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Abstract

One main challenge in building interpreters for hand-drawn sketches is the task of parsing a sketch to locate the

individual symbols. Many existing pen-based systems avoid this problem by requiring the user to explicitly indicate the

partitioning of the sketch with button clicks or pauses in drawing. We have created a parser that automatically locates

symbols by looking for areas of high ink density, and for points at which the characteristics of the pen strokes change.

To demonstrate our techniques, we have developed AC-SPARC, a sketch-based interface for the SPICE electric circuit

analysis program. An evaluation of our interface has indicated that, even for novice users, our system can successfully

locate and identify most of the circuit components in hand-drawn circuit diagrams.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Sketching with pencil and paper has always been an

important means of communication and problem-

solving for designers and engineers. There are a variety

of reasons for this. For example, sketches are a

convenient tool for examining geometric, temporal,

and other similar relationships, which cannot be

described easily in words. Similarly, the simplicity and

ease of creating a sketch allows one to focus on problem

solving rather than the communication medium. Yet,

despite the importance of sketches in engineering

practice, traditional engineering software can do little

with them. Engineers often find themselves recreating

their sketches on the computer in order to take

advantage of such software. We are working to change
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this by creating sketch-understanding techniques that

enable software to work directly from the kinds of

sketches engineers ordinarily draw.

To be natural, a sketch-based interface must place few

constraints on the way a user draws, allowing the same

freedom provided by pencil and paper. For example, the

user should be able to sketch continuously, without

being interrupted by the system, and without having to

alter his or her drawing style to fit the constraints of the

system. We have developed a technique for automati-

cally parsing sketches as one means of achieving this

kind of natural interface. Parsing is the task of grouping

a user’s pen strokes into clusters representing the

intended symbols, without explicit indications from the

user about where one symbol ends and the next one

begins. This is a difficult problem since the number of

possible stroke groups increases exponentially with the

number of strokes. Additionally, in many types of

sketches, more than one symbol can be drawn in a single

pen stroke, while conversely there are many other
d.
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common symbols that are typically drawn with multiple

strokes.

To avoid the complications of parsing, many current

sketch interpretation systems require the user to

explicitly indicate the intended partitioning of the ink.

This is often done by pressing a button on the stylus or

by pausing between symbols [1–4]. Other systems require

each object to be drawn in a single pen stroke [5,6]. Such

constraints on the drawing process, however, often

result in a less than natural drawing environment.

Our approach to parsing begins by segmenting the

pen strokes into lines and arcs. A combination of

geometric and domain-specific knowledge is then used to

locate the symbols. One of our two symbol locators

identifies candidate symbols by finding areas with high

concentrations of pen strokes, which we refer to as areas

of ‘‘high ink density’’. The other locator identifies

candidates by finding points in the temporal sequence

of segments at which there are changes in the geometric

characteristics of the segments. Once the candidates

have been enumerated, domain-specific knowledge is

used to prune out candidates that are unlikely to be

symbols. Our parsing approach allows for multiple

symbols to be drawn in the same stroke, and allows

individual symbols to be drawn in multiple strokes.

Once the parser has located the symbols in a sketch,

the next task is to identify them. We have developed a

general purpose symbol recognizer for this task, but the

details of this are beyond the scope of this article. After

the sketch has been parsed and recognized, our sketch

interpreter examines the internal context of the sketch to

automatically correct typical processing errors. Domain

knowledge is used to determine if the interpretations of

the various pieces of the sketch are consistent with the

interpretation of the sketch as a whole. If not, parsing

and recognition are revisited so as to eliminate the

inconsistencies.

Our system is designed to work for network-like

diagrams containing isolated, non-overlapping symbols

that are linked together. Examples include analog

electric circuits, logic circuits, data flow diagrams,

algorithmic flowcharts, and various other graphical

models. As an illustration of our system’s capabilities

and performance, we developed a sketch-based interface

for SPICE, an electric circuit analysis program. Our

system is called AC-SPARC for analog circuit sketch

parsing, recognition, and error correction.

The electric circuit domain was chosen because of the

challenges it presents. For example, in circuit sketches

single pen strokes often contain multiple symbols.

Additionally, when viewed in isolation, an individual

pen stroke representing part of an electrical component

is often difficult to distinguish from a stroke represent-

ing a wire.

The next section provides a review of related work.

This is followed by an overview of the capabilities of our
system and a discussion of how users interact with it.

The details of the system’s operation are then presented,

followed by the results of user studies evaluating the

system. Finally, proposed future work is discussed, and

conclusions are presented.
2. Related work

Some sketch-based systems facilitate parsing by

requiring objects to be drawn with a predefined sequence

of pen strokes [7,8]. While useful at reducing computa-

tional complexity, the strong temporal dependency in

these methods forces the user to remember the correct

order in which to draw the strokes. Our approach

requires only that one symbol be completed before the

next, and places no other constraints on the order in

which the strokes are made.

Shilman et al. [9] present an approach to ink parsing

that relies on a manually coded visual grammar. A large

corpus of training examples is used to learn the

statistical distributions of the geometric parameters used

in the grammar, resulting in a statistical model. The

grammar, and hence the statistical model, defines

composite objects hierarchically in terms of lower level

objects. The lowest level objects are single stroke

symbols recognized with Rubine’s method [10]. Thus,

their method requires that the lowest level objects—

individual pen strokes—be recognizable in isolation,

although ambiguity at this level can be handled

naturally by their Bayesian approach. Our approach

does not rely on low level objects that are recognizable

in isolation. Additionally, the authors suggest that their

approach may not scale well to large sketches, while our

approach scales linearly with the size of the sketch.

Finally, their approach assumes that shapes are drawn

in certain preferred orientations. This is a property of

both their grammar and Rubine’s method. Our

approach is insensitive to orientation.

Alvarado and Davis [11] have developed a parsing

approach based on dynamically constructed Bayesian

networks. The approach is similar to that of Shilman et

al. [9], but the lowest level objects are geometric

primitives, such as lines and arcs, rather than symbols

that must be recognizable in isolation. The approach

uses both bottom-up and top-down reasoning, along

with hypothesis pruning, to achieve efficiency and

tolerance for low-level recognition errors. They used

their method to implement a system for interpreting

circuit diagrams. Comparing our user study results with

theirs suggests that our approach may be moderately

more effective for circuits than their approach. How-

ever, because the two user studies involve different test

problems, precise comparison of the results is not

possible.
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Fig. 1. Multiple symbols can be drawn in the same pen stroke.

Fig. 2. Interpreted sketch with color coding and text labels to

indicate the identified symbols.
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Kara et al. [12,13] present a hierarchical parsing and

recognition approach based on a ‘‘mark-group-recog-

nize’’ architecture. First, a preliminary recognizer is used

to identify ‘‘marker symbols’’, symbols that have unique

geometric and kinematic properties that allow them to

be easily extracted from a continuous stream of input.

The marker symbols are then used to efficiently cluster

the remaining strokes into distinct groups, each corre-

sponding to an individual symbol. Finally, a symbol

recognizer [14] is used to recognize the identified

clusters. The technique may be applicable to electric

circuits, but as yet marker symbols have not been

identified for this domain.

Costagliola and Deufemia [15] present an approach

based on LR parsing for the construction of visual

language editors. Their method is intended for use with

pre-recognized shapes (icons selected from a menu), and

thus is not directly applicable to sketch understanding

problems. Saund et al. [16] present a system that uses

Gestalt principles to determine the salient objects

represented in a line drawing. Their work concerns only

the grouping of the strokes, as their application does not

require recognition of the graphical objects.

A few sketch-based interfaces have been developed for

electric circuits. Narayanaswamy [4] developed a sketch-

based interface for SPICE which uses hard-coded

recognizers that assume a fixed drawing order. Also,

the system avoids issues of parsing by requiring the user

to pause between symbols. Hong and Landay [17]

demonstrated the capabilities of their SATIN system by

creating Sketchy SPICE, a circuit CAD tool capable of

recognizing AND, OR, and NOT gates, and the wires

connecting them. Gates must be drawn in either one or

two strokes. Lee [18] describes a trainable recognizer for

electric circuit symbols. It was developed for use with

scanned bitmap images rather than sketches for which

the pen trajectories are available as sequences of time-

stamped coordinates. Lee’s approach requires that a

symbol be drawn using at most two strokes.
3. System overview

Our sketch-based interface is designed to put minimal

constraints on the way the user sketches. The user can

draw a symbol with any number of strokes, and each

instance of a symbol can contain a different number of

strokes. There are no requirements that the parts of a

symbol be drawn in the same order in every instance.

The user can also draw multiple symbols in the same

stroke, without lifting the pen, as shown in Fig. 1. To the

best of our knowledge, no other sketch interpretation

system is capable of distinguishing between two symbols

drawn in such a manner. The only constraint imposed

by our system is that the user must finish drawing one

symbol before starting the next. Thus, one cannot begin
drawing one symbol, start on a second, and then return

to the first. However, our observations of users indicate

that people do not ordinarily draw diagrams in such an

unfocused way.

Our interface was designed for use with a Wacom

Cintiq LCD digitizing tablet and stylus, which enables

users to draw directly on the computer display. The user

can choose to view the sketch as raw pen strokes or as

cleaned-up line and arc segments. Once the sketch is

complete, the user selects a menu option with the stylus,

thus causing the program to interpret the sketch. After

the sketch has been processed, the identified symbols are

indicated with color coding and text labels, as shown in

Fig. 2.

Our system allows the user to easily correct common

interpretation errors. If the program fails to locate a

particular symbol, the user can explicitly mark it by

holding down a button on the stylus and circling it. If

any non-symbol ink is mistakenly identified as a symbol,

it can be corrected by holding down a button on the

stylus and drawing a diagonal line through it. If a

symbol is misclassified, the user can hold down a button

on the stylus and tap the point on the symbol. A dialog

box will open containing a list of possible classifications

for the symbol, and the user can use the stylus to select

the appropriate one.
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Our interface allows symbols to be easily added to or

removed from the sketch as the design evolves. Users

can erase ink by using the eraser end of the stylus, just as

one would use a pencil eraser. Additional symbols can

be added to the sketch at any time by simply drawing

them. After modifying the sketch, the user must select a

menu item to cause the program to reprocess the sketch

and generate a new interpretation of it.

Rather than requiring all users to draw the same way,

our system is designed to enable each user to quickly

train it to match his or her style. The system typically

requires only about five examples of a given symbol to

recognize it reliably. The system is initially trained with

one drawing style (that of one of the authors). The user

can immediately choose to retrain the system by

providing examples of each of the symbols. Alterna-

tively, the user can use the system as is and let it adapt to

his or her style over time. Each time the system processes

a sketch, all of the recognized symbols serve as

additional training examples. Thus, through ordinary

use, the system begins to learn the user’s style.
4. Technical details

Our approach to understanding a sketch is based on

the architecture shown in Fig. 3. The first step involves

decomposing the user’s pen strokes into line and arc
Sketch

Ink Segmentation

Sketch Parsing Step 1:
Enumerate Candidate Symbols

Symbol Recognition 

Automatic Error Correction

Interpretation 

Sketch Parsing Step 2:
Prune List of Candidates 

Fig. 3. Architecture of the sketch interpreter.
segments that closely match the original ink. This

process, called ink segmentation, provides compact

descriptions of the pen strokes that facilitate parsing

and recognition. Next begins the first step of parsing in

which geometric tests are used to locate candidate

symbols. These are then classified using our symbol

recognizer. This is followed by the second step of

parsing in which knowledge about the particular domain

of the sketch is used to prune the list of candidate

symbols. Finally, domain knowledge is used to auto-

matically correct errors made in the previous steps. This

process results in a final interpretation of the sketch. The

following sections describe each of these steps in detail.

4.1. Segmentation

To facilitate parsing and recognition, the system

segments the pen strokes into individual lines and arcs

that closely match the original ink. This is done using

the segmenter described by Stahovich [19]. Segmentation

involves searching along each stroke for ‘‘segment

points’’, points that divide the stroke into geometric

primitives. These points are distinguished by both the

motion of the stylus tip observed while the stroke was

drawn, and the shape of the resulting ink. Segment

points are generally points at which the pen speed is at a

minimum, the ink exhibits high curvature, or the sign of

the curvature changes. Additional segment points occur

at the start and end of each pen stroke. Once the

segment points have been identified, least squares

analysis is used to fit lines and arcs between the segment

points. Finally, a feedback process is employed in which

segment points are added and removed as necessary to

improve the segmentation.

4.2. Sketch parsing step 1: enumerating candidate

symbols

The first step in our parsing approach is to enumerate

candidate symbols. As mentioned previously, we require

the user to finish drawing one symbol before drawing a

connector or another symbol. Therefore, when locating

candidate symbols, we need to consider only consecu-

tively drawn segments. To further reduce the search

space, we also establish limits for the number of

segments that a symbol may contain. The lower limit

is two, since it is uncommon that a symbol is represented

by a single line or arc segment.1 The upper limit depends

on the particular user’s drawing style. We determine this

by examining the user’s training data and finding the

symbol drawn with the largest number of segments. In

practice, this number is typically between 6 and 12. We
1Electric circuits do not contain symbols comprised of a

single line or arc segment, and no domains we have considered

contain such symbols.
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Fig. 4. Density decreases when a segment is added to the end of

the voltage source symbol. Hidden ink is shown by dotted lines.

Bounding boxes are shown by dashed rectangles.
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use this value, plus a tolerance of 2, as the maximum

number of segments to consider when enumerating

candidate symbols.

These two constraints significantly reduce the size of

the search space. If instead we considered every possible

combination of segments for a sketch containing N

segments, the number of combinations would be of

order 2N . However, by considering only combinations

containing between 2 and k segments, the number of

combinations is reduced to order Nk. Using only

consecutively drawn segments reduces this even further

to order kN. As computational cost is linear in the size

of the sketch, our approach scales well to large sketches.

Note that the key to the scalability of our approach is

the assumption that the user always completes drawing

one symbol before beginning the next. In the experi-

ments we have performed, this assumption has been

justified. Further investigation is necessary to explore

how well this assumption holds for more complicated

sketches.

Candidate symbols are enumerated using two types of

geometric tests to identify possible starts and ends of the

symbols. The first test looks for regions in which there is

a high concentration of ink. The second looks for

changes in the characteristics of the segments, such as

when a long segment is followed by a much shorter

segment, or when a line segment is followed by an arc.

These tests are described in detail below.
2This tolerance was determined empirically by collecting

sample circuit sketches from several users and experimenting

with different thresholds until the best parsing rate was

obtained.
4.2.1. Using ink density to locate symbols

Symbols usually consist of a high concentration of

ink, while the ink of connectors is often more spread

out. Our ink density approach identifies candidate

symbols by searching for these regions of high ink

density. More specifically, we search for sequences of

segments having the property that the addition of

another segment to either end of the sequence causes a

decrease in density, as this is an indication of adding a

connector segment. We define ink density as the ratio of

the square of the ink length to the area of the oriented

bounding box of the ink:

density ¼
ink_length2

oriented_bounding_box_area
. (1)

Here, in addition to the actual ink shown on the screen,

the ink length also includes the ‘‘hidden ink’’, which we

define as the ink that would occur if the user did not pick

up the stylus while drawing. Hidden ink is assumed to

consist of straight line segments between pen up and pen

down locations. For example, the hidden ink of a

voltage source is shown by the dotted lines in Fig. 4.

Including the hidden ink accentuates the density of

symbols drawn with multiple strokes, thus making them

easier to locate. We square the ink length so that it scales

the same way as bounding box area, thus making the
density parameter insensitive to uniform scaling. The

oriented bounding box of the ink is the smallest

rectangle, not necessarily aligned with the coordinate

axes, that contains all of the segments comprising the

ink.

A symbol consists of a sequence of line and arc

segments, beginning with a start segment and ending

with an end segment. The ink density analysis uses a

forward–backward algorithm to find the start and end

segments of candidate symbols. The forward step is used

to find the end segment of a symbol by finding segments

whose addition to the sequence significantly decreases

the sequence’s density. In the backward step, the best

start segments are located for each end segment, again

by looking for decreases in density.

In the forward step, the approach starts with a given

segment and considers increasingly long sequences of

consecutively drawn segments. Each time a segment is

added to the sequence, the density is computed. If there

is a decrease in density of 20% or more,2 it is quite

possible that a connector segment was added to the

sequence. In this case, the previous segment is deemed a

possible end of a symbol. This may not be the best end,

however, and thus additional segments continue to be

added to the sequence until the user-specific maximum

number of segments is reached. Each time there is a

decrease in density of 20%, another candidate end

segment is identified. Thus, starting from a given start

segment, multiple sequences, each with a different end

segment, may be found. This process is repeated,

starting from each segment in the sketch, and a list of

possible symbol end segments is created.

Consider applying this method to the sketch in Fig. 5.

Table 1 shows the sequence that starts with Segment 5.
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Fig. 5. Sketch used to illustrate the density method for locating

symbols.

Table 1

Forward step: finding a possible end segment for a symbol

Ink Start

segment

End

segment

Density Density

change

(%)

5 6 9.5

5 7 17.8 87.4

5 8 16.9 �5.1

5 9 10.9 �35.5

5 10 12.0 10.1

Table 2

Backward step: finding the best start segment for a given end

segment

Ink Start

segment

End

segment

Density Density

change

(%)

7 8 9.8

6 8 14.0 42.9

5 8 16.9 20.7

4 8 19.1 13.0

3 8 18.7 �2.1

2 8 14.4 �23.0
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The initial sequence consists of Segments 5 and 6.

Segment 7 is then added to this sequence, and the change

in density is calculated. The remaining segments are

added one at a time, and the change in density is

calculated at each step, until the user-specific maximum

number of segments is reached. The decrease in density

resulting from the addition of Segment 9 to this

sequence is 35.5%, indicating that Segment 9 is a

potential connector segment. As a result, Segment 8 is

considered a possible end segment.

Note that there need not be a connector drawn after

each symbol. Should the user desire, he or she can first

draw all the symbols in the sketch, and then draw the

connectors. The ink density analysis will still locate the

symbols, since the gap that typically occurs between

symbols will decrease the density in the same manner

that a connector segment would.

In Fig. 5, we now know that Segment 8 is a possible

end segment, but we have no verification that Segment 5

is a good choice for the start segment. This segment

could be part of a connector, or it could be somewhere

in the middle of a symbol, as in fact it is. Thus, the task

of the backward step is to find the start segment of each

symbol.

In the backward step, ink density analysis is once

again applied. Starting with each possible end segment,

prior segments are added one at a time until the user-
specific maximum number of segments is reached, and

the changes in density are monitored with each addition.

The segment drawn after the segment whose addition

causes the largest decrease in density is selected as the

start segment for the given end segment. The sequence is

now considered a candidate symbol. If there is no

segment whose addition to the beginning of the sequence

causes a decrease in density, then the sequence is

discarded. In this case, the sequence likely consists only

of connector segments.

Table 2 illustrates the process of finding a start

segment for end Segment 8. The initial sequence consists

of Segments 8 and 7. A segment is added to the start of

this sequence, and the change in density is calculated.

This is repeated until the user specific maximum number

of segments is reached. Since the addition of Segment 2

to the sequence causes the density to decrease by 23.0%,

a bigger decrease than for the addition of any other

segment, Segment 3 is considered the best start segment

for the sequence. Therefore, the resulting candidate

symbol consists of Segments 3–8, which corresponds to

the resistor in Fig. 5. Note that in this example, the

sequence of segments from 4 to 8 actually had higher

density than the sequence of segments from 3 to 8.

However, since the density of the former would not have

decreased significantly with the addition of another

segment to its start, it is not considered a candidate

symbol.

When this forward-backward process is applied to the

entire sketch, a list of candidate symbols is obtained. All

sequences that survive this analysis have the property

that adding a segment at either end of the sequence

results in a density decrease, and thus all such sequences
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Fig. 6. Example of segment difference analysis. Possible

transitions between symbols and connectors are show as dots.
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are considered candidate symbols. There is no guaran-

tee, however, that all such sequences have been found.

We have discovered that the addition of another

segment at one end of a symbol usually results in a

large decrease in density, but this is not always true for

both ends. In the forward step, we commit to finding

symbols for which adding a segment to the end would

decrease the density by at least 20%. The only

requirement in the backward step is that there is some

decrease in density caused by adding a segment to the

start of the symbol. However, some symbols have the

property that adding a segment to the start causes a

large decrease in density, while adding a segment to the

end causes only a small decrease. Thus, to find the

additional candidate symbols, we repeat the analysis

with time, in effect, reversed. A backward step is

performed first, and possible choices for start segments

are located by searching for decreases in density greater

than 20%. A forward step is then applied to find the best

end segment for each start.

4.2.2. Using differences in segment characteristics to

locate symbols

There are usually large differences between a con-

nector and the first segment of a symbol, and between

the last segment of a symbol and the subsequent

connector. Our second symbol locator finds symbols

by identifying those differences. For each segment in the

sketch, we calculate four characteristics and compare

them to those of the segment before it. These

characteristics include: (1) Segment type: line vs. arc;

(2) Segment length: the lengths of two segments are

considered different if one is more than 40% longer than

the other; (3) Segment orientation: if the acute angle

between two segments differs by 651 or more, they are

considered different in this characteristic; (4) Intersec-

tion type: classified as none, endpoint-to-endpoint

(‘‘L’’), endpoint-to-midpoint (‘‘T’’), or midpoint-to-

midpoint (‘‘X’’).

We define a good candidate symbol to be a group of

segments that are similar in these four characteristics but

which differ from the other segments touching the

group. For example, the inductor in Fig. 6 is easily

distinguishable as a series of short arc segments, with

longer line segments, representing wires, on either side.

As this example illustrates, transitions between con-

nectors and symbols often occur between segments

having significant differences in the four characteristics.

In practice, we consider any pair of consecutively drawn

segments that differs in two or more characteristics to be

a possible transition between a symbol and a connector.

The point between such a pair of segments is referred to

as a ‘‘segment difference point’’. Fig. 6 shows all such

points for a typical circuit sketch.

Candidate symbols are defined to be sequences of

segments, bounded by two segment difference points,
containing between two and the user-specific maxi-

mum number of segments. Note that the points

bounding candidate symbols need not be consecutive,

and thus candidates can overlap. For instance, candi-

date symbols for Fig. 6 include the sequences of

segments between points A and C, A and D, B and C,

B and D, and so on. While this approach finds many

valid symbols, it also locates many non-symbols. The

latter are pruned using domain knowledge, as described

in Section 4.4.

4.3. Symbol recognition

The task of the symbol recognizer is to classify each

candidate symbol. The recognizer takes as input the

segments comprising a candidate symbol and returns the

definition model that best matches those segments. Our

recognizer uses training examples to construct a

probabilistic definition model of each symbol, based

on geometric features of the segments. A statistical

approach is used to match an unknown symbol to one of

these definitions. This statistical approach naturally

accounts for the variations inherent in hand-drawn

sketches and allows symbols to be drawn using any

number of strokes drawn in any order. The recognizer is

insensitive to size and orientation, and it is robust to

moderate non-uniform scaling.

To train the recognizer, the user draws several

examples of a symbol. The examples are segmented

(Section 4.1), and a set of nine geometric features are

extracted from each example. These features include the

number of: pen strokes, line segments, arc segments,

endpoint (‘‘L’’) intersections, endpoint-to-midpoint

(‘‘T’’) intersections, midpoint (‘‘X’’) intersections, pairs

of parallel lines, and pairs of perpendicular lines. The

final feature is the average distance between the

endpoints of the segments. This average is normalized

by the maximum distance between any two endpoints,

thus accounting for uniform scaling. This feature helps

the system differentiate between objects that contain

non-uniformly scaled versions of the same segments. For
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3This tolerance, as well as the others used for parsing and

error correction, was determined empirically by collecting

sample circuit sketches from several users, and comparing

groups of segments that represented circuit components with

those that did not.
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example, the average distance between endpoints of a

square is larger than that of a rectangle.

Once the values of the nine features have been

determined for each of the training examples of a

symbol, a statistical definition model is constructed. We

assume a Gaussian distribution for the feature values,

and the mean and standard deviation are calculated for

each feature. A Gaussian model naturally accounts for

variations in the training examples. However, because

eight of the features assume only discrete values, and

since we aim to use only a handful of training examples

which may happen to show little difference in some

features, the continuous Gaussian models we use are not

theoretically appropriate. Nevertheless, our empirical

results show that these models produce highly favorable

recognition rates for the kinds of symbols considered.

During recognition, we use a statistical classifier to

determine which definition is the best match for an

unknown symbol. The first step in recognizing an

unknown symbol, S, is to extract the same nine features

used to describe the training examples. The values of

these features are then compared to those of each

learned definition model, Di. The symbol is classified by

the definition D� that maximizes the probability of

match:

D� ¼ argmaxP
i

ðDijSÞ. (2)

We assume that all definitions are equally likely to

occur, and hence we set the prior probabilities of the

definitions to be equal. We also assume that the nine

geometric features xj are independent of one another.

Otherwise, a much larger number of training examples

would be required for classification. Bayes’ Rule tells us

that the definition which best classifies the symbol is

therefore the one that maximizes the likelihood of

observing the symbol’s individual features:

D� ¼ argmax
i

P
j

Pðxj jDiÞ. (3)

As stated above, we assume each statistical definition

model PðxjjDiÞ to be a Gaussian distribution with mean

mi;j and standard deviation si;j :

Pðxj jDiÞ ¼
1

si;j

ffiffiffiffiffiffi
2p

p exp
�ðxj � mi;jÞ

2

2s2i;j

" #
. (4)

Because we are assuming that the features are indepen-

dent, this is referred to as a naı̈ve Bayesian classifier.

This type of classifier is commonly thought to produce

optimal results only when all features are truly

independent. This is not a proper assumption for our

system, since some of the features we use are inter-

related. For example, the number of intersections in a

symbol frequently increases with the number of line and

arc segments. Domingos and Pazzani [20] have sug-

gested that the naı̈ve Bayesian classifier does not require
independence of the features to produce useful results:

While the actual values of the probabilities of match

may not be accurate, the rankings of the definitions are

often correct. Our empirical studies have shown this to

be the case for our problem.

Because of our assumption of a Gaussian distribution,

definitions in which the training examples show no

variation in one or more features cause difficulty during

recognition. This situation is a common occurrence

because often only a small number of training examples

are used, and because eight of the features used for

classification can assume only discrete values. To

prevent definitions from becoming overly rigid in this

way, we require that all features, with the exception of

the continuously valued average distance between end-

points, have a standard deviation of at least 0.3. This

significantly increases recognition rates, especially when

only a few training examples have been used.

Once the recognition process is complete, the symbol

is added to the set of training data for the identified

definition, and the mean and standard deviation of each

feature are recalculated. Thus, each time a symbol is

recognized, the definition of that symbol becomes more

accurate and better tuned to the particular user’s

drawing style.

4.4. Sketch parsing step 2: pruning list of candidates

based on domain knowledge

The final step in the parsing process is to use

information specific to the particular domain of the

sketch to prune out the candidates that do not represent

symbols. For this step, the system uses several heuristics

to help determine if a group of segments really is a

symbol. The basic approach is to collect information

supporting and refuting the fact that a group of

segments is a symbol. Each candidate is initially assigned

a score of zero. Points are then added to the score for

each positive indication that is observed, and subtracted

for each negative indication that is observed. Below is a

description of the heuristics used to assign points for our

electric circuit application.

Positive evidence that a group of segments is an

electric circuit symbol includes the following:
�
 The density of the candidate symbol is higher than
that of any overlapping candidates (+1).
�
 The probability of match between the candidate
symbol and its definition is greater than 0.5%3 (+1).

This is equivalent to each of the nine features of the
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symbol having a 56% probability of match with the

corresponding features of the definition. An addi-

tional point is given if the probability of match is

greater than 10%, and is higher than that of all

overlapping candidates (+1).
�
 The candidate symbol contains enough strokes to be
the symbol it has been classified as (+1). For

example, a current source requires at least two

strokes, one for the circle and one for the arrow.

Note that the recognizer does not automatically

exclude definitions on the basis of stroke count so as

to allow for missing strokes and situations in which

the user did not lift the pen between strokes.
�
 The candidate contains nearly a full circle, i.e., an arc
of at least 3001 (+1). This is a good indication of a

symbol since wires typically are not drawn as circles.
�
 There are collinear segments attached to either side
of the candidate (+1). This is a good indication of a

symbol because circuit components often have a wire

on either side. So as not to penalize ground symbols

which should have a wire on only one side, ground

symbols are automatically given half a point (þ1
2
).

Indications that a group of segments is not an electric

circuit symbol include the following:
�
 The bounding box of the candidate symbol is very
thin, indicating it likely contains only wires (�1). A

bounding box is considered too thin if its length-to-

width ratio is greater than 8.
�
 The bounding box of the candidate is large in
comparison to the bounding boxes of the other

candidates. Typically, the symbols in a circuit are of

similar size. If the bounding box area of a candidate

is larger than the mean bounding box area plus one

standard deviation, one point is subtracted (�1). An

additional point is subtracted if the bounding box

area is larger than the mean plus two standard

deviations (�1).
�
 The average length of the segments in a candidate
symbol is very long in comparison to the average

length of the segments in the other candidates. A

large average length indicates the candidate likely

contains wires. If the average length of a candidate is

larger than the average of the other average lengths

plus one standard deviation, one point is subtracted

(�1). A second point is subtracted if the average of

the average lengths is exceeded by two standard

deviations (�1).
�

Fig. 7. Heuristic scores for two candidate symbols from Fig. 6.

(a) Four arc segments making up an inductor. (b) Four line
The candidate symbol contains three or fewer

segments and they are all connected by endpoint-

to-endpoint (‘‘L’’) intersections (�1). This pattern is

typical of a sequence of wires.
segments that do not represent a symbol: the bottom three lines
�

are actually part of a voltage source and the top line is actually

a wire.
The density of the candidate symbol is less than 10

(�1). An additional point is subtracted if the density

is less than 7 (�1).
�
 The candidate symbol has the wrong number of
electrical connections. A point is subtracted for each

additional or missing connection (�1 times the

difference between the actual and the correct number

of connections). E.g., for a resistor with only one

connection, one point is subtracted.

For a group of segments to be considered a symbol, its

score must be greater than a threshold. We use a

threshold of one point for our electric circuit applica-

tion, but this may vary between applications. Since two

symbols cannot share a segment, the final pruning step is

to remove candidates that overlap other candidates

having higher scores. Any segment not identified as part

of a symbol is considered a connector.

Fig. 7 shows the scores for two of the candidate

symbols located in the circuit sketch shown in Fig. 6.

The arc segments shown in Fig. 7(a) were correctly

identified as an inductor. This symbol had a high

probability of match with the inductor definition, had

collinear segments touching each side of it, and was

drawn with the typical number of strokes for an

inductor. This symbol was not pruned because its

heuristic score of 4.0 was higher than that of any

overlapping candidates. The group of line segments

shown in Fig. 7(b) was best classified as a ground

symbol. However, the bottom three lines in this

candidate are actually part of a voltage source, and

the top line is actually a wire. This symbol was given half
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Fig. 8. Examples of mistakes that the system can find and fix.

(a) Missed symbol (resistor) that was diagnosed as a wire with

too many consecutive segments. (b) Parsing error diagnosed as

a dangling wire. (c) Recognition error identified by considering

the number of connections: capacitors should have two

connections, but this symbol has only one.
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a point because, as a ground symbol, it would not be

required to have collinear lines touching it. It was given

another point because it was made up of four strokes,

which is more than the minimum required to draw a

ground symbol. However, a point was subtracted from

this symbol’s heuristic score because it had two

connections, whereas a ground symbol should have

only one. This symbol was pruned because its heuristic

score of 0.5 was below the threshold used for our

application.

The heuristics used to prune the list of candidates are

sensitive to the accuracy of the symbol recognizer. For

example, if a symbol has been classified incorrectly, the

heuristics may expect the wrong number of connections,

thus unfairly penalizing the candidate. However, do-

main knowledge can be used to correct these kinds of

recognition and parsing errors as described in the next

section.

To illustrate how the parsing steps work together,

consider the circuit diagram shown in Fig. 6, which

contains 36 segments. The two geometry-based symbol

locators found a total of 78 candidate symbols. Of these

candidates, 12 remained after pruning the candidates

with low heuristic scores. After removing candidates

that overlapped higher scoring candidates, six symbols

remained. These six were the intended voltage source,

resistors, inductor, capacitor, and ground symbol.

4.5. Automatic error correction

Once the parsing and recognition steps are complete,

the system knows the locations of the symbols, and the

connections between them. At this point, the system can

use domain specific knowledge to correct parsing and

recognition errors. Here we summarize our approach for

circuits. While this approach is specific to circuits, other

domains will likely have similar sorts of debugging rules.

One indication that there may be a parsing problem in

an electric circuit is that a large number of consecutively

drawn segments have been identified as wires (Fig. 8a).

It is uncommon for a user to draw wires this way, thus

suggesting that a component has been missed. In such

situations, the system first tries to find the missed

component by lowering the threshold for heuristic

pruning. If a component is still not found, a misclassi-

fication may have caused the parser to err. In this case,

the system considers lower ranked classifications for any

candidate components that contain the wire segments in

question. If the score of one of those candidates is now

above the heuristic threshold, the system keeps that

candidate and its new classification.

Because wires are used to connect components, it is

unlikely that a wire will have fewer than two connections

(Fig. 8b). (Connections are identified as intersections

between segments. A tolerance proportional to the

length of the segments in question is used when
identifying intersections.) If a wire is found to have

too few connections, the system first checks to see if it

should belong to a nearby component. If the segment

drawn before or after the wire has been recognized as

part of a component, the wire is added to that

component, so long as its heuristic score would not

decrease by doing so. If adding the wire does decrease

the heuristic score, the wire’s length is extended by up to

30% to see if any more connections are found. If a

connection is found, we assume that it was intended in

the original sketch, and the wire is kept at the new

length. Since a segment initially recognized as a wire

may simply be an extra segment caused by an

unintended pen stroke, the system leaves the segment

as a disconnected wire if these methods fail.

Another indication of a problem is that a component

has the wrong number of connections (Fig. 8c). This is

often a result of incorrect classification by the symbol

recognizer. This problem is sometimes fixed by replacing

the classification of the symbol with the second or third

choice of the recognizer, as long as the heuristic score of

the symbol does not decrease. Otherwise, the system

assumes that the problem is due to the sketchiness of the

drawing: two segments that were intended to intersect

did not, or two segments that were not supposed to

intersect did. Thus, the segments comprising the symbol

are extended or shortened by up to 30%. If the correct

number of connections is found, the segment responsible

for the repair is kept at the new length, while all other

segments are returned to their original lengths.

Occasionally, critical problems still remain after the

error correction step is complete. For example, a

component may still have the wrong number of

connections. If such critical problems remain, the user

is presented with a message describing the problem and

is asked to fix it. At this point, the user can add or

remove symbols from the sketch. Additionally, using the
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Table 3

Results of the AC-SPARC user study
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editing techniques described in Section 3, the user can

manually correct parsing and recognition errors.
Subject Symbols

correctly

located and

recognized

(before edits)

(%)

Average no.

of extra

symbols per

circuit

Average no.

of edits per

circuit

1 74.3 0.000 3.75

2 90.4 0.375 1.38

3 75.3 0.000 3.50

4 76.7 0.000 4.88

5 83.6 0.000 1.75

6 37.0 0.500 n/a

7 83.8 0.500 2.38

8 83.8 0.000 2.13

9 82.4 0.125 2.00

10 82.4 0.375 2.00

Average 77.0 0.188 2.64

Table 4

The sources of AC-SPARC’s errors

Processing step Errors attributed to step as %

of total no. of errors (%)

Segmentation 35.3

Parsing 50.0

Recognition 14.7
5. Evaluation

To test the performance of AC-SPARC, we asked 10

subjects to train the system and draw a series of electric

circuits. The subjects were all engineering students, and

each had previously taken at least one class that required

them to draw and analyze electric circuits. Only one

subject (Subject 8) had prior experience with a digitizing

tablet, although several subjects had used a PDA.

The test was performed using a Wacom Cintiq LCD

tablet and stylus, which enabled the subjects to draw

directly on the computer display. The subjects were first

asked to train the system by providing six examples of

each circuit component including: resistors, capacitors,

inductors, transistors, grounds, voltage sources, and

current sources. Next, the subjects were then presented

with precise drawings of 8 circuits, which they were then

asked to draw. These circuits contained between 6 and

16 components, with an average of 9.25 components per

circuit. Appendix A shows sketches of the circuits drawn

by the test subjects.

The subjects sketched in the raw ink view, and thus

did not see how their circuits were segmented. The

subjects were given no information about how the

system works, and they were told only that they should

finish drawing one symbol before drawing a wire or

starting another symbol. Subjects were also instructed in

the use of the three editing gestures described in Section

3: circling symbols that the system did not locate,

drawing a line through any ink that the system

incorrectly identified as a symbol, and tapping on an

incorrectly classified symbol to change its classification.

After a circuit was parsed and each symbol was

recognized, the subjects were asked to use these gestures

to correct any mistakes made by the system. After a

subject finished editing a sketch, the symbols were

automatically added to the training data for the symbol

recognizer.

As shown in Table 3, the system performed reason-

ably well for most subjects. For the typical subject, the

program correctly located and identified between 74%

and 90% of the symbols, prior to any editing to correct

mistakes. The average across all users was 77%. When

errors occurred, on average, only 2.64 editing gestures

per sketch were applied to correct them (excluding

Subject 6, who is discussed below). After editing, on

average, 95% of the symbols were correctly located and

recognized. Ideally, this would be 100%, however,

sometimes segmentation problems prevented complete

error correction. We do have gestures that allow users to

correct segmentation mistakes, but we did not include

this capability in these studies.
Table 4 shows a breakdown of the sources of errors.

Note that this is only an estimate. It is difficult to

determine precisely which step caused each mistake

because the steps are so interrelated. We used the

following assumptions when attributing the errors: If the

segmentation of a symbol’s ink was incorrect, and this

led to the symbol being parsed or recognized incorrectly,

an error was assigned to the segmentation step. If the ink

was segmented correctly but too few or too many

segments were grouped to form a symbol, an error was

assigned to the parsing step. If a symbol’s ink was

segmented and parsed correctly, but the symbol was

incorrectly classified, an error was assigned to the

recognition step.

As Table 4 shows, the majority of the errors occurred

in the parsing step. However, recognition errors could

have contributed to some of the parsing errors, as the

parser is dependent on the recognizer. Overall, 91% of

the symbols that subjects drew were segmented cor-

rectly. Of the correctly segmented symbols, 86.7% were

parsed correctly, and 95.4% of the correctly parsed

symbols were recognized correctly.
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During the user study, the pen stroke data for each

circuit was saved. We were able to use this data to

determine how well the system would have performed if

there were no segmentation errors. Using editing

gestures not available to the test subjects, we corrected

segmentation errors and reprocessed the sketches. As

shown in Table 5, the average number of symbols

correctly located and recognized by the system improved

by 7.1 percentage points to 84.1%. Note that this result

does not include any other editing. Furthermore, this

result is consistent with our estimated rate of errors due

to segmentation shown in Table 4.

We also used the saved data to test the learning

capabilities, automatic error correction, and user depen-

dence of the system. These results are shown in Table 5.

In the original test, each time the subject finished editing

a sketch, the symbols of that sketch were added to the

training data. In this new experiment, the symbols were

not added, and the training data remained the same for

each circuit. From this experiment, it is apparent that

the learning capabilities of the system allowed its

performance to increase by 5.5 percentage points, on

average. Similarly, to examine the performance of the

automatic error correction step, we reprocessed the

sketches with this step disabled. The performance

decreased by 10.9 percentage points, thus indicating

that automatic error correction has a significant effect

on the system’s performance.

Finally, we examined how well the system would have

performed if the subjects had not initially trained the

system themselves, and had instead used someone else’s

training data. In this experiment, one of the authors

trained the system by providing 10 examples of each

symbol. The stored sketches from a particular user were

then replayed, one at a time. After a sketch was
Table 5

Results that would have been obtained if the segmentation of

the circuits had been perfect, if the system had no learning

capabilities or error correction, or if the user did not train the

system

Test Symbols correctly located and

recognized (before editing)

(%)

Original test 77.0

Segmentation manually

corrected

84.1

Recognized symbols not

added to training data

71.5

No automatic error

correction

66.1

Using default training data

rather than the user’s

75.0
replayed, processing errors were tabulated. Then, editing

gestures were applied to correct parsing and recognition

errors, and the symbols were added to the training data.

Such editing was necessary to provide accurate training

data for the recognizer. However, the system perfor-

mance reported in Table 5 does not include the direct

effects of editing, because errors were tabulated prior to

editing. This process was repeated using the data from

all ten test subjects and the results were averaged. On

average, the results obtained using the author’s initial

training data were only two percentage points worse

than those obtained using the subjects’ own initial

training data.

As shown in Table 3, particularly poor results were

obtained for Subject 6. This subject drew the circuits

very quickly and more sloppily than the other subjects.

The system often failed at the segmentation step.

Another subject, Subject 4, did not follow the usual

conventions for drawing circuits. This subject began by

sketching the general framework of the circuit, as a set

of wires, and then sketched the symbols on top of it.

Thus, each symbol had only one connection to a wire.

Since our parser makes use of the number of connec-

tions to a symbol, our parser made frequent errors in

this case.

If the results of Subjects 4 and 6 are excluded from the

data, the average percentage of symbols correctly

located and recognized by the system was 82.0%.

Furthermore, with these two subjects excluded, 89.6%

of the symbols were correctly located and recognized

when the segmentation of each circuit was fixed, and no

other editing was performed.

Most feedback from the subjects was positive. Several

subjects cited the freedom to draw the circuits in any

order and at different angles as useful features. A couple

of the subjects who had previously used a SPICE

graphical user interface (GUI) stated that they felt our

system was much more intuitive and faster to use than

the traditional buttons and pull-down menus of a GUI.

Most subjects agreed that our system did a reasonable

job of locating and identifying symbols, and one subject

explicitly stated that he would not expect such a system

to perform flawlessly. The most common complaint was

that it was sometimes difficult to use our pen gestures to

correct the mistakes of the parser and recognizer.

The results we have obtained indicate that there is no

individual step of the interpretation process that is the

source of all errors. In fact, the segmenter, parser, and

recognizer all achieved accuracy rates of over 86%. The

principal challenge comes from the fact that mistakes

made in one step carry over to the next.

This user study is perhaps a harsh evaluation of our

system because the subjects had no previous experience

with our system, and because only one of the subjects

had used a digitizing tablet before. Our system

performed better for the one subject who did have
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experience with a tablet (Subject 8) than for most of the

other users. We suspect that as a user becomes more

familiar the tablet and with the interface, the system will

begin to perform better. Additionally, allowing the user

to view the segmented ink would provide feedback that

would also increase performance.
6. Future work

We have found that our segmenter and parser worked

well for many users, but produced poorer performance

for some. We believe that the performance of these two

systems could be improved by enabling the user to train

them (the recognizer is already trainable). For instance,

the user could provide several standard training

examples, and the tolerances and thresholds of the

segmenter and parser could be automatically tuned to

improve the performance on those examples. This would

likely be done using an optimization technique.

AC-SPARC was intended as a test bed for our parsing

and recognition techniques. To make a more useful

engineering tool, it is necessary to improve some of the

basic user interface features. For example, the system

offers a cut (erase) function, but needs copy and paste

functions. Likewise, the editing gestures were designed

for ease of programming, and need to be made more

flexible and robust. Finally, the system should provide a

method for setting the parameter values for each

of the electrical components. Currently, the system

assigns a default value of one (1 ohm, 1V, etc.) to each

circuit component. Ideally, the user should be able to

write the parameter values with the stylus, either with a

dialog box interface, or as a direct annotation on the

sketch.

We have demonstrated our techniques in the domain

of electric circuits. In the future, we plan to explore the

application of these techniques to other network-like

domains such as flow charts and UML diagrams.
7. Conclusions

We have developed a sketch parsing technique that

can extract hand-drawn symbols from a continuous

stream of pen strokes. Our technique does not require

the user to provide explicit indications of where symbols

start and end, however, it does require that the user

complete one symbol before starting the next. Our

technique is suitable for network-like diagrams contain-

ing isolated, non-overlapping symbols that are linked

together. Our parser begins by using geometric reason-

ing to locate candidate symbols. We employ two

location techniques. The first identifies candidate sym-

bols by looking for regions of high ink density. The

other identifies candidates by finding points in the
temporal sequence of line and arc segments at which

there are changes in the geometric characteristics of the

segments. Once the candidates have been enumerated,

domain knowledge is used to prune away the unlikely

candidates.

With our parser, the parts of a symbol can be drawn

in any order, symbols can be drawn in multiple pen

strokes, and a single pen stroke can contain multiple

symbols. The computational cost of our parsing

technique is linear in the number of line and arc

segments, thus the technique is suitable for interactive

sketch understanding systems. Finally, in user studies in

the domain of electric circuits, our parser has proven to

be reliable at extracting symbols.

Due to the variations, inconsistencies, and ambiguities

inherent in hand-drawn sketches, it is difficult to achieve

perfect accuracy when parsing and recognizing a sketch.

To address this issue, we developed an approach to

automatically correct common parsing and recognition

errors. Once a sketch has been interpreted, domain

knowledge is used to determine if the interpretation of

the various pieces of the sketch is consistent with the

interpretation of the sketch as a whole. If not, parsing

and recognition are revisited so as to eliminate the

inconsistencies. The specific techniques we implemented

are for the domain of electric circuit sketches, but many

of the concepts should generalize to other network-like

diagrams.

We have used this set of techniques to build AC-

SPARC, a sketch-based user interface for the SPICE

circuit analysis program. We conducted a user study to

evaluate the performance of AC-SPARC, and the results

were promising. The system performed with reasonable

accuracy, and user response to the system was very

favorable. While AC-SPARC can be used to solve real

problems, it will require refinement before it can serve as

a production engineering tool. Nevertheless, our system

has demonstrated that it is possible to create an interface

that combines the ease and freedom of pencil and paper

sketching with the power of traditional computer

software.
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study

Each circuit was drawn by a different subject from the

user study.
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