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Sequence Similarity

In these notes, we will talk about 
sequence similarity or alignment of 
two sequences. The sequences we 
are concerned with are DNA over the 
alphabet ∑=(A,C,T,G), RNA over the 
alphabet ∑=(A,C,U,G)  or amino 
acid sequences making up a protein 
molecule. 
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Biological Motivation

The biological motivation for studying 
this problem comes from the fact that 
high degree of similarity of 
bimolecular sequences usually implies 
significant structural and functional 
similarity.

Example

The first successful sequencing of the genome of a living 
organism in 1995 of the bacterium Haemophilus influenza rd
(Fleishmann et al, 1995).
After that, researchers identified 1743 sites as prospective gene 
sites. 
In order to determine whether these sites are actually involved in 
protein synthesis, the coding regions were translated into amino
acid sequences using the genetic code. 
The resulting amino acid sequences were then compared with a 
protein database that contains for each known protein the 
corresponding amino acid sequences. 
The search identified about 1007 close matches. Since the 
protein database annotated with functions, the close matches 
allowed coming up with strong conjectures about the functions of
these genes. 
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Motivation

The sequence similarity is also relevant in the context of 
understanding the molecular basis of evolution. 
It is well known that the closely related organisms have high 
similarity between their genomes. 
Study of conserved sequences among the organisms reveal past 
speciation and the structure of ancestral family trees and the role 
of mutation in the evolution of these trees. 
Studying similarities within the individual organisms in a species 
might also reveal whether certain individuals are prone to 
inherited diseases. 
There are many other examples from biology that illustrates the 
use of sequence similarity.

Alignment of Two Sequences

We will discuss the similarity algorithms w.r.t. DNA 
sequence. A simplified model of change in DNA 
sequence during evolution is to assume that the 
following three events might have happened at any 
location in the sequence:

A deletion operation, D, of one base.

A replacement or substitution operation, R, of 
one base by another base.

An insertion operation, I, of one base
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Alignment Example (1)

Given sequence S=ATAGCCAT and assume
that a sequence of operations (R,D,I ) and  
has taken place as follows:              

R                                D                              I
ATAGCCAT           ATAGTCAT          AAGTC--AT
ATAGTCAT           A--AGTCAT          AAGTCTAT

Biologists call these operations “alignment”
and represent them by writing the two 
sequences, one over the other. 

Alignment Example (2)

If X and Y are two distinct symbols, then the operations can be 
denoted by the ordered pair in any vertical column of the 
alignment as 

R=(X,Y), D=(X,--) and I=(--,X), 
where – denote a null sequence. 

Obviously, (--,--) is a useless operation aligning null sequence 
with null sequence. 
Symbols pair that are identical in a vertical column represent 
matched symbols and sometime an operation M is defined for 
this situation. 
Sometimes, an indel operation is used denoting either a delete 
or insert operation when the direction of transformation is not 
known. 
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Alignment Example(3)

For this example, the combined effect of the three 
operations can be captured by the alignment 

ATAGCC--AT
A--AGTCTAT

In the evolutionary history, the accumulated changes 
may obscure the exact sequence of operations. 
E.g., the same final sequence may be obtained by the 
alignment that needs 5, rather than 3 operations: 

ATAGCCAT—
A--AGTCTAT

Goal of Sequence Alignment

The goal of sequence alignment is to 
discover the possible evolution of sequences 
without actual knowledge of the evolutionary 
events. 
Naturally, the alignment with minimum 
number of operations involving minimum 
energy may be the Nature’s choice. This 
transformation, as we will see, soon 
corresponds to edit distance between the 
sequences.
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Definition: Alignment

Let S1 and S2 two sequences of length n
and m , respectively , over a finite alphabet 
∑. An alignment maps the strings S1 and 
S2 into strings and that may contain space 
(“—”) characters such that                             
and removal of all space characters leaves 
S1 and S2 intact.

lSS == |||| '
2

'
1

Number of Alignments

It is clear that                                    . The case l=n+m
occurs when the alignment corresponds to deleting all 
characters in S1 followed by insertion of all characters of 
S2.
Let f(i,j) denote the number of alignments of one 
sequence of i letters with another of j letters. Then, it 
has been proved that

For n=1000, f(1000,1000)=              alignments! The 
number of elementary particles in the universe is about         

, and Avogadro’s number is        . 

mnlmn +≤≤),max(

2
112)21(),( −++≈ nmnf n

4.76710

8010 2310
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Definition: Edit Distance

Given two strings S1 and S2 , the minimum 
number of edit operations (I: insert, D: delete, 
R: replace) required to transform S1 to S2 is 
called the edit distance between the strings. 
It is also called Levenstein distance. 

A replacement or substitution operation can be 
conceived of a delete operation followed by an 
insert operation. Thus the edit distance can be 
expressed only in terms of only insert and delete 
operations.

Edit Transcript

A string over the alphabet (R,I,D,M) of length 
l that transforms S1 to S2 is called an edit 
transcript. 
For the alignment:

The edit transcript is: RIMDMDMMI which 
converts ATCCGAT to TATCATC.

A--TCCGAT--
TAT--C—ATC
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Technical comments on edit distance

Symmetrical: D(A,B) = D(B,A)
Can “reverse the movie”
Substitution X→Y becomes substitution Y→X
Insertion becomes deletion
Deletion becomes insertion

“Parsimony” principle often used in 
computational biology

Simplest explanation for an observation
minimum number of edits = fewest mutations

Courtesy : Bob Edgar, UC Berkeley

Optimal Alignment

Given the sequences and the edit transcripts, 
it is easy to find the alignment for the 
transcript. 
Alignment and edit transcript are equivalent. 
The transcript explicitly shows the mutational 
events and alignment displays the 
relationship between the strings. 
An alignment corresponding to the minimum 
edit distance between the two strings is 
called an optimal alignment.
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Principle of optimality

In some optimization problems...
...components of a globally optimal solution 
are themselves globally optimal

Then can optimize by recursively optimizing 
sub-problems

Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

New York

San Francisco

Boston

Atlanta

Denver
3 h

1 h

3 h

5 h

2 h

6 h

Want fastest time San Francisco to NY, given:
(1) You must fly via Denver (D), Boston (B) or Atlanta (A)
(2) Fastest times from SF to D, B or A, and
(3) Fastest times from D, B or A to NY.

Courtesy : Bob Edgar, UC Berkeley
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Principle of optimality

New York

San Francisco

Boston

Atlanta

Denver
3 h

1 h

3 h

5 h

2 h

6 h

Answer: find minimum of the three possible routes:
SF to B + B to NY
SF to D + D to NY
SF to A + A to NY

= min ( 6 + 1, 2 + 3, 5 + 3) = min (7, 5, 8) = 5.
Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

London

San Francisco

Dublin

Paris

New York5 h

Now want fastest time to London
Must fly via New York, Dublin or Paris
Doesn’t matter how we get to NY, already know best time is 5h
If we solve same problem for Dublin and Paris, can find the answer 
in the same way as for NY

Courtesy : Bob Edgar, UC Berkeley
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Dynamic Programming

Principle of optimality holds
Solve simpler sub-problems
Remember the results
Use recursion to solve the next-biggest 
problem

Courtesy : Bob Edgar, UC Berkeley

Edit Distance matrix D

D[i,j] = edit distance between
first i letters in the first string (S1) and
first j letters in the second string (S2).

(In other words, the edit distance between the 
prefix of S1 with length i and the prefix of S2
with length j.)
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Computing Optimal Alignment by 
Dynamic Programming.

Definition: For two strings S1 and S2, D (i, j) is 
defined to be the edit distance of S1[1….i] and 
S2[1….j]. Then, D (n ,m)  is the edit distance of S1

and S2.
Let               and              , where the index 0 will 
denote null string. The idea is to compute the values 
of D for increasing values of i and j, using values 
corresponding to smaller values of i and j

ni ≤≤0 mj ≤≤0

Recurrence Relations

To start the process, we need a “basis” for i=0 and 
j=0.

Where               for the first equation and               for
the second equation. 

The first  equation signifies that i deletion operations are 
needed to convert the prefix of S1 of length  i to a null 
string and the second equation states that j insertion 
operations are needed to convert a null string to the prefix 
of S2 of length j. The third equation corresponds to a null 
string being converted to a null string with 0 operation. 

0)0,0(
),0(

)0,(

=
=
=

D
jjD

iiD

ni ...1= mj ...1=
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The Recurrence Relation

i-1,ji-1,j-1

i,j-1 i,j

D[i,j] = min

D[i-1,j-1] + t(i,j)

D[i,j-1] + 1    Insert

D[i-1,j] + 1  Delete

Consider a minimum edit transcript for D(i,j). If the last operation of this transcript is 
an insert I operation, then the alignment must have been at this point (--, S2(j))  
corresponding to the horizontal arrow in the matrix.  If the last operation of this 
transcript is a delete D operation, then the alignment must have been at this point 
(Si(i), --)  corresponding to the vertical arrow in the matrix. Otherwise, the 
computation must have taken the diagonal arrow in the matrix which might 
correspond to either a match or a replacement of S1(i) by S2(j). 

S1

S2

0

1

0 1

n

m

i

j

Minimum Edit Transcript for D(i,j).

If the last operation of this transcript is an insert I 
operation, then the alignment must have been at 
this point (--, S2(j))  corresponding to the horizontal 
arrow in the matrix.  
If the last operation of this transcript is a delete D 
operation, then the alignment must have been at 
this point (Si(i), --)  corresponding to the vertical 
arrow in the matrix. 

Otherwise, the computation must have taken the diagonal 
arrow in the matrix which might correspond to either a 
match or a replacement of S1(i) by S2(j). 
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Cost of Operations

We assign a cost value of 1 for either insert or 
delete operation. 
If it is a match the cost t(i,j) is zero; 

otherwise, we are assuming the cost is 1 but it could be 
determined by other conditions

Recursively, we have assumed that D(i-1,j), D(i,j-1) 
and D(i-1,j-1) are all minimum values of edit 
distances up to those points in the computation. 
Then D(i,j) has to be optimal if we take the minimum 
cost path from these three neighboring points. 
Note the minimum cost  path may not be unique, as 
we will see in our example.

Edit distance matrix M

G  E  N  E 

A

P

E

D(APE,GEN)

D(AP,GENE)

D(AP,GEN)

D(AP.GEN) + 0

D(APE.GEN) + 1 (I)

D(AP.GENE) +     1   (D)

D(APE,GENE) = min

Courtesy : Bob Edgar, UC Berkeley
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i-1,j

i-1,j-1 i,j-1

i,j

Edit distance matrix M

D[i-1,j-1] + t(i,j)

D[i,j-1] + 1

D[i-1,j] + 1

D[i,j] = min

G  E  N  E 

A

P

E

Courtesy : Bob Edgar, UC Berkeley

Recursion relations

D[i-1,j-1] + t(i,j) “Match”

D[i-1,j] + 1 “Delete”

D[i,j-1] + 1 “Insert”

D[i,j] = min

X
X

(best)

X
-

-
X

(best)

(best)

t=0 (same letter), =1 (different)

“Match” = no edit or a substitution
“Insert”, “Delete” relative to string S1

Courtesy : Bob Edgar, UC Berkeley
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0

Initialization

G  E  N  E 

A

P

E

D[0,0] = 0
(edit distance between 
two empty strings)

Courtesy : Bob Edgar, UC Berkeley

3 2 3 3

2 2 3 4

1 2 3 41

2

3

1 2 3 40

Rest by recursion

G  E  N  E 

A

P

E

D[i-1,j-1] + t(i,j)

D[i,j-1] + 1

D[i-1,j] + 1

D[i,j] = min

D(APE,GENE) = 3

Courtesy : Bob Edgar, UC Berkeley
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Recursive Procedure

The recursive procedure is a top-down approach. That is, the 
computation starts at the lower rightmost point.In practical 
implementation, it might need an exponential number of 
calls. 
A bottom-up tabular computation is more efficient. 
To compute the value at any point in the matrix, it is sufficient 
if we know the minimum edit distances of its north, north-
west and west neighbors and the pairs of characters from 
the two sequences under consideration. 
We know how to compute the 0th row and the 0th column of 
the matrix ( the minimum edit distance is simply the index of 
the row or column), then we can compute the rest of the 
matrix one row at a time consecutively with increasing row 
indices or one column at a time consecutively with increasing 
column index. 

Example

↑4↖4←↖↑4↖3↖↑4↑5↑6↑77C

↖3←↖↑4↖3↖↑3↖↑3↖↑4↑5↑66T

←4↖3←↖3↖2↑2↑3↖↑4↑55A

←↑5←4←3←2↖1↑2↑3↑44C

↖4←↖↑5←↖4←↖3←2↖1↑2↑33T

←5↖4←4←3↖2←↖↑2↖1↑22A
←↖6←5←4←3←2↖1↖1↑11T
←7←6←5←4←3←2←100

76543210
TAGCCTAD(i,j)
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Path

↑47C
↖36T

↖35A
←3←2↖14C

↖13T
↖12A

↑11T
00

76543210
TAGCCTAD(i,j)

Alignment: S1 T A T C _  _ A T C
S2 _ A T C C G A T _

Time Complexity

Theorem: The dynamic programming 
algorithm computes a minimum edit distance 
in time O(nm).

Proof. The algorithm needs an (n+1)(m+1) table to 
be computed. Any particular entry in the table 
involves three additions, one character 
comparison operation  and one three-way 
minimum value computation, all requiring O(1) 
time. Hence the total time is O(nm).
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Time Complexity

Theorem: Once the dynamic programming table 
with pointers has been computed, an optimal edit 
transcript can be found taking O(n+m) time. 

Proof. During the construction of the table, the back 
pointers to neighboring cells having minimum edit distance 
values can be set up taking O(nm) storage and time.  Then 
a directed path of back pointers originating from (n,m) to 
(0,0) , called a trace, can be constructed taking only 
O(n+m) time since at each step the path must extend to 
north, west or north-west. The maximum possible path 
length is n+m.

Time Complexity

Theorem: Every path from (n,m) to (0,0) 
corresponds to an optimal edit transcript in 
one-to-one fashion.

Proof:  Every point in the trace represents a 
minimum edit distance from (0,0) to that point.
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Weighted Edit Graph

Weighted edit graph is an alternate way to represent the dynamic 
programming problem. 
It can be formulated as a shortest path problem. 
The graph has (n+1)(m+1) vertices corresponding to all possible 
pairs of indices of the rows and columns. The specific weights and 
edges depend on the specific string problem. 
For the edit distance problem, vertex (i,j) is connected to vertices 
(i,j+1),(i+1,j) and (i+1,j+1) by directed arcs having weights 
corresponding to the cost of insert, delete, replace or match 
operations, respectively . 
The graph is obviously acyclic. For our edit distance problem, we 
have assumed , to have value 1 for delete and insert and  to have 
value 1 for replacement and 0 for match. 

Weighted Edit Graph

A T T0

←2↖1↑2↑33T

←↖3←↖2←↖1↑22A

←↖3←↖2↖1↑11C

←2←1←000

3210

TTA

C

A

T

C
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Shortest path

Theorem: With the weights as defined, an 
edit transcript for S1 and  S2 has minimum 
number of edit operations if and only if it 
corresponds to a shortest path from (0,0) to 
(n,m) in the edit graph.

Operation-Weight Alignment

With arbitrary weights, the solution will 
correspond to a minimum weighted path 
between these two points. This allows us to 
define more complex alignment problems 
between two strings. 
We can assign weights based on operation 
(I,D,R, or M), called operation-weight 
alignment or based on specific symbols 
involved in the operation called alphabet-
weight alignment.
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Dynamic Programming Rules with 
Weights

If we assume that the insert and delete 
operations have weights u and d,
respectively, the replacement operation (or 
equivalently a mismatch) has a weight r, a 
match operation has a weight w, we can re-
write the dynamic programming rules as:

0)0,0(
),0(

)0,(

=
=
=

D
jdjD

iuiD

Dynamic Programming Rules with 
Weights

The general recurrence relations is:

where                            if  

Obviously, if r is defined, ; otherwise, the 
replacement operation can be realized by first deleting and 
then doing an insertion operation to obtain minimum edit 
distance.

)],()1,1(,)1,(,),1(min[),( jitjiDdjiDujiDjiD +−−+−+−=

wjit
rjit

=
=

),(
),(

)()(
)()(

21

21

jSiS
jSiS

=
≠

dur +≤
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Alphabet Weight Edit Distance

The alphabet weight edit distance can be 
computed using exactly the same set of equations 
as given above except that the weights are now 
given by a set of look-up tables viz. 

a look-up table for insertion cost of each character in the 
alphabet, 
a table for deletion cost 
a table for match cost and a table for replacement cost for 
every pair of symbols. 

These values have to plugged in as the computation 
proceeds.

String Similarity 

Finding differences between two sequences can be 
alternately formulated as finding similarity between 
two sequences. 
Biologists usually prefer using similarity measures to 
study relationship between strings. 
Earlier we gave a definition of alignment as follows:

Definition: Let S1 and S2 two sequences of length n and 
m , respectively , over a finite alphabet ∑. An alignment
maps the strings S1 and S2 into strings and that may 
contain space (‘—“) characters such that and 
removal of all space characters leaves S1 and S2 intact.

lSS == |||| '
2

'
1
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Similarity Definition

We enlarge the alphabet to include the space symbol ‘—
”, so that . Then for any two characters x and y in ∑’, we 
define a score or value obtained by aligning x against y. 
For a given alignment of S1 and S2, let S’1 and S’2
denote the strings after the chosen  insertion of spaces. 
And let k denote the equal length  of these two strings. 
Then value V of alignment between S’1 and S’2 is defined 
as

))(),(( '
2

1

'
1 iSiSs

k

i
∑
=

Maximization Problem

In string similarity problems, the value of s is 
usually set greater than zero for matched 
symbols and less than zero for symbol pairs 
that do not match or when a symbol is 
aligned with a ‘—‘ character. 
This reduces the problem to the problem of 
maximization of V for all possible alignments. 
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Dynamic Programming Solution

Let be the optimal alignment of 
prefixes  and 
Basis: 

),( jiV
]...1[1 iS ]....1[2 jS

0)0,0(

),()0,(

),(),0(

1
1

1
2

=

−=

−=

∑

∑

=

=

V

SsiV

SsjV

i

k

j

k

Dynamic Programming Solution

recurrence relation is:
)),(),(()1,1(max[),( 21 jSiSsjiVjiV +−−= replacement 

),),((),1( 1 −+− iSsjiV deletion 

))](,()1,( 2 jSsjiV −+− insertion 

The value of the optimal alignment is given by .
Like for the computation of the edit distance, we can use a 

bottom-up method to compute the alignment matrix. The 
complexity is O(nm) since at each point we perform 3
comparisons, 3 look-up operations and 3 additional
operations. 

),( mnV
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Maximum similarity path

By setting up suitable pointers, once the 
matrix is computed, we can obtain a trace for 
the optimal alignment by constructing any 
path from the cell (n,m) to the cell (0,0). 
Also, the problem can be formulated as 
finding a maximum weighted path in a 
weighted acyclic graph similar to one 
discussed earlier. (In general, computing a 
longest path in arbitrary graph is NP 
complete). 

The weights of the edges must correspond to 
specific values of s for the pair of symbols. The 
algorithm takes O(nm) space. 
This is quite expensive if the sequences are large. 
If one were interested only in the value of the 
alignment and not obtaining a trace, this could easily 
be done by keeping only the last two rows of the 
matrix to compute the next row. 
This will need only O(n+m) space. Is it possible to 
reconstruct an alignment using only linear space?
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Example 

230-3-3-66 T

301-2-2-55 G

11-1-1-1-44 C

12-100-33 T

-2-1001-22 C

-2-101-1-11 A
-5-4-3-2-100

5
G

4
T

3
G

2
A

1
C

0j
i

←↑2↖ 30-3-3-66 T

↖ 30↖ 1-2-2-55 G

1↑1-1↖↑ -1-1-44 C

1↖ 2-1↖ 0↑ 0-33 T

-2-1↖ 00↖ 1-22 C

-2-10↖ 1-1↑ -11 A

-5-4-3-2← -100

5
G

4
T

3
G

2
A

1
C

0j
i
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The optimal alignment corresponding to these three 
paths are:

GTGA_C_

_TGCTCA

GTGA_C_

_TGCTCA

GTGA_C_

_TGCTCA

Beyond edit distance – Another 
Perspective to maximizing similarity

Edit distance works quite well, especially for 
closely related DNA
Can do better, especially for highly diverged 
proteins

GRB2_CHICK   ...SVKFGND-----VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...
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(a)
HBA_HUMAN   GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+   +VK+ HGKKV     A+++++ AH+D+ +   + ++++ LS+LH     KL
HBB_HUMAN    GNPKVKAHGKKVLGAFSDGLAHLDNL KGTFATLSELHCDKL

This shows clear similarity of human alpha globin to beta globin. There are 
manypositions where the residues are identical. Many others are ‘functionally 
conservative’, indicated by a ‘+’ sign 
(b)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV- - - D- - DMPNALSALSDLHAHKL

++   + + ++H+   KV       +    +A     ++ +L+  L+ ++H+   K
LGB2_LUPLU  NNPELQAHAGKVFKLVYEAAIQLQVTGVVVT DATLKNLGSVHVSKG

This shows a biologically meaningful alignment between leghaemoglobin and 
yellow lupin. These two sequences are evolutionary related and have same three
Dimensional structure , and function in oxygen binding. Note much fewer match
Characters and ‘gaps’ inserted to maintain alignment
(c)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD- - - - LHAHKL

GS+  +    G   +        +D  L     ++   H+    D+     A   +AL  D        ++AH+
F11G11.2          GSGYLVGDSLTFVDLL - - VAQHTADLLAANAALLDEFPQFKAHQE

A spurious high-scoring alignment to a nematode glutathione S-tranferase
homolog named F11G11.2

Objective score
Function that converts an alignment into a single number
Goal: higher number = better alignment

“better” = more biologically plausible
“Objective” = a computer can calculate it

as opposed to “subjective” (a personal opinion), 
nothing to do with object-oriented programming

(Negative) edit distance is a biologically reasonable 
objective score

Want minimum, not maximum, number of edits, so 
need a minus sign

G E N E
A P - EScore( ) = –3
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Amino acid similarities

GRB2_CHICK   ...SVKFGND-----VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

Leucine (L) and Isoleucine (I) biochemically
similar

High score for subsitution = +2
But not as high as no change (LL or II) = +4

Leucine (hydrophobic) and Aspartic Acid (D) 
(hydrophilic) biochemically different

Low score for substitution = -4

Substitution Matrices

Given a pair of aligned sequences, how do we 
assign a score that gives relative likely hood that 
the sequences are related?
Random model (R): Assumes that every letter in the 
sequence occurs independently. Thus, the 
probability of the two sequences is the product of 
probabilities of each amino acid.

P(S1,S2/R)=Πpi Π pj where pi and pj denote 
probabilities of ith and jth symbols in the two 
sequences.
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Substitution matrices

In the alternate match model M, the aligned 
pair of residues occur with a joint probability
pij , which can be thought of as the probability 
that the residues i and j have been derived 
from some unknown originl residue k in their 
common ancestor (k could be same as i 
and/or j). Thus

P(S1,S2/R)=Πpij

Substitution matrices
The ratio of these two likelihood is known as 
the odds-ratio

(Πpi Π pj) / Πpij

))(2),(1( iSiSs∑

In order to arrive at an additive scoring system, we take the
logarithm of this ratio, known as the log-odds ratio:

Where                s=log{(Πpi Π pj) / Πpij}

is the log likelihood of the residue pair occuring as an aligned
pair. These scores can then be arranged as a 20X20 matrix

Called the score matrix or substitution matrix. 
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Substitution Matrix: Blosum 50 matrix

Substitution matrix: BLOSUM62

A  C  D  E
A 4 0 -2 -1
C 0  9 -3 -4
D -2 -3  6 2
E -1 -4  2  5

Identities, e.g. E+E
High scores (main diagonal).

Subsititions, e.g. C+E
score depends on how likely the 
two amino acid types are to 
substitute for each other.

Matrix is symmetrical
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Optimal Alignment with Gap

Definition: 
A gap in an alignment between two strings is a run of 
contiguous spaces.

An insertion or deletion of a character was 
represented by a space. 
Each occurrence of such a space character in the 
alignment is considered to be a mutation. 
Sometimes a gap of more than one space can be 
created by only one mutational or evolutionary 
event. To handle this kind of situation, we need to 
develop a model of alignment cost function that 
does not attribute a negative cost or penalty based 
on the length of the gap.

Examples of ‘gaps’ in biological context is 
numerous. 
The case of cDNA is a good biology application. 

In a genome, not all DNA are responsible for the production 
of proteins or hormones; 
those that carry these functions are said to be expressed. 

To study this phenomenon, biologists make DNA , 
called cDNA, corresponding to mRNA that leaves 
the nucleolus to cytoplasm for translation, by 
replacing uracil (U) in RNA by thyamine (T) .
Concatenation of these DNA strands then 
corresponds to the exon of the gene.
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If we now sequence the cDNA and compare this with similar 
DNA in the chromosomal DNA, we would have obtained a map 
of chromosomal genes that are expressed. 
While doing this similarity search, the introns have to be aligned 
with long gaps. 
Recall a gene may be distributed over several segments with 
interleaving introns. If we used our scoring scheme for similarity 
search here, we would have penalized heavily our total score for
the alignment (since gap will translate into a set of contiguous
delete operations) and the similarity of the cDNA with some 
segment of chromosomal DNA would be missed. 
The alignment that best reflect the relationship consists of a few 
regions of strong similarity interspersed with long regions of 
gaps.

Gap penalties

Gaps subtract a value from the objective 
score
Simplest design: “linear” penalties
a fixed parameter (e) multiplied by length of 
gap

“e” for “extension”
e = 4

Subtract e for every “-” in the alignment

L A K E
I - - E

LI = 2 EE = 52e = –8

= -1
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Computing max objective score

E
E

E
-

-
E

m(GEN,AP) m(GEN,APE) m(GENE,AP)

m(GEN,AP) + B(E,E) m(GEN,APE) - e m(GENE,AP) - e

max Score(GENE,APE) = ?

Notation: max Score(A,B) = V(A,B)=m(A,B)

BLOSUM62 score

Recursion relations

M[i-1,j-1] + B(i,j) “Match”

M[i,j-1] + 1 “Delete”

M[i-1,j] + 1 “Insert”

M[i,j] = max

X
X

(best)

X
-

-
X

(best)

(best)

BLOSUM62 score

Dynamic programming very similar to edit distance
max instead of min
BLOSUM62 score instead of S = 1 or 0

M[i,j] is same as V[i,j] as described earlier
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Problem with linear gap penalties
GRB2_CHICK   ...SVKFGN----D-VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK   ...SVKFGND-----VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

These  alignments have same objective score with linear 
penalties
But lower alignment is more biologically reasonable

One gap instead of two = one insertion / deletion 
event instead of two

Affine gap penalties
Prefer fewer gaps (parsimony: fewer insert / 
delete events)
Penalty = g + ek

g = “gap open” or “per-gap” penalty, typical g = 9
e = “gap extension” penalty, typical e = 2
k = gap length (number of consecutive “-”
symbols)

GRB2_CHICK   ...SVKFGN----D-VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK   ...SVKFGND-----VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

gap penalty
= -2g - 5e = -28

gap penalty
= -g - 5e = -19
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Problem with recursion relations

E
E

E
-

-
E

m(GEN,AP) m(GEN,APE) m(GENE,AP)

m(GEN,AP) + B(E,E) m(GEN,APE) - ??? m(GENE,AP) - ???

g + e    if start of new gap
e          if adding to an existing gap

Solution: three similarity matrices
M[i,j] = objective score of best alignment of

first i letters of A to first j letters of B
that ends in a match

D[i,j] = objective score of best alignment of
first i letters of A to first j letters of B
that ends in a delete

I[i,j] = objective score of best alignment of
first i letters of A to first j letters of B
that ends in an insert
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E.g. sub-alignment ends in match

E
E

E
-

-
E

X
X

X
X

X
X

M(GEN,AP) + B(E,E) M(GEN,APE)
- g - e

M(GENE,AP)
- g - e

New alignment
ends with match Start a new gap

Ends with insert
Start a new gap
Ends with delete

Recursion relations

E
E

E
-

-
E

-
X

-
X

-
X

E
E

E
-

-
E

X
-

X
-

X
-

E
E

E
-

-
E

X
X

X
X

X
X

M(GEN,AP) + B(E,E) M(GEN,APE)
- g - e

M(GENE,AP)
- g - e

D(GEN,AP) + B(E,E) D(GEN,APE)
- e

D(GENE,AP)
- g - e

I(GEN,AP) + B(E,E) I(GEN,APE)
- g - e

I(GENE,AP)
- e
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Recursion relations
M[i-1,j-1] + B(i,j)

D[i-1,j-1] + B(i,j)

I[i-1,j-1] + B(i,j)

M[i,j] = max

X
X

X
X

X
X

X
X

X
-

-
X

M[i-1,j] - g - e

D[i-1,j] - e

I[i-1,j] - g - e

D[i,j] = max

X
-

X
X

X
-

X
-

X
-

-
X

M[i,j-1] - g - e

D[i,j-1] - g - e

I[i,j-1] - e

I[i,j] = max

-
X

X
X

-
X

-
X

X
-

-
X

Global alignment

Global alignment
all letters from both sequences

Objective score: substitution matrix + affine 
gap penalties
Three similarity matrices M,D,I
Three trace-back matrices (if alignment 
needed as well as score)
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Needleman-Wunsch Algorithm

Global alignment by dynamic programming 
often called “the Needleman-Wunsch
algorithm”

Needleman, S.B. and Wunsch, C.D. (1970) A 
general method applicable to the search for 
similarities in the amino acid sequence of two 
proteins. J Mol Biol 48(3): 443-53.
Paper describes an algorithm with fixed gap 
penalty (independent of length)
First application of dynamic programming to 
biological sequences

Local Alignments 

A particularly interesting variant of similarity search 
is local alignment or similarity. 
Suppose we have two long DNA sequences in 
which there is a particularly interesting subsequence 
representing a gene that are common between the 
sequences. 

Doing a global alignment or similarity search will not be 
able to identify this because there may be a lot of 
dissimilarity in the rest of the sequence which yield a low 
value for similarity and a large value of edit distance, none 
of which say anything about this interesting region. 

If the regions of highly similar local alignment are 
small, they might get lost in the context of global 
alignment.
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Local alignment
Often called “the Smith-Waterman algorithm”

Smith, T.F. and Waterman, M.S. (1981) Identification 
of common molecular subsequences. J Mol Biol
147(1): 195-7.
Introduces the critical “all prefixes of all suffixes” trick.

Surprisingly, only small modification of global case
Many more local alignments than global alignments
Prior to Smith-Waterman paper, algorithms were much 
slower

Problem Definition

Given two strings S1 and S2, find substrings 
α of S1 and β of S2 such that the similarity of 
these two substrings has maximum value 
over all pairs of substrings from S1 and S2. 

S1

S2
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Example

S1=pqraxabcstuv and S2=xyaxbacsll, where 
α=axabcs and β=axbacs. 
With weight assigned as match=+2, 
mismatch=-2 and space=-1, the following 
gives one of the maximum value alignment:

a   x   a   b   - c   s
a   x   - b   a   c   s
2   2  -1  2  -1  2  2   = 8 total

Local alignment

Global alignment often doesn’t make 
biological sense
Example: protein domains

SRC
(tyrosine kinase) FCH SH2 YK

Stat
(transcription

factor)
DNAB SH2 TA

related by evolution
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Local alignment

Example: lateral transfer between genomes

host genome before transfer

host vector

vector genome

vectorgene

host hostgene

vector gene spliced into host genome

related
by evolution

Local alignment
Define the problem
Given an objective score function, strings A, 
B
Find alignment of two substrings of A and B 
with highest score

THEMOTIVATION 
THEMUT--ATION

THEMOTIVATIONFORALIGNMENT

ISTOFINDTHEMUTATIONS
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An obvious exhaustive algorithm is to enumerate all 
the substrings of S1 and S2 and execute a dynamic 
programming algorithm on each pair. 

There are O(n2m2) such pairs.

For one string, a substring is defined by two 
positions the string which can be chosen in O(n2)
and O(m2) ways for S1 and S2, respectively.  
For each pair, dynamic programming takes O(nm)
time. Thus, the complexity of such an approach is 
O(n3m3) .

Local alignment: the trick

Set of all substrings = set of all suffixes of all prefixes

Example. String = “ABC”

Set of suffixes = “ABC” “BC” “C”

Set of prefixes of   “ABC” is    “A” “AB” “ABC”
Set of prefixes of   “BC” is    “B” “BC”
Set of prefixes of   “C” is    “C”

All prefixes
of “ABC”

All substrings
of “ABC”



45

Local alignment, edit distance
Re-define the similarity matrix.

For global alignment:
M[i,j] = smallest edit distance between

the first i letters in A and
the first j letters in B.

For local alignment:
M[i,j] = smallest edit distance between

any suffix of the first i letters in A and
any suffix of the first j letters in B.

Local alignment, edit distance
In other words,
M[i,j] = smallest edit distance between

any suffix of (the prefix of A of length i)
any suffix of (the prefix of B of length j)

So smallest value of M for all i,j considers all 
prefixes of A and B
= smallest edit distance between any suffix of 
any prefix of A and any suffix of any prefix of B
= edit distance of the best local alignment of A 
and B. i

j
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More Restricted Version of Problem

Definition: 
Given two strings S1 and S2, and integers i<=n 
and j<=m, the local suffix alignment problem is 
to find a (possibly empty) suffix α of S1(1……i) 
and a (possibly empty) suffix β of  S2(1…..j) such 
that the pair of suffixes V= (α,β) has the maximal 
alignment value v(i,j) ( which is greater than equal 
to 0 since the definition ALLOWS both α and β to 
be empty).

Example

1  2  3  4   5  6  7              1  2  3  4  5  6  
Let S1= a  b  c  x  d e  x and S2= x  x  x  c  d e

Match=+2,  mismatch or space=-1
V(3,4)= (c,c) and v(3,4)=2
V(4,5)= (cx,cd) and v(4,5)=1
V(5,5)= (xd,xcd) and v(5,5)=3
V(6,6)= (xde,xcde) and v(6,6)=5   etc. 



47

Algorithm to find value of optimal v(i,j)

The algorithm is very similar to the algorithm to 
determine maximum similarity of two strings. 
Use again recurrence relations. 
Make reasonable assumptions about insert and 
delete operations as and , 
respectively. 
Since the optimal suffix to align with an empty suffix 
is a string of length zero, we can write the basis as:

v(i,0)=0
v(0,j)=0

0),( ≤− xs 0),( ≤−xs

The Recurrence Realtion

For i>0 and j>0, the recurrence relations are:

),(),(()1,1(,0max[),( 21 jSiSsjivjiv +−−=

),),((),1( 1 −+− iSsjiv

))](,()1,( 2 jSsjiv −+−



48

Justification of the Recurrence

We now have an additional ‘0’ term in the 
expression. 
The justification of the recurrence is as 
follows. 
Suppose A is an optimal alignment of a 
suffix α of S1 (1……i ) and a suffix β of  
S2(1…..j) . 

Justification of the Recurrence

There are four possible cases:
Both α and β are empty sequence. In this case, the 
value =0.
Assume α is not empty. Then S1(i) must have aligned 
with either ‘—’ or some character in S2. If β is not 
empty then S2(j) must have aligned with either ‘—’ or 
some character in S1. 
If S1(i) and S1(i) aligned in the optimal local alignment, 
then these two characters contribute s((S1(i) , S2(j)) to 
v(i,j) and the remainder of its value must come from 
v(i-1,j-1) .Thus, in this case, we have 

v(i,j)= v(i-1,j-1) + s((S1(i) , S2(j)) 
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Justification of the Recurrence

Similarly, if S1(i) is aligned with either ‘—’ , we have 
v(i,j)= v(i-1,j-1) + s((S1(i),--)).
and if S2(j) is aligned with either ‘—’ ,we have v(i,j)= 

v(i-1,j-1) + s((-- , S2(j)).
This covers all the cases. Conversely, for each of 
the four terms in the recurrence relation, there is a 
way to choose suffixes of S1 (1…i )  and   S2(1…j) to 
produce the alignment corresponding to the 
associated terms. Hence v(i,j) must be one of the 
four terms and the maximum term will yield the best 
alignment. 

Optimal Local Alignment

So far we have discussed an optimal suffix 
alignment, not an optimal local alignment. 
Fortunately, an optimal suffix alignment yields an 
optimal local alignment. 
More formally, let v* be the value of the optimal 
local alignment. Then,
Theorem: 

This is an existence theorem. To be specific, the 
algorithm that we just described for computing 
maximum v(i,j) actually yields the values of  i*  
and j*.

],:),(max[* mjnijivv ≤≤=
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Proof

Every optimal solution to the local suffix alignment 
problem is a feasible solution to the local alignment 
problem. 
Hence  
Conversely, Suppose Al is an optimal local alignment. 
The alignment has a last character S1 (i*) of S1 and a 
last character S2 (j*) of S2. 
This alignment is nothing but an optimal alignment 
between the suffix  of S1(1……i*) and a (possibly empty) 
suffix  of  S2(1…..j*) . 
Hence,
Therefore

)},(max{* jivv ≥

)},(max{),( *** jivjivv ≤≤
],:),(max[* mjnijivv ≤≤=

0

Initialization

G  E  N  E 

A

P

E

D[0,0] = 0
(edit distance between 
two empty strings)

Courtesy : Bob Edgar, UC Berkeley

0 0 0 0

0

0

0
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Example

Let S = ABCLDEL and T = LLLCDE, a match score 
+2, and a mismatch or space score -1. The dynamic 
programming algorithm fills the table of v(i,j) as:

41122207    L
52000006    E
23111105    D
01122204    L
01200003    C
00000002    B
00000001    A
00000000

6
E

5
D

4
C

3
L

2
L

1
L

0j
i

Example

The value of optimal alignment is V(6,6) = 5. We can construct 
optimal alignments by retracing from any maximum entry to 
any zero entry: 

41122207    L

↖52000006    E

2↖3111105    D

01←↑1↖22204    L

01↖200003    C

00000002    B

00000001    A
00000000

6
E

5
D

4
C

3
L

2
L

1
L

0j
i
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The Optimal Local Alignment

The optimal local alignments corresponding to 
these paths are:

EDCL

ED-L

ED-C

EDLC

Space Complexity

It is easy to see that the time complexity of the 
algorithm is O(nm) , as in the general case of 
dynamic programming. 
The algorithm takes O(nm) space. This is quite 
expensive if the sequences are large. 
If one were interested only in the value of the 
alignment and not obtaining a trace, this could easily 
be done by keeping only the last two rows of the 
matrix to compute the next row. 
This will need only O(n+m) space. 
Is it possible to reconstruct an alignment using only 
linear space?
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i-1,j

i-1,j-1 i,j-1

i,j

Saving space

Current row depends only
on previous row and current row

Need only store two rows to 
compute score of best alignment
= O(L) space

(Can be done with space for one 
row only).

Compute matrix left-to-right
and top-to-bottom

This row no longer needed

Trace-back in O(L) space

Trace-back is harder
Myers-Miller algorithm

Myers, E.W. and Miller, W. (1988) Optimal 
alignments in linear space. Comput Appl Biosci
4(1): 11-7.

Repeatedly divides similarity matrix in half
About 2x slower than O(L2) algorithm
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Faster speed

Speed improvements require approximation
give up guarantee that an objective score is 
optimized

Global alignment: k-difference
Local and global alignment: seeds

K-difference algorithm

Global alignment of identical sequences
Edit graph is the main diagonal

QM T I F
M
Q
T
I
F
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K-difference algorithm
Max k deletes or inserts, graph cannot diverge more 
than k cells from the main diagonal

k must be ≥ difference in sequence length otherwise 
no solution

E.g., k=1, allow no more than 1 insert or delete

Compute only shaded region 
of similarity matrix(es)

Seeds
“Seed” is a short, usually ungapped, region of high 
similarity

For example, identical sub-strings (“k-mers”, “words”
or “k-tuples”)

Assume seed is in the alignment
Seed appears as a (sub)-diagonal in the edit graph

MA Q T W
L
V
M
Q
T

G

F

M
Q

T

Compute only shaded region 
of similarity matrix(es)
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Finding seeds
Use a faster method than dynamic programming

so beyond the scope of this tutorial to cover this in 
detail

Examples:
Edgar, R.C. (2004) Local homology recognition and 
distance measures in linear time using compressed 
amino acid alphabets. Nucleic Acids Res 32(1): 
380-5.
Kent, W.J. (2002) BLAT--the BLAST-like alignment 
tool. Genome Res 12(4): 656-64.
Katoh, K., Misawa, K., Kuma, K. and Miyata, T. 
(2002) MAFFT: a novel method for rapid multiple 
sequence alignment based on fast Fourier 
transform. Nucleic Acids Res 30(14): 3059-66.

Extending a seed
For local alignment, can “extend” a seed using a 
technique similar to k-difference algorithm for global 
alignment
Explore region of similarity matrix at each end of the 
seed
Stop when score drops below a threshold

T
Q

Score in these
cells too low, stop
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Freely available source code

FASTA package
align: Myers-Miller global alignment
lalign: Smith-Waterman local alignment
fasta: fast database search by k-mer matching 
and d. p. extension

BLAST (NCBI)
Fast database search
Seeds by “neighborhood” method
Match seeds by lookup in pre-computed index
Extend seeds by d. p. with score threshold

Profile alignment

Align an existing multiple alignment (“profile”) 
to a sequence
Columns of the existing alignment kept intact

SEQV-ENCE
SDQV-E-CR
TEQV-EACE

Arrows indicate gaps
added to create the profile-
sequence alignment.

SE-VIENCE
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Profile alignment
A profile is a sequence of columns
Apply algorithms used to align two sequences
Replace substitution matrix for letter + letter (e.g. 
BLOSUM62)...
...by function that gives a score to column + letter

E.g. average BLOSUM62 score vs. all letters in the 
column

S
S
T

S

= high score

L
I
L

C

= low score

Example: PSI-BLAST

First iteration: BLAST search of database
Create profile (=multiple alignment) from 
alignment of each hit to the query sequence
Search database with profile as a query

Uses modified BLAST algorithm
Create new profile by aligning each hit to 
search profile
Iterate
Able to find more distantly related proteins 
than BLAST alone
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Example: SAM-Txx

Similar design to PSI-BLAST 
Uses hidden Markov model (HMMs) profile
SAM-Txx significantly more sensitive than 
PSI-BLAST
Also much slower
http://www.soe.ucsc.edu/research/compbio/s
am.html

Public Web server
License required to run locally
Source code not available

Profile-profile alignment
Align two multiple sequence alignments
Keep columns in both alignments intact
Insert columns of gaps as needed to align 
them

SEQV-ENCE
SDQV-E-CR
TEQV-EACE

SE-VIENCE
-E-LIEACE

Arrows indicate columns
of gaps added to create 
the profile-profile alignment.
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Profile-profile alignment
A profile is a sequence of columns
Apply algorithms used to align two sequences
Replace substitution matrix for letter + letter (e.g. 
BLOSUM62)...
...by function that gives a score to column + column

E.g. average BLOSUM62 score for letters in one 
column vs letters in the other

S
S
T

S
S
A

= high score

L
I
L

C
C
C

= low score

Profile-profile applications
Iterated step in multiple sequence alignment, e.g. 
CLUSTALW
Distant homolog detection

For each sequence of known function or structure...
...create a profile (e.g., by PSI-BLAST)
Make a database of these profiles (similar idea to 
PFAM)
Create profile of query sequence (e.g. PSI-BLAST)
Align query profile to profiles of all annotated 
sequences
Compute e-value
Works (slightly) better than profile-sequence (PSI-
BLAST, SAM-Txx)
Works (a lot) better than BLAST
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Profile-profile programs

COMPASS
Sadreyev, R. and Grishin, N. (2003) COMPASS: a 
tool for comparison of multiple protein alignments 
with assessment of statistical significance. J Mol 
Biol 326(1): 317-36.
Source code available (? upon request to 
authors).

prof_sim
Yona, G. and Levitt, M. (2002) Within the twilight 
zone: a sensitive profile-profile comparison tool 
based on information theory. J Mol Biol 315(5): 
1257-75.

Multiple alignment

Objective score: Sum-of-pairs (SP)
Sum of objective score for alignment of each 
pair of sequences

SEQVENCE
SDQVE-CR
TEQVEACE

SP( )=

SEQVENCE
SDQVE-CR

Score( ) +

SEQVENCE
TEQVEACE

Score( ) +

SDQVE-CR
TEQVEACE

Score( )
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Optimize SP for N sequences

Similarity matrices become N-dimensional
E.g., for 3 sequences are cubes

M[i,j,k] = 
score of best alignment of
first i letters in A
first j letters in B
first k letters in C

i

j

k

Very slow

Time and space is O(LN)
Is NP-complete

Wang, L. and Jiang, T. (1994) On the complexity 
of multiple sequence alignment. J Comput Biol
1(4): 337-48.

Totally impractical for most biologically 
interesting problems
Faster methods needed


