

	*\\\\\\			
HUMA	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF DLSH GS			
HAOR	MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHF DLSH GS			
HADK	VLSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHF DLSH GS			
HBHU	VHLTPEEKSAVTALWGKV NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGN			
HBOR	VHLSGGEKSAVTNLWGKV NINELGGEALGRLLVVYPWTQRFFEAFGDLSSAGAVMGN			
HBDK	VHWTAEEKQLITGLWGKV NVADCGAEALARLLIVYPWTQRFFASFGNLSSPTAILGN			
MYHŲ	GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKAS			
MYOR	GLSDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETLEKFDKFKGLKTEDEMKAS			
IGLOB	SPLTADEASLVQSSWK AVSHNEVEILAAVFAAYPDIQNKFSQFA1GKDLASIKD			
GPUGNI	ALTEKQEALLKQSWEVLKQNIPAHSLRLFALIIEAAPESKYVFSFLKDSNEIPE N			
GPYL	GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQ NN			
GGZLB	MLDOOTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLF DMGRQE SI			

	VAAAA		AAAA*
HUMA	AQVKGHGKKVADALTNAV	AHVDDM	PNALSALSDLHAHKLRVDPVNFKLLS
HAOR	AQIKAHGKKVADALSTAA	GHFDDM	DSALSALSDLHAHKLRVDPVNFKLLA
HADK	AQIKAHGKKVAAALVEAV	NHVDDI	AGALSKLSDLHAQKLRVDPVNFKFLG
HBHU	PKVKAHGKKVLGAFSDGL	AHLDNL	KGTFATLSELHCDKLHVDPENFRLLG
HBÓR	PKVKAHGAKVLTSFGDAL	KNLDDL	KGTFAKLSELHCDKLHVDPENFNRLG
HBDK	PMVRAHGKKVL/TSFGDAV	KNLDNI	KNTFAQLSELHCDKLHVDPENFRLLG
MYHU	EDLKKHGATVLTALGGIL	KKKGHH	EAEIKPLAQSHATKHKIPVKYLEFIS
MYOR	ADLKKHGGTVLTALGNIL	KKKGQH	EAELKPLAQSHATKHKISIKFLEYIS
IGLOB	GAFATHATRIVSFLSEVIAL	1SGNTSNAAAV	NSLVSKLGDDHKARGVSAAQ1FGEFR
GPUGNI	PKLKAHAAVIFKTICESA	TELRQKGHAVW	DNNTLKRLGSIH LKNKITDPHFEVMK
GPYL	PDLQAHAGKVFKLTYEAA	IQLEVNGAVA	SDATLKSLGSVHVSKGVVDA HFPVVK
GGZLB	EQPKALAMTVLAAAQNI	ENLPAI	LPAVKKIAVKHC QAGVAAAHYPIVG

	VVVV VVV
UTTER	LEAT LINES A ME DA DEPENDANCIA OT DEPENA OU OW IL MOVAD
	UCTINIT ADUCDORFEDCAUAAMDET CEUAMUT CEVA
HAOR	HOLLYVLANDOGEFTPSADAAMDRELSKVATVLISKIK
HADK	HCFLVVVALHHPAAL/TPEVHASLDKFMCAVGAVLTAKIK
HBHU	NVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
HBOR	NVLIVVLARHFSKDFSPEVQAAWQKLVSGVAHALGHKYH
HBDK	DILIIVLAAHFTKDFTPECQAAWQKLVRVVAHALARKYH
MYHU	ECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG
MYOR	EAIIHVLQSKHSADFGADAQAAMGKALELFRNDMAAKYKEFGFQG
IGLOB	TALVAYLQANVS WGDNVAAAWNKAL1DNTFAIVVPRL
GPUGNI	GALLGTIKEAIKENWSDEMGQAWTEAYNQLVATIKAEMKE
GPYL	EAILKTIKEVVGDKWSEELNTAWTIAYDELAIIIKKEMKDAA
GGZLB	OELLGATKEVI GDAATDDTLDAWGKAYGVTADVETOVEADLYAOAVE

Family Membership

If the faint similarity of the members in the family can be represented by what is called a '**consensus sequence**', it will be more efficient to find an alignment of the new protein with this consensus sequence to determine whether it belongs to this family.

Definition

Given sequences S_1, S_2, \dots, S_k , a multiple (global) alignment maps them to sequences S_1, S_2, \dots, S_k that may contain spaces, where $|S_1| = |S_2| = \dots = |S_k|$, and the removal of all spaces from S_i leaves S_i , for $1 \le i \le k$.

- Although the generalization of definition from two sequences to multiple sequences seems straightforward, it is not that obvious how to score or assign value to a multiple alignment.
- There are various scoring methods such as sum-of -pairs (SP) functions, consensus functions, and tree functions.
- For the sake of mathematical ease, SP functions have been widely used and good approximation algorithms have also been developed.

- The dynamic programming method for two sequences has a natural generalization for the multiple sequence case.
- Instead of a 2-dimensional matrix, we need a kdimensional matrix with n+1 'rows' in each dimension, giving a total of (n+1)^k entries, each entry depending on adjacent 2^k-1 entries.
- This neighborhood corresponds to the possibilities for the last match in an optimal alignment: any of 2^k-1 non-empty subsets of the *k* sequences can participate in that match.

Algorithm less than a factor 2 worse than optimal • Total SP cost of the solution obtained by the above algorithm is not worse than twice the optimal cost. Let *M* be alignment produced by this algorithm. Let $d_M(S_i, S_j)$ be the edit distance between S_i and S_j induced by the alignment *M*. Let $v(M) = \sum_{i=1}^k \sum_{\substack{j=1\\i\neq j}}^k d_M(S_i, S_j)$ • Note v(M) is exactly twice the SP score of *M*, since every pair of strings is counted twice.

Example: k=3 Simplify notation $d_M = d$ and $S_i = i$ v(M) = d(1,2) + d(1,3) + d(2,1) + d(2,3) + d(3,1) + d(3,2) = 2[d(1,2) + d(1,3) + d(2,3)]Apply triangle inequality with 1 being the intermediate sequence for the triangle. $v(M) \le 2 \{ (1,1)+(1,2) \} + \{ (1,1)+(1,3) \} + \{ (2,1)+(1,3) \}$ Now, d(1,1)=0 and d(1,2)=d(2,1) and d(1,3)=d(3,1). Thus, V(M)=4[d(1,2)+d(1,3)]

Cluster Approach

In center star algorithm, the unaligned strings are always aligned with the chosen center string. But, a group of already aligned sequences may be very "near" to each other and might form a cluster. It might be advantageous to align strings in the same cluster firsrt, and then merge the clusters to give the multiple alignment. One variation of this is called *Iterative Pairwise Alignment*.

Example: PSI-BLAST

- First iteration: BLAST search of database
- Create profile (=multiple alignment) from alignment of each hit to the query sequence
- Search database with profile as a query
 Uses modified BLAST algorithm
- Create new profile by aligning each hit to search profile
- Iterate
- Able to find more distantly related proteins than BLAST alone

