
1

Sequence Similarity

In these notes, we will talk about
sequence similarity or alignment of
two sequences. The sequences we
are concerned with are DNA over the
alphabet ∑=(A,C,T,G), RNA over the
alphabet ∑=(A,C,U,G) or amino
acid sequences making up a protein
molecule.

2

Biological Motivation

The biological motivation for studying
this problem comes from the fact that
high degree of similarity of
bimolecular sequences usually implies
significant structural and functional
similarity.

Example

The first successful sequencing of the genome of a living
organism in 1995 of the bacterium Haemophilus influenza rd
(Fleishmann et al, 1995).
After that, researchers identified 1743 sites as prospective gene
sites.
In order to determine whether these sites are actually involved in
protein synthesis, the coding regions were translated into amino
acid sequences using the genetic code.
The resulting amino acid sequences were then compared with a
protein database that contains for each known protein the
corresponding amino acid sequences.
The search identified about 1007 close matches. Since the
protein database annotated with functions, the close matches
allowed coming up with strong conjectures about the functions of
these genes.

3

Motivation

The sequence similarity is also relevant in the context of
understanding the molecular basis of evolution.
It is well known that the closely related organisms have high
similarity between their genomes.
Study of conserved sequences among the organisms reveal past
speciation and the structure of ancestral family trees and the role
of mutation in the evolution of these trees.
Studying similarities within the individual organisms in a species
might also reveal whether certain individuals are prone to
inherited diseases.
There are many other examples from biology that illustrates the
use of sequence similarity.

Alignment of Two Sequences

We will discuss the similarity algorithms w.r.t. DNA
sequence. A simplified model of change in DNA
sequence during evolution is to assume that the
following three events might have happened at any
location in the sequence:

A deletion operation, D, of one base.

A replacement or substitution operation, R, of
one base by another base.

An insertion operation, I, of one base

4

Alignment Example (1)

Given sequence S=ATAGCCAT and assume
that a sequence of operations (R,D,I) and
has taken place as follows:

R D I
ATAGCCAT ATAGTCAT AAGTC--AT
ATAGTCAT A--AGTCAT AAGTCTAT

Biologists call these operations “alignment”
and represent them by writing the two
sequences, one over the other.

Alignment Example (2)

If X and Y are two distinct symbols, then the operations can be
denoted by the ordered pair in any vertical column of the
alignment as

R=(X,Y), D=(X,--) and I=(--,X),
where – denote a null sequence.

Obviously, (--,--) is a useless operation aligning null sequence
with null sequence.
Symbols pair that are identical in a vertical column represent
matched symbols and sometime an operation M is defined for
this situation.
Sometimes, an indel operation is used denoting either a delete
or insert operation when the direction of transformation is not
known.

5

Alignment Example(3)

For this example, the combined effect of the three
operations can be captured by the alignment

ATAGCC--AT
A--AGTCTAT

In the evolutionary history, the accumulated changes
may obscure the exact sequence of operations.
E.g., the same final sequence may be obtained by the
alignment that needs 5, rather than 3 operations:

ATAGCCAT—
A--AGTCTAT

Goal of Sequence Alignment

The goal of sequence alignment is to
discover the possible evolution of sequences
without actual knowledge of the evolutionary
events.
Naturally, the alignment with minimum
number of operations involving minimum
energy may be the Nature’s choice. This
transformation, as we will see, soon
corresponds to edit distance between the
sequences.

6

Definition: Alignment

Let S1 and S2 two sequences of length n
and m , respectively , over a finite alphabet
∑. An alignment maps the strings S1 and
S2 into strings and that may contain space
(“—”) characters such that
and removal of all space characters leaves
S1 and S2 intact.

lSS == |||| '
2

'
1

Number of Alignments

It is clear that . The case l=n+m
occurs when the alignment corresponds to deleting all
characters in S1 followed by insertion of all characters of
S2.
Let f(i,j) denote the number of alignments of one
sequence of i letters with another of j letters. Then, it
has been proved that

For n=1000, f(1000,1000)= alignments! The
number of elementary particles in the universe is about

, and Avogadro’s number is .

mnlmn +≤≤),max(

2
112)21(),(−++≈ nmnf n

4.76710

8010 2310

7

Definition: Edit Distance

Given two strings S1 and S2 , the minimum
number of edit operations (I: insert, D: delete,
R: replace) required to transform S1 to S2 is
called the edit distance between the strings.
It is also called Levenstein distance.

A replacement or substitution operation can be
conceived of a delete operation followed by an
insert operation. Thus the edit distance can be
expressed only in terms of only insert and delete
operations.

Edit Transcript

A string over the alphabet (R,I,D,M) of length
l that transforms S1 to S2 is called an edit
transcript.
For the alignment:

The edit transcript is: RIMDMDMMI which
converts ATCCGAT to TATCATC.

A--TCCGAT--
TAT--C—ATC

8

Technical comments on edit distance

Symmetrical: D(A,B) = D(B,A)
Can “reverse the movie”
Substitution X→Y becomes substitution Y→X
Insertion becomes deletion
Deletion becomes insertion

“Parsimony” principle often used in
computational biology

Simplest explanation for an observation
minimum number of edits = fewest mutations

Courtesy : Bob Edgar, UC Berkeley

Optimal Alignment

Given the sequences and the edit transcripts,
it is easy to find the alignment for the
transcript.
Alignment and edit transcript are equivalent.
The transcript explicitly shows the mutational
events and alignment displays the
relationship between the strings.
An alignment corresponding to the minimum
edit distance between the two strings is
called an optimal alignment.

9

Principle of optimality

In some optimization problems...
...components of a globally optimal solution
are themselves globally optimal

Then can optimize by recursively optimizing
sub-problems

Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

New York

San Francisco

Boston

Atlanta

Denver
3 h

1 h

3 h

5 h

2 h

6 h

Want fastest time San Francisco to NY, given:
(1) You must fly via Denver (D), Boston (B) or Atlanta (A)
(2) Fastest times from SF to D, B or A, and
(3) Fastest times from D, B or A to NY.

Courtesy : Bob Edgar, UC Berkeley

10

Principle of optimality

New York

San Francisco

Boston

Atlanta

Denver
3 h

1 h

3 h

5 h

2 h

6 h

Answer: find minimum of the three possible routes:
SF to B + B to NY
SF to D + D to NY
SF to A + A to NY

= min (6 + 1, 2 + 3, 5 + 3) = min (7, 5, 8) = 5.
Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

London

San Francisco

Dublin

Paris

New York5 h

Now want fastest time to London
Must fly via New York, Dublin or Paris
Doesn’t matter how we get to NY, already know best time is 5h
If we solve same problem for Dublin and Paris, can find the answer
in the same way as for NY

Courtesy : Bob Edgar, UC Berkeley

11

Dynamic Programming

Principle of optimality holds
Solve simpler sub-problems
Remember the results
Use recursion to solve the next-biggest
problem

Courtesy : Bob Edgar, UC Berkeley

Edit Distance matrix D

D[i,j] = edit distance between
first i letters in the first string (S1) and
first j letters in the second string (S2).

(In other words, the edit distance between the
prefix of S1 with length i and the prefix of S2
with length j.)

12

Computing Optimal Alignment by
Dynamic Programming.

Definition: For two strings S1 and S2, D (i, j) is
defined to be the edit distance of S1[1….i] and
S2[1….j]. Then, D (n ,m) is the edit distance of S1

and S2.
Let and , where the index 0 will
denote null string. The idea is to compute the values
of D for increasing values of i and j, using values
corresponding to smaller values of i and j

ni ≤≤0 mj ≤≤0

Recurrence Relations

To start the process, we need a “basis” for i=0 and
j=0.

Where for the first equation and for
the second equation.

The first equation signifies that i deletion operations are
needed to convert the prefix of S1 of length i to a null
string and the second equation states that j insertion
operations are needed to convert a null string to the prefix
of S2 of length j. The third equation corresponds to a null
string being converted to a null string with 0 operation.

0)0,0(
),0(

)0,(

=
=
=

D
jjD

iiD

ni ...1= mj ...1=

13

The Recurrence Relation

i-1,ji-1,j-1

i,j-1 i,j

D[i,j] = min

D[i-1,j-1] + t(i,j)

D[i,j-1] + 1 Insert

D[i-1,j] + 1 Delete

Consider a minimum edit transcript for D(i,j). If the last operation of this transcript is
an insert I operation, then the alignment must have been at this point (--, S2(j))
corresponding to the horizontal arrow in the matrix. If the last operation of this
transcript is a delete D operation, then the alignment must have been at this point
(Si(i), --) corresponding to the vertical arrow in the matrix. Otherwise, the
computation must have taken the diagonal arrow in the matrix which might
correspond to either a match or a replacement of S1(i) by S2(j).

S1

S2

0

1

0 1

n

m

i

j

Minimum Edit Transcript for D(i,j).

If the last operation of this transcript is an insert I
operation, then the alignment must have been at
this point (--, S2(j)) corresponding to the horizontal
arrow in the matrix.
If the last operation of this transcript is a delete D
operation, then the alignment must have been at
this point (Si(i), --) corresponding to the vertical
arrow in the matrix.

Otherwise, the computation must have taken the diagonal
arrow in the matrix which might correspond to either a
match or a replacement of S1(i) by S2(j).

14

Cost of Operations

We assign a cost value of 1 for either insert or
delete operation.
If it is a match the cost t(i,j) is zero;

otherwise, we are assuming the cost is 1 but it could be
determined by other conditions

Recursively, we have assumed that D(i-1,j), D(i,j-1)
and D(i-1,j-1) are all minimum values of edit
distances up to those points in the computation.
Then D(i,j) has to be optimal if we take the minimum
cost path from these three neighboring points.
Note the minimum cost path may not be unique, as
we will see in our example.

Edit distance matrix M

G E N E

A

P

E

D(APE,GEN)

D(AP,GENE)

D(AP,GEN)

D(AP.GEN) + 0

D(APE.GEN) + 1 (I)

D(AP.GENE) + 1 (D)

D(APE,GENE) = min

Courtesy : Bob Edgar, UC Berkeley

15

i-1,j

i-1,j-1 i,j-1

i,j

Edit distance matrix M

D[i-1,j-1] + t(i,j)

D[i,j-1] + 1

D[i-1,j] + 1

D[i,j] = min

G E N E

A

P

E

Courtesy : Bob Edgar, UC Berkeley

Recursion relations

D[i-1,j-1] + t(i,j) “Match”

D[i-1,j] + 1 “Delete”

D[i,j-1] + 1 “Insert”

D[i,j] = min

X
X

(best)

X
-

-
X

(best)

(best)

t=0 (same letter), =1 (different)

“Match” = no edit or a substitution
“Insert”, “Delete” relative to string S1

Courtesy : Bob Edgar, UC Berkeley

16

0

Initialization

G E N E

A

P

E

D[0,0] = 0
(edit distance between
two empty strings)

Courtesy : Bob Edgar, UC Berkeley

3 2 3 3

2 2 3 4

1 2 3 41

2

3

1 2 3 40

Rest by recursion

G E N E

A

P

E

D[i-1,j-1] + t(i,j)

D[i,j-1] + 1

D[i-1,j] + 1

D[i,j] = min

D(APE,GENE) = 3

Courtesy : Bob Edgar, UC Berkeley

17

Recursive Procedure

The recursive procedure is a top-down approach. That is, the
computation starts at the lower rightmost point.In practical
implementation, it might need an exponential number of
calls.
A bottom-up tabular computation is more efficient.
To compute the value at any point in the matrix, it is sufficient
if we know the minimum edit distances of its north, north-
west and west neighbors and the pairs of characters from
the two sequences under consideration.
We know how to compute the 0th row and the 0th column of
the matrix (the minimum edit distance is simply the index of
the row or column), then we can compute the rest of the
matrix one row at a time consecutively with increasing row
indices or one column at a time consecutively with increasing
column index.

Example

↑4↖4←↖↑4↖3↖↑4↑5↑6↑77C

↖3←↖↑4↖3↖↑3↖↑3↖↑4↑5↑66T

←4↖3←↖3↖2↑2↑3↖↑4↑55A

←↑5←4←3←2↖1↑2↑3↑44C

↖4←↖↑5←↖4←↖3←2↖1↑2↑33T

←5↖4←4←3↖2←↖↑2↖1↑22A
←↖6←5←4←3←2↖1↖1↑11T
←7←6←5←4←3←2←100

76543210
TAGCCTAD(i,j)

18

Path

↑47C
↖36T

↖35A
←3←2↖14C

↖13T
↖12A

↑11T
00

76543210
TAGCCTAD(i,j)

Alignment: S1 T A T C _ _ A T C
S2 _ A T C C G A T _

Time Complexity

Theorem: The dynamic programming
algorithm computes a minimum edit distance
in time O(nm).

Proof. The algorithm needs an (n+1)(m+1) table to
be computed. Any particular entry in the table
involves three additions, one character
comparison operation and one three-way
minimum value computation, all requiring O(1)
time. Hence the total time is O(nm).

19

Time Complexity

Theorem: Once the dynamic programming table
with pointers has been computed, an optimal edit
transcript can be found taking O(n+m) time.

Proof. During the construction of the table, the back
pointers to neighboring cells having minimum edit distance
values can be set up taking O(nm) storage and time. Then
a directed path of back pointers originating from (n,m) to
(0,0) , called a trace, can be constructed taking only
O(n+m) time since at each step the path must extend to
north, west or north-west. The maximum possible path
length is n+m.

Time Complexity

Theorem: Every path from (n,m) to (0,0)
corresponds to an optimal edit transcript in
one-to-one fashion.

Proof: Every point in the trace represents a
minimum edit distance from (0,0) to that point.

20

Weighted Edit Graph

Weighted edit graph is an alternate way to represent the dynamic
programming problem.
It can be formulated as a shortest path problem.
The graph has (n+1)(m+1) vertices corresponding to all possible
pairs of indices of the rows and columns. The specific weights and
edges depend on the specific string problem.
For the edit distance problem, vertex (i,j) is connected to vertices
(i,j+1),(i+1,j) and (i+1,j+1) by directed arcs having weights
corresponding to the cost of insert, delete, replace or match
operations, respectively .
The graph is obviously acyclic. For our edit distance problem, we
have assumed , to have value 1 for delete and insert and to have
value 1 for replacement and 0 for match.

Weighted Edit Graph

A T T0

←2↖1↑2↑33T

←↖3←↖2←↖1↑22A

←↖3←↖2↖1↑11C

←2←1←000

3210

TTA

C

A

T

C

21

Shortest path

Theorem: With the weights as defined, an
edit transcript for S1 and S2 has minimum
number of edit operations if and only if it
corresponds to a shortest path from (0,0) to
(n,m) in the edit graph.

Operation-Weight Alignment

With arbitrary weights, the solution will
correspond to a minimum weighted path
between these two points. This allows us to
define more complex alignment problems
between two strings.
We can assign weights based on operation
(I,D,R, or M), called operation-weight
alignment or based on specific symbols
involved in the operation called alphabet-
weight alignment.

22

Dynamic Programming Rules with
Weights

If we assume that the insert and delete
operations have weights u and d,
respectively, the replacement operation (or
equivalently a mismatch) has a weight r, a
match operation has a weight w, we can re-
write the dynamic programming rules as:

0)0,0(
),0(

)0,(

=
=
=

D
jdjD

iuiD

Dynamic Programming Rules with
Weights

The general recurrence relations is:

where if

Obviously, if r is defined, ; otherwise, the
replacement operation can be realized by first deleting and
then doing an insertion operation to obtain minimum edit
distance.

)],()1,1(,)1,(,),1(min[),(jitjiDdjiDujiDjiD +−−+−+−=

wjit
rjit

=
=

),(
),(

)()(
)()(

21

21

jSiS
jSiS

=
≠

dur +≤

23

Alphabet Weight Edit Distance

The alphabet weight edit distance can be
computed using exactly the same set of equations
as given above except that the weights are now
given by a set of look-up tables viz.

a look-up table for insertion cost of each character in the
alphabet,
a table for deletion cost
a table for match cost and a table for replacement cost for
every pair of symbols.

These values have to plugged in as the computation
proceeds.

String Similarity

Finding differences between two sequences can be
alternately formulated as finding similarity between
two sequences.
Biologists usually prefer using similarity measures to
study relationship between strings.
Earlier we gave a definition of alignment as follows:

Definition: Let S1 and S2 two sequences of length n and
m , respectively , over a finite alphabet ∑. An alignment
maps the strings S1 and S2 into strings and that may
contain space (‘—“) characters such that and
removal of all space characters leaves S1 and S2 intact.

lSS == |||| '
2

'
1

24

Similarity Definition

We enlarge the alphabet to include the space symbol ‘—
”, so that . Then for any two characters x and y in ∑’, we
define a score or value obtained by aligning x against y.
For a given alignment of S1 and S2, let S’1 and S’2
denote the strings after the chosen insertion of spaces.
And let k denote the equal length of these two strings.
Then value V of alignment between S’1 and S’2 is defined
as

))(),(('
2

1

'
1 iSiSs

k

i
∑
=

Maximization Problem

In string similarity problems, the value of s is
usually set greater than zero for matched
symbols and less than zero for symbol pairs
that do not match or when a symbol is
aligned with a ‘—‘ character.
This reduces the problem to the problem of
maximization of V for all possible alignments.

25

Dynamic Programming Solution

Let be the optimal alignment of
prefixes and
Basis:

),(jiV
]...1[1 iS]....1[2 jS

0)0,0(

),()0,(

),(),0(

1
1

1
2

=

−=

−=

∑

∑

=

=

V

SsiV

SsjV

i

k

j

k

Dynamic Programming Solution

recurrence relation is:
)),(),(()1,1(max[),(21 jSiSsjiVjiV +−−= replacement

),),((),1(1 −+− iSsjiV deletion

))](,()1,(2 jSsjiV −+− insertion

The value of the optimal alignment is given by .
Like for the computation of the edit distance, we can use a

bottom-up method to compute the alignment matrix. The
complexity is O(nm) since at each point we perform 3
comparisons, 3 look-up operations and 3 additional
operations.

),(mnV

26

Maximum similarity path

By setting up suitable pointers, once the
matrix is computed, we can obtain a trace for
the optimal alignment by constructing any
path from the cell (n,m) to the cell (0,0).
Also, the problem can be formulated as
finding a maximum weighted path in a
weighted acyclic graph similar to one
discussed earlier. (In general, computing a
longest path in arbitrary graph is NP
complete).

The weights of the edges must correspond to
specific values of s for the pair of symbols. The
algorithm takes O(nm) space.
This is quite expensive if the sequences are large.
If one were interested only in the value of the
alignment and not obtaining a trace, this could easily
be done by keeping only the last two rows of the
matrix to compute the next row.
This will need only O(n+m) space. Is it possible to
reconstruct an alignment using only linear space?

27

Example

230-3-3-66 T

301-2-2-55 G

11-1-1-1-44 C

12-100-33 T

-2-1001-22 C

-2-101-1-11 A
-5-4-3-2-100

5
G

4
T

3
G

2
A

1
C

0j
i

←↑2↖ 30-3-3-66 T

↖ 30↖ 1-2-2-55 G

1↑1-1↖↑ -1-1-44 C

1↖ 2-1↖ 0↑ 0-33 T

-2-1↖ 00↖ 1-22 C

-2-10↖ 1-1↑ -11 A

-5-4-3-2← -100

5
G

4
T

3
G

2
A

1
C

0j
i

28

The optimal alignment corresponding to these three
paths are:

GTGA_C_

_TGCTCA

GTGA_C_

_TGCTCA

GTGA_C_

_TGCTCA

Beyond edit distance – Another
Perspective to maximizing similarity

Edit distance works quite well, especially for
closely related DNA
Can do better, especially for highly diverged
proteins

GRB2_CHICK ...SVKFGND-----VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

29

(a)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+ HGKKV A+++++ AH+D+ + + ++++ LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNL KGTFATLSELHCDKL

This shows clear similarity of human alpha globin to beta globin. There are
manypositions where the residues are identical. Many others are ‘functionally
conservative’, indicated by a ‘+’ sign
(b)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV- - - D- - DMPNALSALSDLHAHKL

++ + + ++H+ KV + +A ++ +L+ L+ ++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVT DATLKNLGSVHVSKG

This shows a biologically meaningful alignment between leghaemoglobin and
yellow lupin. These two sequences are evolutionary related and have same three
Dimensional structure , and function in oxygen binding. Note much fewer match
Characters and ‘gaps’ inserted to maintain alignment
(c)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD- - - - LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL - - VAQHTADLLAANAALLDEFPQFKAHQE

A spurious high-scoring alignment to a nematode glutathione S-tranferase
homolog named F11G11.2

Objective score
Function that converts an alignment into a single number
Goal: higher number = better alignment

“better” = more biologically plausible
“Objective” = a computer can calculate it

as opposed to “subjective” (a personal opinion),
nothing to do with object-oriented programming

(Negative) edit distance is a biologically reasonable
objective score

Want minimum, not maximum, number of edits, so
need a minus sign

G E N E
A P - EScore() = –3

30

Amino acid similarities

GRB2_CHICK ...SVKFGND-----VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

Leucine (L) and Isoleucine (I) biochemically
similar

High score for subsitution = +2
But not as high as no change (LL or II) = +4

Leucine (hydrophobic) and Aspartic Acid (D)
(hydrophilic) biochemically different

Low score for substitution = -4

Substitution Matrices

Given a pair of aligned sequences, how do we
assign a score that gives relative likely hood that
the sequences are related?
Random model (R): Assumes that every letter in the
sequence occurs independently. Thus, the
probability of the two sequences is the product of
probabilities of each amino acid.

P(S1,S2/R)=Πpi Π pj where pi and pj denote
probabilities of ith and jth symbols in the two
sequences.

31

Substitution matrices

In the alternate match model M, the aligned
pair of residues occur with a joint probability
pij , which can be thought of as the probability
that the residues i and j have been derived
from some unknown originl residue k in their
common ancestor (k could be same as i
and/or j). Thus

P(S1,S2/R)=Πpij

Substitution matrices
The ratio of these two likelihood is known as
the odds-ratio

(Πpi Π pj) / Πpij

))(2),(1(iSiSs∑

In order to arrive at an additive scoring system, we take the
logarithm of this ratio, known as the log-odds ratio:

Where s=log{(Πpi Π pj) / Πpij}

is the log likelihood of the residue pair occuring as an aligned
pair. These scores can then be arranged as a 20X20 matrix

Called the score matrix or substitution matrix.

32

Substitution Matrix: Blosum 50 matrix

Substitution matrix: BLOSUM62

A C D E
A 4 0 -2 -1
C 0 9 -3 -4
D -2 -3 6 2
E -1 -4 2 5

Identities, e.g. E+E
High scores (main diagonal).

Subsititions, e.g. C+E
score depends on how likely the
two amino acid types are to
substitute for each other.

Matrix is symmetrical

33

Optimal Alignment with Gap

Definition:
A gap in an alignment between two strings is a run of
contiguous spaces.

An insertion or deletion of a character was
represented by a space.
Each occurrence of such a space character in the
alignment is considered to be a mutation.
Sometimes a gap of more than one space can be
created by only one mutational or evolutionary
event. To handle this kind of situation, we need to
develop a model of alignment cost function that
does not attribute a negative cost or penalty based
on the length of the gap.

Examples of ‘gaps’ in biological context is
numerous.
The case of cDNA is a good biology application.

In a genome, not all DNA are responsible for the production
of proteins or hormones;
those that carry these functions are said to be expressed.

To study this phenomenon, biologists make DNA ,
called cDNA, corresponding to mRNA that leaves
the nucleolus to cytoplasm for translation, by
replacing uracil (U) in RNA by thyamine (T) .
Concatenation of these DNA strands then
corresponds to the exon of the gene.

34

If we now sequence the cDNA and compare this with similar
DNA in the chromosomal DNA, we would have obtained a map
of chromosomal genes that are expressed.
While doing this similarity search, the introns have to be aligned
with long gaps.
Recall a gene may be distributed over several segments with
interleaving introns. If we used our scoring scheme for similarity
search here, we would have penalized heavily our total score for
the alignment (since gap will translate into a set of contiguous
delete operations) and the similarity of the cDNA with some
segment of chromosomal DNA would be missed.
The alignment that best reflect the relationship consists of a few
regions of strong similarity interspersed with long regions of
gaps.

Gap penalties

Gaps subtract a value from the objective
score
Simplest design: “linear” penalties
a fixed parameter (e) multiplied by length of
gap

“e” for “extension”
e = 4

Subtract e for every “-” in the alignment

L A K E
I - - E

LI = 2 EE = 52e = –8

= -1

35

Computing max objective score

E
E

E
-

-
E

m(GEN,AP) m(GEN,APE) m(GENE,AP)

m(GEN,AP) + B(E,E) m(GEN,APE) - e m(GENE,AP) - e

max Score(GENE,APE) = ?

Notation: max Score(A,B) = V(A,B)=m(A,B)

BLOSUM62 score

Recursion relations

M[i-1,j-1] + B(i,j) “Match”

M[i,j-1] + 1 “Delete”

M[i-1,j] + 1 “Insert”

M[i,j] = max

X
X

(best)

X
-

-
X

(best)

(best)

BLOSUM62 score

Dynamic programming very similar to edit distance
max instead of min
BLOSUM62 score instead of S = 1 or 0

M[i,j] is same as V[i,j] as described earlier

36

Problem with linear gap penalties
GRB2_CHICK ...SVKFGN----D-VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK ...SVKFGND-----VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

These alignments have same objective score with linear
penalties
But lower alignment is more biologically reasonable

One gap instead of two = one insertion / deletion
event instead of two

Affine gap penalties
Prefer fewer gaps (parsimony: fewer insert /
delete events)
Penalty = g + ek

g = “gap open” or “per-gap” penalty, typical g = 9
e = “gap extension” penalty, typical e = 2
k = gap length (number of consecutive “-”
symbols)

GRB2_CHICK ...SVKFGN----D-VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK ...SVKFGND-----VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

gap penalty
= -2g - 5e = -28

gap penalty
= -g - 5e = -19

37

Problem with recursion relations

E
E

E
-

-
E

m(GEN,AP) m(GEN,APE) m(GENE,AP)

m(GEN,AP) + B(E,E) m(GEN,APE) - ??? m(GENE,AP) - ???

g + e if start of new gap
e if adding to an existing gap

Solution: three similarity matrices
M[i,j] = objective score of best alignment of

first i letters of A to first j letters of B
that ends in a match

D[i,j] = objective score of best alignment of
first i letters of A to first j letters of B
that ends in a delete

I[i,j] = objective score of best alignment of
first i letters of A to first j letters of B
that ends in an insert

38

E.g. sub-alignment ends in match

E
E

E
-

-
E

X
X

X
X

X
X

M(GEN,AP) + B(E,E) M(GEN,APE)
- g - e

M(GENE,AP)
- g - e

New alignment
ends with match Start a new gap

Ends with insert
Start a new gap
Ends with delete

Recursion relations

E
E

E
-

-
E

-
X

-
X

-
X

E
E

E
-

-
E

X
-

X
-

X
-

E
E

E
-

-
E

X
X

X
X

X
X

M(GEN,AP) + B(E,E) M(GEN,APE)
- g - e

M(GENE,AP)
- g - e

D(GEN,AP) + B(E,E) D(GEN,APE)
- e

D(GENE,AP)
- g - e

I(GEN,AP) + B(E,E) I(GEN,APE)
- g - e

I(GENE,AP)
- e

39

Recursion relations
M[i-1,j-1] + B(i,j)

D[i-1,j-1] + B(i,j)

I[i-1,j-1] + B(i,j)

M[i,j] = max

X
X

X
X

X
X

X
X

X
-

-
X

M[i-1,j] - g - e

D[i-1,j] - e

I[i-1,j] - g - e

D[i,j] = max

X
-

X
X

X
-

X
-

X
-

-
X

M[i,j-1] - g - e

D[i,j-1] - g - e

I[i,j-1] - e

I[i,j] = max

-
X

X
X

-
X

-
X

X
-

-
X

Global alignment

Global alignment
all letters from both sequences

Objective score: substitution matrix + affine
gap penalties
Three similarity matrices M,D,I
Three trace-back matrices (if alignment
needed as well as score)

40

Needleman-Wunsch Algorithm

Global alignment by dynamic programming
often called “the Needleman-Wunsch
algorithm”

Needleman, S.B. and Wunsch, C.D. (1970) A
general method applicable to the search for
similarities in the amino acid sequence of two
proteins. J Mol Biol 48(3): 443-53.
Paper describes an algorithm with fixed gap
penalty (independent of length)
First application of dynamic programming to
biological sequences

Local Alignments

A particularly interesting variant of similarity search
is local alignment or similarity.
Suppose we have two long DNA sequences in
which there is a particularly interesting subsequence
representing a gene that are common between the
sequences.

Doing a global alignment or similarity search will not be
able to identify this because there may be a lot of
dissimilarity in the rest of the sequence which yield a low
value for similarity and a large value of edit distance, none
of which say anything about this interesting region.

If the regions of highly similar local alignment are
small, they might get lost in the context of global
alignment.

41

Local alignment
Often called “the Smith-Waterman algorithm”

Smith, T.F. and Waterman, M.S. (1981) Identification
of common molecular subsequences. J Mol Biol
147(1): 195-7.
Introduces the critical “all prefixes of all suffixes” trick.

Surprisingly, only small modification of global case
Many more local alignments than global alignments
Prior to Smith-Waterman paper, algorithms were much
slower

Problem Definition

Given two strings S1 and S2, find substrings
α of S1 and β of S2 such that the similarity of
these two substrings has maximum value
over all pairs of substrings from S1 and S2.

S1

S2

42

Example

S1=pqraxabcstuv and S2=xyaxbacsll, where
α=axabcs and β=axbacs.
With weight assigned as match=+2,
mismatch=-2 and space=-1, the following
gives one of the maximum value alignment:

a x a b - c s
a x - b a c s
2 2 -1 2 -1 2 2 = 8 total

Local alignment

Global alignment often doesn’t make
biological sense
Example: protein domains

SRC
(tyrosine kinase) FCH SH2 YK

Stat
(transcription

factor)
DNAB SH2 TA

related by evolution

43

Local alignment

Example: lateral transfer between genomes

host genome before transfer

host vector

vector genome

vectorgene

host hostgene

vector gene spliced into host genome

related
by evolution

Local alignment
Define the problem
Given an objective score function, strings A,
B
Find alignment of two substrings of A and B
with highest score

THEMOTIVATION
THEMUT--ATION

THEMOTIVATIONFORALIGNMENT

ISTOFINDTHEMUTATIONS

44

An obvious exhaustive algorithm is to enumerate all
the substrings of S1 and S2 and execute a dynamic
programming algorithm on each pair.

There are O(n2m2) such pairs.

For one string, a substring is defined by two
positions the string which can be chosen in O(n2)
and O(m2) ways for S1 and S2, respectively.
For each pair, dynamic programming takes O(nm)
time. Thus, the complexity of such an approach is
O(n3m3) .

Local alignment: the trick

Set of all substrings = set of all suffixes of all prefixes

Example. String = “ABC”

Set of suffixes = “ABC” “BC” “C”

Set of prefixes of “ABC” is “A” “AB” “ABC”
Set of prefixes of “BC” is “B” “BC”
Set of prefixes of “C” is “C”

All prefixes
of “ABC”

All substrings
of “ABC”

45

Local alignment, edit distance
Re-define the similarity matrix.

For global alignment:
M[i,j] = smallest edit distance between

the first i letters in A and
the first j letters in B.

For local alignment:
M[i,j] = smallest edit distance between

any suffix of the first i letters in A and
any suffix of the first j letters in B.

Local alignment, edit distance
In other words,
M[i,j] = smallest edit distance between

any suffix of (the prefix of A of length i)
any suffix of (the prefix of B of length j)

So smallest value of M for all i,j considers all
prefixes of A and B
= smallest edit distance between any suffix of
any prefix of A and any suffix of any prefix of B
= edit distance of the best local alignment of A
and B. i

j

46

More Restricted Version of Problem

Definition:
Given two strings S1 and S2, and integers i<=n
and j<=m, the local suffix alignment problem is
to find a (possibly empty) suffix α of S1(1……i)
and a (possibly empty) suffix β of S2(1…..j) such
that the pair of suffixes V= (α,β) has the maximal
alignment value v(i,j) (which is greater than equal
to 0 since the definition ALLOWS both α and β to
be empty).

Example

1 2 3 4 5 6 7 1 2 3 4 5 6
Let S1= a b c x d e x and S2= x x x c d e

Match=+2, mismatch or space=-1
V(3,4)= (c,c) and v(3,4)=2
V(4,5)= (cx,cd) and v(4,5)=1
V(5,5)= (xd,xcd) and v(5,5)=3
V(6,6)= (xde,xcde) and v(6,6)=5 etc.

47

Algorithm to find value of optimal v(i,j)

The algorithm is very similar to the algorithm to
determine maximum similarity of two strings.
Use again recurrence relations.
Make reasonable assumptions about insert and
delete operations as and ,
respectively.
Since the optimal suffix to align with an empty suffix
is a string of length zero, we can write the basis as:

v(i,0)=0
v(0,j)=0

0),(≤− xs 0),(≤−xs

The Recurrence Realtion

For i>0 and j>0, the recurrence relations are:

),(),(()1,1(,0max[),(21 jSiSsjivjiv +−−=

),),((),1(1 −+− iSsjiv

))](,()1,(2 jSsjiv −+−

48

Justification of the Recurrence

We now have an additional ‘0’ term in the
expression.
The justification of the recurrence is as
follows.
Suppose A is an optimal alignment of a
suffix α of S1 (1……i) and a suffix β of
S2(1…..j) .

Justification of the Recurrence

There are four possible cases:
Both α and β are empty sequence. In this case, the
value =0.
Assume α is not empty. Then S1(i) must have aligned
with either ‘—’ or some character in S2. If β is not
empty then S2(j) must have aligned with either ‘—’ or
some character in S1.
If S1(i) and S1(i) aligned in the optimal local alignment,
then these two characters contribute s((S1(i) , S2(j)) to
v(i,j) and the remainder of its value must come from
v(i-1,j-1) .Thus, in this case, we have

v(i,j)= v(i-1,j-1) + s((S1(i) , S2(j))

49

Justification of the Recurrence

Similarly, if S1(i) is aligned with either ‘—’ , we have
v(i,j)= v(i-1,j-1) + s((S1(i),--)).
and if S2(j) is aligned with either ‘—’ ,we have v(i,j)=

v(i-1,j-1) + s((-- , S2(j)).
This covers all the cases. Conversely, for each of
the four terms in the recurrence relation, there is a
way to choose suffixes of S1 (1…i) and S2(1…j) to
produce the alignment corresponding to the
associated terms. Hence v(i,j) must be one of the
four terms and the maximum term will yield the best
alignment.

Optimal Local Alignment

So far we have discussed an optimal suffix
alignment, not an optimal local alignment.
Fortunately, an optimal suffix alignment yields an
optimal local alignment.
More formally, let v* be the value of the optimal
local alignment. Then,
Theorem:

This is an existence theorem. To be specific, the
algorithm that we just described for computing
maximum v(i,j) actually yields the values of i*
and j*.

],:),(max[* mjnijivv ≤≤=

50

Proof

Every optimal solution to the local suffix alignment
problem is a feasible solution to the local alignment
problem.
Hence
Conversely, Suppose Al is an optimal local alignment.
The alignment has a last character S1 (i*) of S1 and a
last character S2 (j*) of S2.
This alignment is nothing but an optimal alignment
between the suffix of S1(1……i*) and a (possibly empty)
suffix of S2(1…..j*) .
Hence,
Therefore

)},(max{* jivv ≥

)},(max{),(*** jivjivv ≤≤
],:),(max[* mjnijivv ≤≤=

0

Initialization

G E N E

A

P

E

D[0,0] = 0
(edit distance between
two empty strings)

Courtesy : Bob Edgar, UC Berkeley

0 0 0 0

0

0

0

51

Example

Let S = ABCLDEL and T = LLLCDE, a match score
+2, and a mismatch or space score -1. The dynamic
programming algorithm fills the table of v(i,j) as:

41122207 L
52000006 E
23111105 D
01122204 L
01200003 C
00000002 B
00000001 A
00000000

6
E

5
D

4
C

3
L

2
L

1
L

0j
i

Example

The value of optimal alignment is V(6,6) = 5. We can construct
optimal alignments by retracing from any maximum entry to
any zero entry:

41122207 L

↖52000006 E

2↖3111105 D

01←↑1↖22204 L

01↖200003 C

00000002 B

00000001 A
00000000

6
E

5
D

4
C

3
L

2
L

1
L

0j
i

52

The Optimal Local Alignment

The optimal local alignments corresponding to
these paths are:

EDCL

ED-L

ED-C

EDLC

Space Complexity

It is easy to see that the time complexity of the
algorithm is O(nm) , as in the general case of
dynamic programming.
The algorithm takes O(nm) space. This is quite
expensive if the sequences are large.
If one were interested only in the value of the
alignment and not obtaining a trace, this could easily
be done by keeping only the last two rows of the
matrix to compute the next row.
This will need only O(n+m) space.
Is it possible to reconstruct an alignment using only
linear space?

53

i-1,j

i-1,j-1 i,j-1

i,j

Saving space

Current row depends only
on previous row and current row

Need only store two rows to
compute score of best alignment
= O(L) space

(Can be done with space for one
row only).

Compute matrix left-to-right
and top-to-bottom

This row no longer needed

Trace-back in O(L) space

Trace-back is harder
Myers-Miller algorithm

Myers, E.W. and Miller, W. (1988) Optimal
alignments in linear space. Comput Appl Biosci
4(1): 11-7.

Repeatedly divides similarity matrix in half
About 2x slower than O(L2) algorithm

54

Faster speed

Speed improvements require approximation
give up guarantee that an objective score is
optimized

Global alignment: k-difference
Local and global alignment: seeds

K-difference algorithm

Global alignment of identical sequences
Edit graph is the main diagonal

QM T I F
M
Q
T
I
F

55

K-difference algorithm
Max k deletes or inserts, graph cannot diverge more
than k cells from the main diagonal

k must be ≥ difference in sequence length otherwise
no solution

E.g., k=1, allow no more than 1 insert or delete

Compute only shaded region
of similarity matrix(es)

Seeds
“Seed” is a short, usually ungapped, region of high
similarity

For example, identical sub-strings (“k-mers”, “words”
or “k-tuples”)

Assume seed is in the alignment
Seed appears as a (sub)-diagonal in the edit graph

MA Q T W
L
V
M
Q
T

G

F

M
Q

T

Compute only shaded region
of similarity matrix(es)

56

Finding seeds
Use a faster method than dynamic programming

so beyond the scope of this tutorial to cover this in
detail

Examples:
Edgar, R.C. (2004) Local homology recognition and
distance measures in linear time using compressed
amino acid alphabets. Nucleic Acids Res 32(1):
380-5.
Kent, W.J. (2002) BLAT--the BLAST-like alignment
tool. Genome Res 12(4): 656-64.
Katoh, K., Misawa, K., Kuma, K. and Miyata, T.
(2002) MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier
transform. Nucleic Acids Res 30(14): 3059-66.

Extending a seed
For local alignment, can “extend” a seed using a
technique similar to k-difference algorithm for global
alignment
Explore region of similarity matrix at each end of the
seed
Stop when score drops below a threshold

T
Q

Score in these
cells too low, stop

57

Freely available source code

FASTA package
align: Myers-Miller global alignment
lalign: Smith-Waterman local alignment
fasta: fast database search by k-mer matching
and d. p. extension

BLAST (NCBI)
Fast database search
Seeds by “neighborhood” method
Match seeds by lookup in pre-computed index
Extend seeds by d. p. with score threshold

Profile alignment

Align an existing multiple alignment (“profile”)
to a sequence
Columns of the existing alignment kept intact

SEQV-ENCE
SDQV-E-CR
TEQV-EACE

Arrows indicate gaps
added to create the profile-
sequence alignment.

SE-VIENCE

58

Profile alignment
A profile is a sequence of columns
Apply algorithms used to align two sequences
Replace substitution matrix for letter + letter (e.g.
BLOSUM62)...
...by function that gives a score to column + letter

E.g. average BLOSUM62 score vs. all letters in the
column

S
S
T

S

= high score

L
I
L

C

= low score

Example: PSI-BLAST

First iteration: BLAST search of database
Create profile (=multiple alignment) from
alignment of each hit to the query sequence
Search database with profile as a query

Uses modified BLAST algorithm
Create new profile by aligning each hit to
search profile
Iterate
Able to find more distantly related proteins
than BLAST alone

59

Example: SAM-Txx

Similar design to PSI-BLAST
Uses hidden Markov model (HMMs) profile
SAM-Txx significantly more sensitive than
PSI-BLAST
Also much slower
http://www.soe.ucsc.edu/research/compbio/s
am.html

Public Web server
License required to run locally
Source code not available

Profile-profile alignment
Align two multiple sequence alignments
Keep columns in both alignments intact
Insert columns of gaps as needed to align
them

SEQV-ENCE
SDQV-E-CR
TEQV-EACE

SE-VIENCE
-E-LIEACE

Arrows indicate columns
of gaps added to create
the profile-profile alignment.

60

Profile-profile alignment
A profile is a sequence of columns
Apply algorithms used to align two sequences
Replace substitution matrix for letter + letter (e.g.
BLOSUM62)...
...by function that gives a score to column + column

E.g. average BLOSUM62 score for letters in one
column vs letters in the other

S
S
T

S
S
A

= high score

L
I
L

C
C
C

= low score

Profile-profile applications
Iterated step in multiple sequence alignment, e.g.
CLUSTALW
Distant homolog detection

For each sequence of known function or structure...
...create a profile (e.g., by PSI-BLAST)
Make a database of these profiles (similar idea to
PFAM)
Create profile of query sequence (e.g. PSI-BLAST)
Align query profile to profiles of all annotated
sequences
Compute e-value
Works (slightly) better than profile-sequence (PSI-
BLAST, SAM-Txx)
Works (a lot) better than BLAST

61

Profile-profile programs

COMPASS
Sadreyev, R. and Grishin, N. (2003) COMPASS: a
tool for comparison of multiple protein alignments
with assessment of statistical significance. J Mol
Biol 326(1): 317-36.
Source code available (? upon request to
authors).

prof_sim
Yona, G. and Levitt, M. (2002) Within the twilight
zone: a sensitive profile-profile comparison tool
based on information theory. J Mol Biol 315(5):
1257-75.

Multiple alignment

Objective score: Sum-of-pairs (SP)
Sum of objective score for alignment of each
pair of sequences

SEQVENCE
SDQVE-CR
TEQVEACE

SP()=

SEQVENCE
SDQVE-CR

Score() +

SEQVENCE
TEQVEACE

Score() +

SDQVE-CR
TEQVEACE

Score()

62

Optimize SP for N sequences

Similarity matrices become N-dimensional
E.g., for 3 sequences are cubes

M[i,j,k] =
score of best alignment of
first i letters in A
first j letters in B
first k letters in C

i

j

k

Very slow

Time and space is O(LN)
Is NP-complete

Wang, L. and Jiang, T. (1994) On the complexity
of multiple sequence alignment. J Comput Biol
1(4): 337-48.

Totally impractical for most biologically
interesting problems
Faster methods needed

