Multiple Sequence Alignment

- Generalization of two sequence similarity problem, the problem of determining the similarity among multiple sequences.
- The purpose is to discover 'faint but widely dispersed' common sequences which might represent biologically important information.
- These common sequences might reveal evolutionary history, conserved motifs in the genome of divergent species, common chemical structure that give rise to similar folding or 3-D structures of proteins giving rise to similar functions.

Biology Applications

- An example is the notion of protein family which is a collection of proteins having
- similar 3-D structure,
- similar functions,
- and similar evolutionary history.
- If a new protein is discovered and if one is interested in classifying which family it belongs, comparison with individual members in the family might produce conflicting or confusing results.

Multiple Alignment of Several Amino Acid Sequences of Globin Proteins

- The example below shows how common features are dispersed faintly among a group of proteins which may not be apparent when two sequences in the family are compared.
- The abbreviations on the left denote the organisms that the globin sequences are from. The sequences are displayed in several rows since they are longer than a page can accommodate. Columns containing highly similar residues in regions of known secondary structures are marked by "v" and columns with identical residues are marked by *. Two residues are considered similar if they are from any one of the folowing classes: (F, Y), ($\mathrm{M}, \mathrm{L}, \mathrm{I}, \mathrm{V}$), (A,G),(T,S),(Q,N),(K,R) and (E,D).

Family Membership

If the faint similarity of the members in the family can be represented by what is called a 'consensus sequence', it will be more efficient to find an alignment of the new protein with this consensus sequence to determine whether it belongs to this family.

Definition

Given sequences $S_{1}, S_{2}, \ldots . S_{k}$, a multiple (global) alignment maps them to sequences $S_{1}^{\prime}, S_{2}^{\prime}, \ldots . S_{k}^{\prime}$ that may contain spaces, where $\left|S_{1}^{\prime}\right|=\left|S_{2}^{\prime}\right|=\ldots \ldots=\left|S_{k}^{\prime}\right|, \quad$ and the removal of all spaces from S_{i} leaves S_{i}, for $1 \leq i \leq k$.

Multiple Alignment

- Although the generalization of definition from two sequences to multiple sequences seems straightforward, it is not that obvious how to score or assign value to a multiple alignment.
- There are various scoring methods such as sum-of -pairs (SP) functions, consensus functions, and tree functions.
- For the sake of mathematical ease, SP functions have been widely used and good approximation algorithms have also been developed.

Multiple alignment

- Objective score: Sum-of-pairs (SP)
- Sum of objective score for alignment of each pair of sequences
SP(

Score($\left.\begin{array}{|c|c}\hline \text { SDDVE-CR } \\ \text { TEQVEACE } \\ \hline\end{array}\right)$

Multiple Alignment with Sum-of-Pairs

- Definition:
- Given a global multiple alignment A of k sequences, the sum-of-products value of A is the sum of the values of all $\binom{k}{2}$ pairwise
alignments induced by A.
- Definition:
- The score of an induced pairwise alignment could be any chosen scoring scheme for two string alignment in the standard manner.

Definition

- We also assume that the pairwise scoring function is symmetric.
- We will not consider gap penalty for this discussion.
- We use the edit distance function of two sequences as the induced pairwise metric.
- We use the symbol $\delta(x, y)$ to denote the distance between two characters x and y which may include space characters.
- For two strings, our objective will be to minimize

$$
\sum_{q=1}^{1} \delta\left(S_{i}^{\prime}(q), S_{j}^{\prime}(q)\right) \quad \text { where } \quad l=\left|S_{i}^{\prime}\right|=\left|S_{j}^{\prime}\right|
$$

Example

- Consider the following alignment
- S1: A C -- C T G --
- S2: -- C -- A T G T
- S3: A -- G C T A T
- Using the distance function $\delta(x, x)=0$, and $\delta(x, y)=1$ for $x \neq y$, we have $d\left(S_{1}, S_{2}\right)=3$, $d\left(S_{1}, S_{3}\right)=4$ and $d\left(S_{2}, S_{3}\right)=5$, giving a total of sum-of-pair value 12.
- Definition:
- An optimal SP global alignment of sequences $S_{1}, S_{2} \ldots, S_{k}$ is an alignment that has the minimum possible sum-ofpairs value for these k sequences.

Dynamic Programming Formulation to Compute Optimal Multiple Alignment

- The dynamic programming method for two sequences has a natural generalization for the multiple sequence case.
- Instead of a 2-dimensional matrix, we need a k dimensional matrix with $n+1$ 'rows' in each dimension, giving a total of $(n+1)^{\mathrm{k}}$ entries, each entry depending on adjacent $2^{\mathrm{k}}-1$ entries.
- This neighborhood corresponds to the possibilities for the last match in an optimal alignment: any of $2^{k}-1$ non-empty subsets of the k sequences can participate in that match.
- For two sequences, we had three possibilities: both the last characters were actual characters from the two sequences, or one space, and the other an actual character (two possibilities).
- Gusfield gives a complete description of the algorithm for three sequences. The details for an arbitrary number of sequences is simply an exercise in developing appropriate notations and is left out.

Optimize SP for N sequences

- Similarity matrices become N-dimensional
- E.g., for 3 sequences are cubes

$M[i, j, k]=$
score of best alignment of first i letters in A first j letters in B first k letters in C

Very slow

- Because each of the $(n+1)^{\mathrm{k}}$ entries can be computed in time proportional to $2^{k,}$ the running time of the algorithm is $O\left((2 n)^{k}\right)$. If $n=200$, the algorithm may be practical for only up to $k=3$ or 4 . We want the algorithm to run for $k=100$ or more.
- Is NP-complete
- Wang, L. and Jiang, T. (1994) On the complexity of multiple sequence alignment. J Comput Biol 1(4): 337-48.
- Totally impractical for most biologically interesting problems.
- Faster methods needed.

Center Star Alignment Algorithm

- Since the optimal SP alignment problem is NP-complete, we need, approximate algorithms.
- Gusfield proposed such an algorithm, called Center Star Alignment Algorithm whose SP values are less than twice the optimal value. We sketch this algorithm now.

Center Star Alignment Algorithm

- We make the following assumptions about the distance function induced by an alignment obtained by the algorithm, $\mathrm{d}\left(S_{1}, S_{2}\right)$:
- $\delta(x, x)=0$, for all characters x.
- Symmetric: $\delta(x, y)=\delta(y, x)$, and $d\left(S_{1}, S_{2}\right)=d\left(S_{2}, S_{1}\right)$
- Triangle inequality: $\delta(x, y) \leq \delta(x, z)+\delta(z, y)$ for all characters x, y and z. Cost of x to z is no more than cost of x to y and then y to z. Consequently, $d(\mathrm{X}, \mathrm{Y}) \leq d(\mathrm{X}, \mathrm{Z})+d(\mathrm{Z}, \mathrm{Y})$ for all sequences X, Y and Z
- We have used the symbol $D\left(S_{1} S_{2}\right)$ to denote the edit distance or minimum global alignment distance of S_{1} and $S_{2 .}$ Clearly, $d\left(S_{1}, S_{2}\right)>=D\left(S_{1}, S_{2}\right)$

A Center Star

Algorithm

The input is a set 「 of k strings.

1. First find $S_{1} \varepsilon \Gamma$ that minimizes $\sum_{1} D\left(S_{1}, S\right)$. This can be done by running the dynamic programming algorithm on each of the $\binom{k}{2}$ pairs of sequences in Γ.

- Note: this S_{1} is not necessarily the first string specified in the input set Γ. Call the remaining sequences in Γ to be $S_{2}, S_{3}, \ldots ., S_{k}$.

2. Now add these strings $S_{2}, S_{3,}, \ldots, S_{k}$ one at a time to a multiple alignment that so far has only one sequence viz. S_{1}. Suppose ($\left.S_{1}, S_{2}, \ldots \ldots . . . S_{i-1}\right)$ are already aligned as $\left(S_{1}^{\prime}, S_{2}^{\prime}, \ldots \ldots . . . S_{i-1}^{\prime}\right)$.
3. To add S_{i}, run the dynamic programming algorithm again on S_{1} ' and S_{i} to produce S_{1} " and Si'.
4. Then adjust $S_{2}^{\prime} \ldots \ldots . . . S_{i-1}^{\prime}$ by adding spaces to those columns where spaces were added to get S_{1} " from S_{1}.
5. Replace $S_{1}{ }^{\prime}$ by $S_{1}{ }^{\prime \prime}$. (Note: to begin with one sequence $S_{1}=S_{1}{ }^{\prime}$)

Example

- $=($ (AGTGC, ATC, ATTC, ATC, AGC)
- Step1. S_{1} is $A T C$ (any one of them) since the edit distance between ATC and ATC is zero.
- Call the remaining set $S_{2}=A T T C, S_{3}=A T C, S_{4}=A G T G C$ and $S_{5}=A G C$.
- Step2 and 3: Add S2=ATTC. The alignment between S1' and S2 is:

$$
\begin{aligned}
S 1^{\prime \prime} & =A T-C \\
S 2^{\prime} & =A T T C
\end{aligned}
$$

- Step4 and 5: We only have one $S_{1}{ }^{\prime}$ which is now replace by S_{1} " $=A T$-- C.
- To add ATC , the new alignment is

$$
\begin{aligned}
& S_{1}=A T-A^{\prime} T-C \\
& S_{3}=A T--C
\end{aligned}
$$

- Since no extra space has been inserted in St", we don't have to do anything. So the alignment at this point look like.

$$
\begin{aligned}
& A T-C \\
& A T T \\
& A \\
& A
\end{aligned}
$$

- Next we add S4=AGTGC. The alignment is now

$$
\begin{aligned}
& A-T-C \\
& A G T G C
\end{aligned}
$$

- Now, we have introduced a '-' in the second column of $S_{1}{ }^{\prime}=S_{1}{ }^{\prime \prime}$. So the new multiple alignment have to be "adjusted" giving

$$
\begin{aligned}
& A-T-C \\
& A-T T C \\
& A-T-C \\
& A G T G C
\end{aligned}
$$

- Finally, we have to add $S_{5}=A G C$. Since the latest $S_{1}{ }^{\prime}=S_{1}{ }^{\prime \prime}=A-T-C, S_{5}=A G C$ can be aligned in two different ways by putting G aligned with any one of the spaces for Si_{1}.
- Thus, one of the solutions is

$$
\begin{aligned}
& A-T-C \\
& A-T T C \\
& A-T-C \\
& A G T G C \\
& A G---C
\end{aligned}
$$

Time Complexity

- Theorem:
- The algorithm just described above has a time complexity $O\left(k^{2} n^{2}\right)$, where k is the number of sequences and each sequence has a maximum length of n.
- Proof:
- The dynamic programming algorithm to compute $\left.\begin{array}{l}\text { each of the } \\ \text { take } O\left(n^{2}\right) \text { time }\end{array}\right) \quad$ edit distance values $\sum_{s c r-\left\{s_{1},\right.} D\left(S_{1}, S\right)$ take $O\left(n^{2}\right)$ time.
a so the total time is $O\left(\left[k\right.\right.$ choose 2]. $\left.n^{2}\right)=O\left(k^{2} n^{2}\right)$.
- After adding S_{i} to multiple string alignment, the length of S_{1} ' is at most (i.n) since a maximum of n spaces can be inserted in each iteration. So, the time to add all n strings to the multiple string assignment is

$$
\sum_{i=1}^{k-1} O((i . n) \cdot n)=O\left(k^{2} n^{2}\right)
$$

Algorithm less than a factor 2 worse than optimal

- Total SP cost of the solution obtained by the above algorithm is not worse than twice the optimal cost. Let M be alignment produced by this algorithm. Let $d_{M}\left(S_{i}, S_{j}\right)$ be the edit distance between S_{i} and S_{j} induced by the alignment M. Let

$$
v(M)=\sum_{\substack{i=1}}^{k} \sum_{i=1}^{k} d_{M}\left(S_{i}, S_{j}\right)
$$

Note $v(M)$ is exactly twice the SP score of M, since every pair of strings is counted twice.

Error Analysis

- Note: $d_{M}\left(S_{1}, S_{l}\right)=D\left(S_{1}, S_{l}\right)$ for all I. This is because the algorithm used an optimal alignment of S_{1} ' and S_{l}, and $D\left(S_{1}^{\prime}, S_{l}\right)=D\left(S_{1}, S_{l}\right)$, since $\delta(--,--)=0$. If the algorithm later adds spaces to both S_{1} ' and S_{\mid}, it does so in the same columns.
- Let M^{*} be the optimal SP alignment, and $d_{M}{ }^{*}\left(S_{i}, S_{j}\right)$ be the distance that M^{*} induces on the pair, and let

$$
v\left(M^{*}\right)=\sum_{i=1}^{k} \sum_{\substack{j=1 \\ i \neq j}}^{k} d_{M}^{*}\left(S_{i}, S_{j}\right)
$$

Theorem

$$
\frac{v(M)}{v\left(M^{*}\right)} \leq \frac{2(k-1)}{k}<2
$$

- That is, the algorithm produces an alignment whose SP value isles than twice that of the optimal SP alignment.

Proof

- The theorem will be proved by deriving an upper bound on $v(M)$ and a lower bound on $v\left(M^{*}\right)$, and then take their ratio.

$$
\begin{aligned}
v(M) & =\sum_{i=1}^{k} \sum_{j=1}^{k} d_{M}\left(S_{i}, S_{j}\right) \\
& \leq \sum_{i=1}^{k=1} \sum_{i=1}^{j=j} d_{M}\left(S_{l}, S_{1}\right)+d_{M}\left(S_{1}, S_{j}\right) \quad \text { (By Triangle inequality) } \\
& =2(k-1) \sum_{l=2}^{k} d_{M}\left(S_{1}, S_{l}\right)=2(k-1) \sum_{k=2}^{k} D\left(S_{1}, S_{j}\right)
\end{aligned}
$$

(This is because $d_{M}\left(S_{I}, S_{1}\right)=d_{M}\left(S_{1}, S_{I}\right)$ occurs in $2(k-1)$ terms in the above expression.)

Example: k=3
Simplify notation $d_{M}=d$ and $S_{i}=i$

$$
\begin{aligned}
v(M) & =d(1,2)+d(1,3)+d(2,1)+d(2,3)+d(3,1)+d(3,2) \\
& =2[d(1,2)+d(1,3)+d(2,3)]
\end{aligned}
$$

Apply triangle inequality with 1 being the intermediate sequence for the triangle.
$v(M)<=2\{(1,1)+(1,2)\}+\{(1,1)+(1,3)\}+\{(2,1)+(1,3)\}$
Now, $d(1,1)=0$ and $d(1,2)=d(2.1)$ and $d(1,3)=d(3,1)$.
Thus, $\quad V(M)=4[d(1,2)+d(1,3)]$

Proof (cont.)

$$
=2(k-1) \sum_{l=2}^{k} D\left(S_{1}, S_{l}\right)
$$

Now Consider,

$$
\begin{aligned}
v\left(M^{*}\right) & =\sum_{i=1}^{k} \sum_{j=1}^{k} d_{M}^{*}\left(S_{i}, S_{j}\right) \\
& \geq \sum_{i=1}^{k} \sum_{j=1}^{k} D\left(S_{i}, S_{j}\right) \quad \begin{array}{l}
\text { By definition, since } D\left(S_{i} S_{j}\right) \text { is the } \\
\text { Minimum global alignment, whereas } \\
d_{M} \text { is with respect to alignment } M .
\end{array} \\
& \geq \sum_{i=1}^{k} \sum_{j=2}^{k=j} D\left(S_{1}, S_{j}\right) \quad \begin{array}{l}
\text { Since } S_{1} \text { is the center star }
\end{array} \\
& =k \sum_{l=2}^{k} D\left(S_{1}, S_{l}\right) \begin{array}{l}
\text { Since the summation is repeated for } I \text { with } \\
\text { Value } 1 \text { to } k .
\end{array}
\end{aligned}
$$

Proof (cont.)

- Combining these two equations, we have

$$
\frac{v(M)}{v\left(M^{*}\right)} \leq \frac{2(k-1)}{k}<2
$$

- For small values of k, the approximation solution is significantly better than by a factor of 2 .
- For example, for $k=3$, the bound is $4 / 3$, that is, for three strings, the multiple alignment produced by the central star algorithm will not be worse more than 34% from optimal. For $k=4$, the upper bound is 1.5 and for $k=6$, it is 1.67 .

Cluster Approach

- In center star algorithm, the unaligned strings are always aligned with the chosen center string. But, a group of already aligned sequences may be very "near" to each other and might form a cluster. It might be advantageous to align strings in the same cluster first, and then merge the clusters to give the multiple alignment. One variation of this is called Iterative Pairwise Alignment.

Iterative pairwise Alignment

- An unaligned string nearest to some aligned string is picked and aligned with previously aligned group.
- How to align a string with a group of strings? We have discussed it earlier as a profile to character alignment.

Profile alignment

- Align an existing multiple alignment ("profile") to a sequence
- Columns of the existing alignment kept intact

Profile alignment

- A profile is a sequence of columns
- Apply algorithms used to align two sequences
- Replace substitution matrix for letter + letter (e.g. BLOSUM62)...
- ...by function that gives a score to column + letter
- E.g. average BLOSUM62 score vs. all letters in the column

Example: PSI-BLAST

- First iteration: BLAST search of database
- Create profile (=multiple alignment) from alignment of each hit to the query sequence
- Search database with profile as a query - Uses modified BLAST algorithm
- Create new profile by aligning each hit to search profile
- Iterate
- Able to find more distantly related proteins than BLAST alone

Example: SAM-Txx

- Similar design to PSI-BLAST
- Uses hidden Markov model (HMMs) profile
- SAM-Txx significantly more sensitive than PSI-BLAST
- Also much slower
- http://www.soe.ucsc.edu/research/compbio/s am.html
- Public Web server
- License required to run locally
- Source code not available

Consensus Sequence

- Given a multiple alignment M of strings $S_{1}, S_{2} \ldots, S_{k}$, the consensus character c_{i} of M is the character that minimizes the sum of distances to it from all the characters in column i. That is, it minimizes $\sum_{j=1}^{k} \delta\left(S_{j}[i], c_{i}\right)$
Let $d(i)$ be this minimum sum. The consensus sequence is the concatenation $c_{1} c_{2} c_{3} \ldots c_{1}$ of all the consensus characters, where l is the length of the alignment.

Consensus Sequence

- Choosing the most frequent base at each position

TACGAT
TATAAT
TATAAT
GATACT
TATGAT
TATGTT
Consensus sequence TATAAT
Incomplete representation, loss of information

Position Specific Score Matrix
(Positional Weight Matrix, Profile)
Occurrence frequency of every letter at each position
TACGAT

TATAAT
TATAAT
GATACT
TATGAT

C
G
T
C
:---:
C
G
T

Probability distribution at each site (profile) Adjacent sites assumed independent

Use of Positional Weight Matrix

 for matching sequenceUse probability : $p=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5} \cdot p_{6}$

$$
\begin{aligned}
& P(\text { TACGAT })=.83^{*} 1^{*} \cdot 16^{*} \cdot 5^{*} \cdot 67^{*} 1=0.045 \\
& P(\text { TATAAT })=.83^{*} 1^{*} .83^{*} \cdot 5^{*} \cdot 67^{*} 1=0.231 \\
& \mathrm{P}(\text { TATAAT })=0.231 \\
& \mathrm{P}(\text { GATACT })=.16^{*} 1^{*} \cdot 83^{*} \cdot 5^{*} \cdot 16^{*} 1=0.011 \\
& \mathrm{P}(\text { TATGAT })=.83^{*} 1^{*} .83^{*} \cdot 5^{*} \cdot 67^{*} 1=0.231 \\
& \mathrm{P}(\text { TATGTT })=.83^{*} 1^{*} .83^{*} \cdot 5^{*} \cdot 16^{*} 1=0.038
\end{aligned}
$$

A	0	1	0	.5	.67	0
C	0	0	.16	0	.16	0
G	.16	0	0	.5	0	0
T	.83	0	.83	0	.16	1

