Features Extraction for Sketch-Based Recognition

Lecture #8: Feature Extraction
Joseph J. LaViola Jr.
Fall 2007

Recall Pen-Based Interface Dataflow

- Raw Stroke Data
- Preprocessing
- Segmentation
- Sketch Understanding
- Ink Parsing
- Classification
- Feature Extraction And Analysis
- Make Inferences
Feature Extraction and Analysis

- What came first, the feature or the machine learning algorithm?
- Want to distinguish sketch components from one another
- Good features are critical
- Extract important information
 - geometrical, statistical, contextual
- Examples include
 - arc length, histograms, cusps, aspect ratio
 - self-intersections, stroke area, etc…

Finding Features

- Challenging problem
 - need fast algorithms for gathering information
 - features must be good discriminators
- Often trial and error
- Can be domain specific
Geometric Features (1)

- Number of strokes
 - if you know how many strokes a symbol has, you can break up your recognizer into pieces (i.e., recognizer for 1 stroke symbols, recognizer for 2 stroke symbols …)

- Cusps
 - smooth vs. jagged strokes
 - distance between cusps
 - useful for when cusps are close together/far apart

Geometric Features (2)

- Aspect ratio (width / height)
 - tall vs. flat

- Self Intersections
 - loops vs. no loops
 - strokes with write over
 - distance between self intersections also useful
 - use line segment intersection algorithm

loops → 2 3 4 5 → write over
Geometric Features (3)

- First and last distance
 - Strokes where first and last points are close together vs. far apart
 - simple computation – $\|p_n - p_1\|$
- Arc length
 - many different symbols have varying arc lengths
 - simple computation as well –

$$l = \sum_{i=2}^{n} \|p_i - p_{i-1}\|$$

Geometric Features (4)

- Stroke area
 - area defined by the vectors created with the initial stroke point and consecutive stroke points.
 - good discriminator for straight vs. curved lines

Given $\vec{u}_i = p_{i+1} - p_i$ and $\vec{v}_i = p_{i+2} - p_i$

$$s_{\text{area}} = \sum_{i=1}^{n-2} \frac{1}{2} (\vec{u}_i \times \vec{v}_i) \cdot \text{sgn}(\vec{u}_i \times \vec{v}_i)$$

where $\vec{u}_i \times \vec{v}_i$ is a scalar
Geometric Features (5)

- **Fit line feature**
 - sophisticated approach to finding how close a stroke is to a straight line
 - finds a least-squares approximation to a line using principal components and then uses this approximation to find the distance of the projection of the stroke points onto the approximated line
 - outputs a value in \([0,1]\)

- What is another name for this approach?

Fit Line Feature Implementation

Input: A set of stroke points \(P\).

Output: A distance measure

\[
\text{FitLine}(P) = \begin{align*}
(1) & \quad x_1 = \sum_{i=1}^{n} X(P_i) \\
(2) & \quad y_1 = \sum_{i=1}^{n} Y(P_i) \\
(3) & \quad x_2 = \sum_{i=1}^{n} X(P_i)^2 \\
(4) & \quad y_2 = \sum_{i=1}^{n} Y(P_i)^2 \\
(5) & \quad x_{y1} = \sum_{i=1}^{n} X(P_i)Y(P_i) \\
(6) & \quad x_3 = x_2 - x_1^2/n \\
(7) & \quad y_3 = y_2 - y_1^2/n \\
(8) & \quad x_{y2} = x_{y1} - (x_1y_1)/n \\
(9) & \quad \text{rad} = \sqrt{(x_3 - y_3)^2 + 4x_{y2}^2} \\
(10) & \quad \text{error} = (x_3 + y_3 - \text{rad})/2 \\
(11) & \quad \text{rms} = \sqrt{\text{error}/n} \\
(12) & \quad \text{if } x_3 > y_3 \\
(13) & \quad a = -2x_{y2} \\
(14) & \quad b = x_3 - y_3 + \text{rad} \\
(15) & \quad \text{else if } x_3 < y_3 \\
(16) & \quad a = y_3 - x_3 + \text{rad} \\
(17) & \quad b = -2x_{y2} \\
(18) & \quad \text{else} \\
(19) & \quad \text{if } x_{y2} = 0 \\
(20) & \quad a = b = c = 0 \\
(21) & \quad \text{error} = +\infty \\
(22) & \quad \text{else} \\
(23) & \quad a = -1 \\
(24) & \quad b = -1 \\
(25) & \quad c = \frac{(a - x_1)(b - y_1)}{n} \\
(26) & \quad \text{mag} = \sqrt{a^2 + b^2} \\
(27) & \quad a = \frac{a}{\text{mag}} \\
(28) & \quad b = \frac{b}{\text{mag}} \\
(29) & \quad \text{min}_1 = +\infty \\
(30) & \quad \text{max}_3 = -\infty \\
(31) & \quad \text{for } i = 1 \text{ to } n \\
(32) & \quad \text{err} = aX(P_i) + bY(P_i) + c \\
(33) & \quad \text{pX} = X(P_i) - a \cdot \text{err} \\
(34) & \quad \text{pY} = Y(P_i) - b \cdot \text{err} \\
(35) & \quad \text{ploc} = b \cdot \text{pX} - b \cdot \text{pY} \\
(36) & \quad \text{min}_1 = \min(\text{min}_1, \text{ploc}) \\
(37) & \quad \text{max}_1 = \max(\text{max}_1, \text{ploc}) \\
(38) & \quad \text{return } \frac{\text{mag} \cdot \text{error}}{\text{max}_1 - \text{min}_1}
\end{align*}
\]
Statistical Features (1)

- **Side ratios**
 - first and last point of strokes have variable locations with respect to the bounding box
 - **Approach**
 - take the x coordinates of the first and last point of a stroke
 - subtract them from the left side of the symbol’s bounding box (i.e., the bounding box’s leftmost x value)
 - divide by the bounding box width.

Statistical Features (2)

- **Top and Bottom ratios**
 - similar to side ratios except we are dealing with y coordinate
 - **Approach**
 - take y coordinate of the first and last point of a stroke
 - subtract from the top of the symbol’s bounding box (i.e., the bounding box’s topmost y value)
 - these values are divided by the bounding box height.
Statistical Features (3)

- **Point Histogram**
 - distribution of point locations in stroke bounding box
 - discrimination where point concentrations are high
 - approach
 - break up box into $n \times m$ grid
 - Count number of points in each sub box
 - divide by total number of points

Statistical Features (4)

- **Angle Histogram**
 - similar to point histogram except dealing with angles
 - Approach

 Given $\vec{v}_j = p_j - p_{i-1}$ for $2 \leq i \leq n$ and $\vec{x} = (1,0)$

 $\alpha_j = \arccos\left(\frac{\vec{x} \cdot \vec{v}_j}{\|\vec{v}_j\|}\right)$

 - put angles into bins of n degrees
The Rubine Feature Set (Rubine 1991)

- Part of Rubine’s gesture recognition system
 - we will see this next class

- Stroke
 - \(P = \) total number of points
 - \(p = \) middle point
 - first point \((x_0, y_0, t_0)\)
 - last point \((x_{P-1}, y_{P-1}, t_{P-1})\)
 - compute \(x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}}\)

Feature \(f_1 \)

- Cosine of starting angle

\[
f_1 = \cos(\alpha) = \frac{x_2 - x_0}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}
\]
Feature f_2

- Sine of starting angle

$$f_2 = \sin(\alpha) = \frac{(y_2 - y_0)}{\sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2}}$$

Feature f_3

- Length of diagonal of bounding box (gives an idea of the size of the bounding box)

$$f_3 = \sqrt{(x_{\text{max}} - x_{\text{min}})^2 + (y_{\text{max}} - y_{\text{min}})^2}$$
Feature f_4

- Angle of diagonal
- Gives an idea of the shape of the bounding box (long, tall, square)

\[f_4 = \arctan \left(\frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \right) \]

Feature f_5

- Distance from start to end of stroke

\[f_5 = \sqrt{(x_{P-1} - x_0)^2 + (y_{P-1} - y_0)^2} \]
Feature f_6

- Cosine of ending angle

$$f_6 = \cos(\beta) = \frac{(x_{p-1} - x_0)}{f_5}$$

Feature f_7

- Sine of ending angle

$$f_7 = \sin(\beta) = \frac{(x_{p-1} - x_0)}{f_5}$$
More Definitions (before we continue)

Let $\Delta x_p = x_{p+1} - x_p$ and $\Delta y_p = y_{p+1} - y_p$

Let $\theta_p = \arctan \frac{\Delta x_p \Delta y_{p-1} - \Delta x_{p-1} \Delta y_p}{\Delta x_p \Delta x_{p-1} + \Delta y_p \Delta y_{p-1}}$ Directional angle

Let $\Delta t_p = t_{p+1} - t_p$ Time delta

Feature f_8

- Total stroke length

$$f_8 = \sum_{p=0}^{P-2} \sqrt{\Delta x_p^2 + \Delta y_p^2}$$
Feature f_9

- Total rotation (from start to end point)
- (not the same as $\beta - \alpha$ – think of spirals)

$$f_9 = \sum_{p=1}^{P-2} \theta_p$$

Feature f_{10}

- Absolute rotation
- How much does it move around

$$f_{10} = \sum_{p=1}^{P-2} |\theta_p|$$
Feature f_{11}

- Rotation squared
- How smooth are the turns?
- Measure of sharpness

$$f_{11} = \sum_{p=1}^{P-2} \theta_p^2$$

Feature f_{12}

- The maximum speed reached (squared)

$$f_{12} = \max_{p=0}^{p-2} \frac{\Delta x_p^2 + \Delta y_p^2}{\Delta t_p^2}$$
Feature f_{13}

- Total time of stroke

$$f_{13} = t_{P-1} - t_0$$

Next Class

- Start discussing machine learning algorithms
 - linear classifiers (e.g., Rubine)
 - template matching
 - SVM
 - AdaBoost
 - etc…