremely fast user-trained on-line
recognition algorithm based on nearest-neighbor classifi-
cation in a feature space of approximately 50 dimensions.
Similar feature-based strategies were used by Rubine [17]
and Avitzur [2].

To train the system, the user supplies ten to twenty
hand-written samples of each character. These samples
are stored and used to produce both the classification
points in feature space and the symbol-dependent feature
weights, which are simply the standard deviations of the
features within each set of sample characters. Although
recognition is theoretically user-dependent, the system
is relatively user-independent in practice. For example,
even though all of our experiments were performed using
training samples supplied by two of the authors, others
had little difficulty in using the system. In part, this is
because the recognizer is many-to-one, meaning that the
system can recognize a variety of differing styles for each
character. This feature accommodates different users as
well as different styles employed by a single user.

Strategies for attaining higher recognition rates in-
clude the use of more versatile classifiers, such as neu-
ral nets [21], and perhaps even more importantly, the use
of context, as described by Miller and Viola [16] for ex-

ample. Virtually any recognition module could be incor-
porated into our system. The only fundamental require-
ments imposed by the system on the recognition module
is that it must be capable of ranking the

�
most likely

candidates for a single pattern by a numerical measure
of confidence, and that the confidence measures of dif-
ferent patterns must be directly comparable. The lat-
ter constraint arises from the stroke grouping algorithm,
which compares the confidence measures of many possi-
ble groupings.

3.2 Stroke Grouping
Our system for character recognition assumes that the
input strokes corresponding to a single character have
already been identified. Segmenting input strokes into
characters is not a trivial problem [21]. We have devel-
oped a simple progressive grouping algorithm that uses
the character recognizer as a tool for determining confi-
dences for different possible stroke groupings. Our algo-
rithm is described below.

We begin by assuming that the user completes the
strokes for each character before moving on to the next
one: for example, all � ’s must be dotted and all � ’s crossed
before the next letter or symbol is drawn. With this con-
straint, any set of � strokes has �����
	 possible stroke
groupings. Our system generates all possible groupings
for a small number of strokes and checks the confidence
level that the recognizer assigns to each possible group-
ing. The confidence level for a given group corresponds
to the confidence level of the worst character recognized
in each group, a heuristic that is often applied in expert
systems [18]. The group with the highest minimum con-
fidence level is ultimately chosen.

We limit the effects of exponential growth by observ-
ing that there is a small upper bound,

�
, on the number

of strokes in any character, which can be determined at
startup. With our current character training data,

����
.

Thus, by analyzing the input progressively, we need only
group

�
strokes at a time. We then remove the first rec-

ognized character from the group and restart the process
when

�
strokes are again available to be analyzed.

When considering all combinations of
�

strokes, we
must also consider the possibility that the last ����

strokes constitute a partial-formed character whose
recognition confidence should not be factored into the
grouping confidence. This doubles the number of com-
binations to consider. For

����
, there are 16 combina-

tions, and these can be evaluated in less than ��� � seconds
on a 180MHz Intel Pentium Pro machine. It is in this por-
tion of the process that a fast recognition algorithm, such
as nearest neighbor, is an advantage.

The performance of the automatic grouping algorithm
can be enhanced by reducing the number of combina-

tions to be analyzed. One fairly effective heuristic that
we employ is to assume that all intersecting strokes are
part of the same character. The drawback of this heuristic
is that hastily drawn characters will cause both group-
ing and recognition errors when they inadvertently cross.
However, these errors can be easily corrected by the user
when they occur.

The complete system works well for continuous input.
The system lags � � strokes behind the user in its grouping
and recognition activity and does not interfere as the user
continues writing. The user can force the system to rec-
ognize all outstanding strokes by performing a single tap
on the drawing surface, or by waiting for a user-specified
system timeout, at which point the system assumes that
the user has finished writing.

This grouping algorithm cannot handle every possible
situation, and is limited by the strength of the underly-
ing character recognizer. However, its accuracy needn’t
be extremely high for it to be useful. Our interface,
described in Section 4.2, makes it easy to regroup the
strokes when necessary, and to correct errors made by
the character recognizer.

3.3 Equation Parsing
Since the early 1960’s algorithms for parsing scanned
documents and online handwritten input have been in-
vestigated for machine recognition of mathematical no-
tation. A review of the difficulties of processing hand-
written formulæ can be found in a recent paper by Miller
and Viola [16]. Approaches to parsing both typeset
and handwritten equations include syntactic approaches
[1, 7, 11, 13, 14, 22] and stochastic grammars [6, 16].

Our approach for parsing equations is based on the
graph rewriting method developed by Lavirotte and Pot-
tier [10], and by Blostein and Grbavec [3]. It works by
reducing a graph that encodes the formula to be parsed.
Labeled nodes in the graph initially represent symbols in
the formula, and later subexpressions of it. Labeled arcs
between nodes hold information on the nodes’ spatial re-
lationships such as “above” or “left-of”.

The parser works from a grammar that is defined with
a collection of graph templates. A search for these tem-
plates is performed on subgraphs of the input graph.
When one of the templates is found, a production rule
is fired, and the subgraph is collapsed to a single node, as
specified by the grammar. For example, a “2”, a “+” and a
“3” node, with appropriate spatial relationships, may be
replaced by a single subexpression node that represents
the sum “2+3”. During a successful parse, the graph gen-
erated by the input symbols is eventually collapsed down
to a single node.

As the graph is collapsed, a complete parse tree for the
expression can be constructed. The parse tree can then be

converted into any desired output format, such as a LISP-
like expression or LATEX notation. For efficiency, it is also
possible to generate the desired representation directly,
during the parsing phase.

Graph grammars are easily extended and can be made
somewhat tolerant of sloppy handwriting by setting ap-
propriate thresholds in determining the spatial relation-
ships between input characters.

The main drawbacks of a graph grammar approach are
the number and complexity of subgraph searches. The
running time increases as either the size of the grammar
or the input formula increases.

Our current implementation parses simple formulæ in
less than two seconds, though more complicated formulæ
may take twenty seconds or more. Optimizations such as
those described by Lavirotte and Pottier [10], Bunke and
Messmer [5], and by Miller and Viola [16] will be neces-
sary to improve system performance, especially when the
formula cannot be parsed successfully.

4 The Interface

We have developed a complete user interface for equation
editing on top of the recognition and parsing elements
described in the previous section. The interface allows
for handwritten input of mathematical formulæ, correc-
tion of automatic interpretation errors and basic equation
editing. Formulæ can be parsed and the results are auto-
matically passed to LATEX for viewing. Figure 1 shows a
screen capture from an actual interaction session. A for-
mula has been entered by the user and parsed by the sys-
tem, which presents the typeset result. The user is now
able to copy the LATEX code from the entry area at the
top of the preview window and insert it into their LATEX
document.

Each of the recognition elements described in Sec-
tion 3 could be improved by using contextual informa-
tion in making decisions. Using contextual informa-
tion has been a focus of research in formula recognition
[1, 10, 16]. However, even with such high level infor-
mation, perfect recognition is unlikely. Knowing this, we
designed an interface to simplify the task of correcting
interpretation errors. These correction methods are likely
to be useful even in systems with superior recognition and
parsing elements.

The system is designed with a pen and tablet in mind,
although input via a mouse or other pointing device is
also possible. All operations use at most one button ac-
tion. Typically, this is achieved by pressing the stylus
against the tablet.

The program has four modes of operation. Each mode
determines the way the system reacts to input strokes.
The remainder of this section discusses various parts of

Figure 1: A formula entered into the system, with the LATEX generated for it.

our system, and how they work.

4.1 Basic Input

Upon startup, the user is placed in draw mode. In this
mode, the user enters their formula by drawing the char-
acters with the pen on the drawing tablet. As the user
writes, the system automatically interprets the strokes al-
though there is a delay, as it must allow the user to get
at least eight strokes ahead. As each character is recog-
nized its bounding box is shaded and annotated with the
symbol that it most likely represents, as determined by
the recognizer.

Figure 2 shows a screen capture of the drawing area of
the program as a user is beginning to enter a formula. The
first three characters have been recognized by the system
and their bounding boxes are marked and annotated with
the system’s current character interpretation. As a char-
acter is recognized, the color of its strokes are changed to
indicate that the recognition has taken place.

The eight-stroke delay between input and recognition
means that recognition usually takes place some distance
away from the user’s current pen position. This lessens
the potential distraction caused by the appearance of the
system’s annotations.

When formula entry is complete, the system must
“catch up” in its recognition. There are currently several

ways to achieve this. First, after a brief timeout period
has elapsed, the system will automatically try to interpret
all pending strokes. Alternatively, the user can tap the
pen on the tablet or choose a menu option for the same
effect.

If a user wishes to change what they have drawn, they
may enter select and move mode at any time. In this
mode, they can select any subset of their original strokes
to delete or move them. Once elements have been repo-
sitioned, the resulting expression is re-parsed by the sys-
tem. This feature makes it easy to construct complex for-
mulæ in a natural order, as the user deals directly with
the two-dimensional layout of the equation, and needn’t
be concerned with the details of parsing.

4.2 Correcting Stroke Grouping Errors
The most basic mistake of automatic interpretation is the
misgrouping of strokes into characters. There are two
possible situations:

� Strokes that should be recognized as a single char-
acter are grouped as parts of separate characters, or

� Strokes that should be recognized as part of separate
characters are grouped into a common character.

The user can correct both types of error after entering
modify stroke groups mode. In this mode, drawing with

Figure 2: A user beginning to enter a formula. The first
three characters have been recognized, and the remaining
two are still waiting to be recognized.

the pen produces temporary lines. Upon finishing a line,
all strokes that are touched by that line are forced into
a group of their own, possibly causing a regrouping of
other strokes. The temporary line then disappears, and
the system automatically invokes the character recognizer
on all affected groups.

Figure 3 shows the modify stroke groups mode being
used to correct grouping errors. Figure 3(a) shows the
initial state, in which the strokes in the “=”, the “4” and
the “2” aren’t correctly grouped.

First, the user draws a line through the two strokes of
the “=” that should be combined into a single group, as
shown in Figure 3(b). Figure 3(c) shows the result after
the pen was lifted. Note that the temporary line has dis-
appeared and the “=” has now been correctly recognized.

To split the “4” and the “2” apart, the user draws a
line through one or more strokes that should be split off
from the larger group. In Figure 3(d), a line is drawn
through the two strokes of the “4”. A line through the
“2” would have had the same effect. Figure 3(e) shows
the final formula, with the strokes now correctly grouped
and recognized.

This method for regrouping the strokes is very easy to
learn. We have found that users consider the occasional
regrouping steps to be only a minor distraction. Presum-
ably, this is because grouping errors are easy to detect (in
part because of the bounding boxes drawn around strokes
that are grouped), and correcting them requires very little
effort.

4.3 Correcting Character Recognition Errors
In most cases, if the stroke grouping process succeeds,
the character recognition process also succeeds. This
is especially true if the character recognizer has been
trained on the user’s own handwriting. However, any
character recognition error that persist can be easily cor-

(a) Initial grouping.

(b) The user indicates that two strokes should be
grouped together.

(c) The system displays the regrouped and rerecognized
characters.

(d) The user indicates that two strokes should form their
own group.

(e) The final result.

Figure 3: Modifying stroke groupings.

rected by entering modify characters mode.
When the system is in modify characters mode, click-

ing on a group of strokes produces a pop up menu with
the most likely interpretations of the input strokes. The
interpretation can be corrected by selecting the appropri-
ate item from the menu. This is an effective strategy be-
cause the intended character is usually among the highest
ranked choices returned by the recognizer. If the correct
interpretation is not among those offered directly in the
pop up menu, the user may chose an enter option, and
type the correct character from the keyboard.

Figure 4 shows a user correcting a misrecognized char-
acter in modify character mode. The “z” that the user
drew was misrecognized as an “2”. By clicking on the
character a pop up menu appears and selecting the cor-
rect choice from this menu then overrides the recognizer.

Even though the pop up menu correction method is
easy and intuitive, users reported that the process of cor-
recting character interpretation errors was more burden-
some than correcting the grouping errors. Entering char-
acters from the keyboard was apparently most distracting,
as it usually required that the pen be put down first. High
character recognition rates are therefore very important,
and any serious user of the system must train the recog-
nizer on his or her own handwriting.

Figure 4: Correcting a misrecognized character.

4.4 Correcting Equation Parsing Errors
Ideally, the equation parser would be run in parallel with
the user input, in much the same way as our stroke group-
ing and character recognition algorithms. However, our
current parser is too slow for this purpose and it cannot
recognize incomplete formulæ. In our prototype inter-
face, equation parsing is a separate process that must be
explicitly invoked by the user. In a typical interaction ses-
sion, the user will draw a formula, correct any grouping
and recognition errors, and press a generate LATEX button
when the formula is in the desired form. After parsing the
formula, a LATEX preview is then generated using external

tools.

The graph grammar allows for some leniency in the
placement of characters, so it usually parses hand-entered
formulæ on its first attempt. Nonetheless, deviations
in placement from what the grammar expects can cause
parsing failures. In such a case, the user must manually
realign the input characters by using the select and move
mode described in Section 4.1.

5 Results

Our prototype system has been implemented in C++ and
runs on UNIX systems with the POSIX thread library.
The interface is written in Tcl/Tk.

We conducted a small user study that involved nine
participants. Each participant was given an introduction
to the system and then helped, if needed, as they entered
four practice formulæ. We then asked them to enter a set
of five test equations with no help. For comparison pur-
poses, a separate set of users were asked to enter the same
equations using other equation editors that they were al-
ready experienced with; typically Microsoft Word [15] or
LATEX [9].

The five formulæ that were entered by the users for the
unaided section are shown below. These formula are rep-
resentative of the complexity of formulæ that the current
underlying grammar can handle.

����� ���	�
� � �
����� �� �
�����
 �

�
� � �
 � �

� � ��
��� �����

� � � �
�����
��

�
� �! � ���"$# �

� � �&%

Users gained proficiency in the data entry, correction
and editing steps with ease. All were able to enter the
formulæ in our test suite without further help.

Times for relatively experienced users entering the five
formulæ into LATEX, Microsoft’s Equation Editor (MSEE)
and our system (HBEE) are presented in the following
table. Times are measured in seconds. For comparison,
times for novice users of our system are shown as well.

Formula LATEX MSEE HBEE HBEE
Expert Expert Expert Novice

1 3 5 7 16
2 6 11 10 45
3 14 23 22 86
4 14 18 29 112
5 23 25 34 139

Total 60 82 102 399

The times shown for our system is the raw entry plus
time taken for corrections of the occasional grouping and
recognition errors. Time for parsing the formulae is not
included. It is important to note that the novice users of
the new system were not attempting to achieve fast entry
times. This data reflects the time of unhurried formula
entry, and is included here as a rough upper bound.

For equations that were near-linear in structure, enter-
ing straight LATEX or using a template-style equation ed-
itor, such as Microsoft’s Equation Editor [15], proved to
be faster than using our system. For more complex equa-
tions that needed to be “laid out” in 2D, entry time for
a user of our system was only marginally slower than
that of a relatively experienced user of more conventional
systems. In comparison to Microsoft’s Equation Editor,
users of our system found the entry of formulæ to be eas-
ier, and much less frustrating for editing.

The novices’ average times are much higher than those
of the experts, primarily due to character misrecognition
rates, which averaged 15%. Their unfamiliarity and ten-
tativeness with the pen and tablet interface, as well as
not having trained the character recognizer, were signif-
icant factors. The two novice users who had used a pen
and tablet before performed much better than the aver-
ages suggest.

The ease with which the input could be modified was
a strong point of the system. Unlike other formula entry
systems, whether they be template based or command-
string based, it is just as easy to make minor or major
changes to the contents and structure of the formula.

The times given above do not include parsing. In the
best case, our equation parser can parse a reasonably
sized formula in under two seconds. This is not fast
enough for a satisfactory real-time experience. In the
worst case, delays of tens of seconds can occur during
parsing. If a formula does not parse correctly the first
time, it becomes very frustrating. Efficiency and accu-
racy improvements to the parser are essential to future
development of the system. In spite of this, the parser
does cope well with the positional variations of handwrit-
ten input and almost all the test users’ formulæ could be
parsed.

This system does not offer a faster alternative to exist-

ing formula entry systems, even for expert users, but it is
much more comfortable and easier to use. Its strengths
are most apparent in the entry of large, complex, for-
mulæ, and in the editing of these formulæ after entry.

6 Conclusions and Future Work

We have presented complete working system for edit-
ing equations based on handwritten input. Although the
techniques currently used in the recognition steps are far
from perfect, our approach provides a more natural and
familiar interaction method than previous equation edi-
tors. When entering a formula using our system, a user
needn’t learn a special language or notation; more impor-
tantly, they needn’t parse the equations mentally before
entering them. Thus, users spend far less time searching
for special symbols in menus than in template-based ed-
itors. Finally, because our system allows the user to deal
directly with the spatial layout of formulæ, and not the
nodes of a parse tree, editing an existing formula is far
easier.

Our system is an interface overlaid on modules for
handwriting recognition, equation parsing, and typeset-
ting. The performance of the system, in terms of both
speed and accuracy, can be improved by improving the
performance of these elements. However, since there will
always be some ambiguity in handwritten input, simple
methods for correcting errors, such as the ones proposed
in this paper, will always be necessary.

The most important avenue for future research is in
providing the user with feedback when the equation
parser fails to understand the input. Without any clues
about which characters are misplaced, the user can get
stuck in a lengthy “formula debugging” loop.

We also would like to incorporate online training of
the handwriting recognition software. Corrections that
the user makes to incorrectly recognized characters pro-
vide valuable information, which should be added to the
training. With such an approach, the system would grad-
ually become more adept at recognizing an individual’s
writing style.

Since most users can type faster than they can write,
some formulæ will always be quicker to enter with a key-
board than with a pen. As commented by Kajler and Soif-
fer [8], and supported by Brown’s study [4], keyboards
remain the most efficient device for purely textual data
input. The ability to type as well as write formulæ will be
an option in future systems.

Ultimately, we would like to use the system as a front
end to symbolic manipulation and graphics packages.
We envision a virtual piece of paper that can not only
record writing, but also interpret it on demand, and al-
low gesture-based algebraic manipulation. Our prototype

system is a first step in this direction.

7 Acknowledgments

This work was supported in part by the NSF Science and
Technology Center for Computer Graphics and Scientific
Visualization, the Army Research Office Young Investi-
gator Program (DAAH04-96-100077), and the Alfred P.
Sloan Foundation.

8 References

[1] Robert H. Anderson. Syntax-directed recognition
of hand-printed two-dimensional mathematics. In
Melvin Klerer and Juris Reinfelds, editors, Interac-
tive Systems for Experimental Applied Mathemat-
ics, pages 436–459. Academic Press, New York,
1968.

[2] Ron Avitzur. Your own handprinting recognition
engine. Dr. Dobb’s Journal, pages 32–37, April
1992.

[3] Dorothea Blostein and Ann Grbavec. Recognition
of Mathematical Notation, chapter 22. World Sci-
entific Publishing Company, 1996.

[4] C. M. Brown. Comparison of typing and handwrit-
ing in “two-finger typists”. Proceedings 32nd An-
nual Meeting of the Human Factors Society, pages
381–385, 1988.

[5] Horst Bunke and Bruno T. Messmer. Recent ad-
vances in graph matching. International Journal
of Pattern Recognition and Artifical Intelligence,
11(1):169–203, 1997.

[6] P. A. Chou. Recognition of euqations using a two-
dimensional stochastic context-free grammar. Pro-
ceedings SPIE Visual Communications and Image
Processing IV, 1199:852–863, November 1989.

[7] Richard J. Fateman, Toku Tokuyasu, Benjamin P.
Berman, and Nicholas Mitchell. Optical charac-
ter recognition and parsing of typeset mathematics.
Journal of Visual Communication and Image Rep-
resentation, 7(1), March 1996.

[8] N. Kajler and N. Soiffer. A survey of user interfaces
for computer algebra systems. Journal Of Symbolic
Computation, 25(2):127–159, February 1998.

[9] Leslie Lamport. LATEX: A Document Preparation
System. Addison Wesley, 1994.

[10] Stéphane Lavirotte and Loı̈c Pottier. Optical for-
mula recognition. In Proceedings 4th International
Conference on Document Analysis and Recognition
(ICDAR), volume 1, pages 357–361, 1997.

[11] Richard Littin. Mathematical expression recogni-
tion: Parsing pen/tablet input in real-time using LR

techniques. Master’s thesis, University of Waikato,
March 1995.

[12] William A. Martin. Syntax and display of math-
ematical expressions. Technical Report AI Memo
85, MIT, July 1965.

[13] William A. Martin. A fast parsing scheme for hand-
printed mathematical expressions. Technical Report
AI Memo 145, MIT, October 1967.

[14] William A. Martin. Computer input/output of math-
ematical expressions. In Proceedings of Second
Symposium of Symbolic and Algebraic Manipula-
tion, pages 78–89, March 1971.

[15] Microsoft Corporation. Microsoft Word User’s
Guide, Version 6.0, 1993.

[16] Erik G. Miller and Paul A. Viola. Ambiguity and
constraint in mathematical expression recognition.
In Proceedings of the 15th National Conference
of Artificial Intelligence, pages 784–791, Madison,
Wisconsin, July 1998. American Association of Ar-
tificial Intelligence.

[17] Dean Rubine. Specifying gestures by example.
In SIGGRAPH ’91 Conference Proceedings, vol-
ume 25, July 1991.

[18] Efraim Turban. Expert Systems and Applied Ar-
tificial Intelligence, chapter 7, pages 254–256.
Macmillan Publishing company, 1992.

[19] H. J. Winkler, H. Fahrner, and M. Lang. A soft-
decision approach for structural analysis of hand-
written mathmatical expressions. In International
Conference on Acoustics, Speech and Signal Pro-
cessing, pages 2459–2462. IEEE, 1995.

[20] Stephen Wolfram. The Mathematica Book. Wol-
fram Media/Cambridge University Press, 3rd edi-
tion, 1996.

[21] L. S. Yaeger, B. J. Webb, and R. F. Lyon. Combin-
ing neural networks and context-driven search for
online, printed handwriting recognition in the New-
ton. AI Magazine, 19(1):73–89, Spring 1996.

[22] Yanjie Zhao, Tetsuya Sakurai, Hiroshi Sugiura, and
Tatsuo Torii. A methodology of parsing mathemati-
cal notation for mathematical computation. In Pro-
ceedings of the 1996 International Symposium on
Symbolic and Algebraic Computation, pages 292–
300. ACM Press, July 1996.

