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Multiple Sequence Alignment 

Generalization of two sequence similarity problem, 
the problem of determining the similarity among 
multiple sequences. 
The purpose is to discover ‘faint but widely 
dispersed’ common sequences which might 
represent biologically important information. 
These common sequences might reveal 
evolutionary history, conserved motifs in the 
genome of divergent species, common chemical 
structure that give rise to similar folding or 3-D 
structures of proteins giving rise to similar functions. 

Biology Applications

An example is the notion of protein family
which is a collection of proteins having 

similar 3-D structure, 
similar functions,
and similar evolutionary history. 

If a new protein is discovered and if one is 
interested in classifying which family it 
belongs, comparison with individual members 
in the family might produce conflicting or 
confusing results. 
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Multiple Alignment of Several Amino Acid 
Sequences of Globin Proteins

The example below shows how common features are 
dispersed faintly among a group of proteins which may not 
be apparent when two sequences in the family are 
compared.
The abbreviations on the left denote the organisms that the 
globin sequences are from. The sequences are displayed 
in several rows since they are longer than a page can 
accommodate. Columns containing highly similar residues 
in regions of known secondary structures are marked by “v” 
and columns with identical residues are marked by *. Two 
residues are considered similar if they are from any one of 
the folowing classes: (F,Y), (M,L,I,V), 
(A,G),(T,S),(Q,N),(K,R) and (E,D).
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Family Membership

If the faint similarity of the members in the 
family can be represented by what is 
called a ‘consensus sequence’, it will be 
more efficient to find an alignment of the 
new protein with this consensus sequence 
to determine whether it belongs to this 
family.

Definition

Given sequences , a multiple
(global) alignment maps them to sequences 

that may contain spaces, where
and the removal of all spaces 

from leaves , for 
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Multiple Alignment

Although the generalization of definition from two 
sequences to multiple sequences seems 
straightforward, it is not that obvious how to score
or assign value to a multiple alignment. 
There are various scoring methods such as sum-of 
–pairs (SP) functions, consensus functions, and 
tree functions. 
For the sake of mathematical ease, SP functions 
have been widely used and good approximation 
algorithms have also been developed. 

Multiple alignment

Objective score: Sum-of-pairs (SP)
Sum of objective score for alignment of each 
pair of sequences

SEQVENCE
SDQVE-CR
TEQVEACE

SP( )=

SEQVENCE
SDQVE-CR

Score( ) +

SEQVENCE
TEQVEACE

Score( ) +

SDQVE-CR
TEQVEACE

Score( )
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Multiple Alignment with Sum-of-Pairs

Definition: 
Given a global multiple alignment A of k 
sequences, the sum-of-products value of A is 
the sum of the values of all    pairwise
alignments induced by A.

Definition: 
The score of an induced pairwise alignment could 
be any chosen scoring scheme for two string 
alignment in the standard manner.
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Definition
We also assume that the pairwise scoring function is 
symmetric.
We will not consider gap penalty for this discussion. 
We use the edit distance function of two sequences 
as the induced pairwise metric.
We use the symbol δ(x,y) to denote the distance
between two characters x and y which may include 
space characters. 
For two strings, our objective will be to minimize  
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Example

Consider the following alignment
S1: A  C  -- C   T  G   --
S2:  -- C  -- A   T   G  T
S3:     A  -- G  C T   A   T

Using the distance function δ(x,x)=0, and 
δ(x,y)=1 for x≠y, we have 3, 

4 and 5, giving a total of 
sum-of-pair value 12. 

=),( 2,1 SSd
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Definition: 
An optimal SP global alignment of
sequences S1,S2…,Sk is an alignment 
that has the minimum possible sum-of-
pairs value for these k sequences.
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Dynamic Programming Formulation to 
Compute Optimal Multiple Alignment

The dynamic programming method for two 
sequences has a natural generalization for the 
multiple sequence case. 
Instead of a 2-dimensional matrix, we need a k-
dimensional matrix with n+1 ‘rows’ in each 
dimension, giving a total of (n+1)k entries, each 
entry depending on adjacent 2k-1  entries. 
This neighborhood corresponds to the possibilities 
for the last match in an optimal alignment: any of
2k-1  non-empty subsets of the k sequences can 
participate in that match.

For two sequences, we had three 
possibilities: both the last characters were 
actual characters from the two sequences, or  
one space, and the other an actual character 
(two possibilities). 
Gusfield gives a complete description of the 
algorithm for three sequences. The details for 
an arbitrary number of sequences is simply 
an exercise in developing appropriate 
notations and is left out. 
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Optimize SP for N sequences

Similarity matrices become N-dimensional
E.g., for 3 sequences are cubes

M[i,j,k] = 
score of best alignment of
first i letters in A
first j letters in B
first k letters in C

i

j

k

Very slow

Because each of the (n+1)k entries can be 
computed in time proportional to 2k, the running time 
of the algorithm is O((2n)k). If n=200, the algorithm 
may be practical for only up to k=3 or 4. We want 
the algorithm to run for k=100 or more.
Is NP-complete

Wang, L. and Jiang, T. (1994) On the complexity of multiple 
sequence alignment. J Comput Biol 1(4): 337-48.

Totally impractical for most biologically interesting 
problems.
Faster methods needed.
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Center Star Alignment Algorithm

Since the optimal SP alignment problem is 
NP-complete, we need, approximate 
algorithms. 
Gusfield proposed such an algorithm, called 
Center Star Alignment Algorithm whose 
SP values are less than twice the optimal 
value. We sketch this algorithm now.

Center Star Alignment Algorithm

We make the following assumptions about the 
distance function induced by an alignment 
obtained by the algorithm,d(S1,S2):

δ(x,x)=0, for all characters x.
Symmetric: δ(x,y)= δ(y,x), and d(S1,S2) = d(S2,S1)
Triangle inequality:
for all characters x, y and z. Cost of x to z is no more 
than cost of x to y and then y to z. Consequently, 
d(X,Y) ≤ d(X,Z) + d(Z,Y) for all sequences X,Y and Z

We have used the symbol to denote the edit 
distance or minimum global alignment distance of  S1 and 
S2. Clearly, d(S1,S2) >= D(S1,S2))

 ),(),(),( yzzxyx δδδ +≤
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S1

Sk

S5

S4
S3

S2

. . .

Center Star

A Center Star

Algorithm
The input  is a set  Γ of k strings.
1. First find S1ε Γ that minimizes                  . This can 

be done by running the dynamic programming 
algorithm on each of the pairs of sequences in 
Γ.  

Note: this S1 is not necessarily the first string specified in 
the input set Γ.  Call the remaining sequences in Γ to be 
S2,S3,….,Sk.  

2. Now add these strings S2,S3,…,Sk one at a time to 
a multiple alignment that so far has only one 
sequence viz. S1. Suppose  are 
already aligned as . 
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3. To add Si, run the dynamic programming 
algorithm  again on S1’ and Si to produce 
S1’’ and Si’.

4. Then adjust                      by adding spaces 
to those columns where spaces were added 
to get S1’’ from  S1’. 

5. Replace S1’ by S1’’. ( Note: to begin with one 
sequence S1= S1’ )

'
1

'
2 ......... −iSS

Example

Γ=( AGTGC, ATC, ATTC, ATC, AGC)
Step1. S1 is ATC (any one of them) since the edit 
distance between ATC and ATC is zero. 

Call the remaining set S2=ATTC, S3=ATC, S4=AGTGC and 
S5=AGC.

Step2 and 3:  Add S2=ATTC. The alignment 
between S1’ and S2 is: 

S1’’=    A  T  -- C
S2’  =   A  T  T   C
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Step4 and 5: We only have one S1’ which is now
replace by S1’’=    A  T  -- C. 

To add ATC , the new alignment is 
S1’’=    A  T  -- C
S3’ =    A  T  -- C

Since no extra space has been inserted in S1’’, we 
don’t have to do anything. So the alignment at this 
point look like.                                                

A  T  -- C
A  T  T  C
A  T  -- C

Next we add S4=AGTGC. The alignment is now      
A – T – C
A G T GC

Now, we have introduced a ‘–‘ in the second 
column of S1’= S1’’. So the new multiple alignment 
have to be  “adjusted” giving

A – T – C
A -- T  T  C
A – T – C
A G T G C
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Finally, we have to add S5=AGC.  Since the latest
S1’= S1’’= A – T – C, S5=AGC can be aligned in two 
different ways by putting G aligned with any one of 
the spaces for S1’.
Thus, one of the solutions is                                   

A – T – C
A --T  T C
A – T  – C
A G T G C
A G -- -- C

Time Complexity

Theorem:  
The algorithm just described above has a time 
complexity O(k2n2), where k is the number of 
sequences and each sequence has a maximum 
length of n.
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Proof: 
The dynamic programming algorithm to compute 
each of the edit distance values 
take O(n2) time.
so the total time is O([k choose 2].n2)= O(k2n2) . 
After adding Si to multiple string alignment, the 
length of S1’ is at most (i.n) since a maximum of n
spaces can be inserted in each iteration. So, the 
time to add all n strings to the multiple string 
assignment is

= O(k2n2)
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Algorithm less than a factor 2 worse than 
optimal

Total SP cost of the solution obtained by the 
above algorithm is not worse than twice the 
optimal cost. Let M be alignment produced 
by this algorithm. Let be the edit 
distance between Si and Sj induced by the 
alignment M. Let

Note v(M) is exactly twice the SP score of M , 
since every pair of strings is counted twice.
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Error Analysis

Note:     for all l. This is because the 
algorithm used an optimal alignment of  S1’ and 
Sl ,and , since δ(--,--)=0. If the 
algorithm later adds spaces to both S1’ and Sl, it 
does so in the same columns.
Let M* be the optimal SP alignment,  and 
dM*(Si,Sj) be the distance that  M* induces on 
the pair , and let
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Theorem 

That is, the algorithm produces an alignment 
whose SP value isles than twice that of the 
optimal SP alignment.
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Proof

The theorem will be proved by deriving an upper 
bound on v(M) and a lower bound on v(M*), and 
then take their ratio. 

∑∑
=

≠
=

=
k

i

k

ji
j

jiM SSdMv
1 1

),()(

),(),( 1
1 1

1 jM

k

i

k

ji
j

iM SSdSSd +≤ ∑ ∑
=

≠
=

(By Triangle inequality)

),()1(2 1
2

l

k

l
M SSdk ∑

=

−=

(This is because occurs in 2(k-1) terms in the above 
expression.)
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Example:   k=3

Simplify notation dM=d and Si = i

v(M) =d(1,2) +d(1,3) +d(2,1)+d(2,3) +d(3,1)+d(3,2)
= 2[d(1,2) +d(1,3) +d(2,3)]

Apply triangle inequality with 1 being the intermediate 
sequence for the triangle.

v(M) <= 2 { (1,1)+(1,2)} + {(1,1)+(1,3)} +{(2,1)+(1,3)}

Now,  d(1,1)=0 and d(1,2)=d(2.1) and d(1,3)=d(3,1).

Thus,           V(M)= 4[d(1,2)+d(1,3)]
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Proof (cont.)
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By definition, since D(Si,Sj) is the 
Minimum global alignment, whereas 
dM is with respect to alignment M.
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Since S1 is the center star

Since the summation is repeated for I with
Value 1 to k.

Proof (cont.)

Combining these two equations, we have

For small values of k, the approximation solution is 
significantly better than by a factor of 2. 
For example, for k=3, the bound is 4/3, that is, for 
three strings, the multiple alignment produced by the 
central star algorithm will not be worse more than 
34% from optimal. For k=4, the upper bound is 1.5 
and for k=6, it is 1.67.
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Cluster Approach

In center star algorithm, the unaligned strings 
are always aligned with the chosen center 
string. But, a group of already aligned 
sequences may be very “near” to each other 
and might form a cluster. It might be 
advantageous to align strings in the same 
cluster firsrt, and then merge the clusters to 
give the multiple alignment. One variation of 
this is called Iterative Pairwise Alignment.

Iterative pairwise Alignment

An unaligned string nearest to some aligned 
string is picked and aligned with previously 
aligned group.
How to align a string with a group of strings?
We have discussed it earlier  as a profile to 
character alignment.
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Profile alignment

Align an existing multiple alignment (“profile”) 
to a sequence
Columns of the existing alignment kept intact

SEQV-ENCE
SDQV-E-CR
TEQV-EACE

Arrows indicate gaps
added to create the profile-
sequence alignment.

SE-VIENCE

Profile alignment
A profile is a sequence of columns
Apply algorithms used to align two sequences
Replace substitution matrix for letter + letter (e.g. 
BLOSUM62)...
...by function that gives a score to column + letter

E.g. average BLOSUM62 score vs. all letters in the 
column

S
S
T

S

= high score

L
I
L

C

= low score



21

Example: PSI-BLAST

First iteration: BLAST search of database
Create profile (=multiple alignment) from 
alignment of each hit to the query sequence
Search database with profile as a query

Uses modified BLAST algorithm
Create new profile by aligning each hit to 
search profile
Iterate
Able to find more distantly related proteins 
than BLAST alone

Example: SAM-Txx

Similar design to PSI-BLAST 
Uses hidden Markov model (HMMs) profile
SAM-Txx significantly more sensitive than 
PSI-BLAST
Also much slower
http://www.soe.ucsc.edu/research/compbio/s
am.html

Public Web server
License required to run locally
Source code not available
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Consensus Sequence
Given a multiple alignment M of strings 
S1,S2…,Sk , the consensus character ci of M is 
the character that minimizes the sum of 
distances to it from all the characters in column i. 
That is, it minimizes )],[(
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Let d(i) be this minimum sum. The consensus 
sequence is the  concatenation c1c2c3 …cl of all 
the consensus characters, where l is the length 
of the alignment. 

Consensus Sequence
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Position Specific Score Matrix
(Positional Weight Matrix, Profile)

Use of Positional Weight Matrix
for matching sequence


