
1

Multiple Sequence Alignment

Generalization of two sequence similarity problem,
the problem of determining the similarity among
multiple sequences.
The purpose is to discover ‘faint but widely
dispersed’ common sequences which might
represent biologically important information.
These common sequences might reveal
evolutionary history, conserved motifs in the
genome of divergent species, common chemical
structure that give rise to similar folding or 3-D
structures of proteins giving rise to similar functions.

Biology Applications

An example is the notion of protein family
which is a collection of proteins having

similar 3-D structure,
similar functions,
and similar evolutionary history.

If a new protein is discovered and if one is
interested in classifying which family it
belongs, comparison with individual members
in the family might produce conflicting or
confusing results.

2

Multiple Alignment of Several Amino Acid
Sequences of Globin Proteins

The example below shows how common features are
dispersed faintly among a group of proteins which may not
be apparent when two sequences in the family are
compared.
The abbreviations on the left denote the organisms that the
globin sequences are from. The sequences are displayed
in several rows since they are longer than a page can
accommodate. Columns containing highly similar residues
in regions of known secondary structures are marked by “v”
and columns with identical residues are marked by *. Two
residues are considered similar if they are from any one of
the folowing classes: (F,Y), (M,L,I,V),
(A,G),(T,S),(Q,N),(K,R) and (E,D).

3

4

Family Membership

If the faint similarity of the members in the
family can be represented by what is
called a ‘consensus sequence’, it will be
more efficient to find an alignment of the
new protein with this consensus sequence
to determine whether it belongs to this
family.

Definition

Given sequences , a multiple
(global) alignment maps them to sequences

that may contain spaces, where
and the removal of all spaces

from leaves , for

kSSS ,...., 21

kSSS ''
2

'
1 ,....,

|,|,....|||| ''
2

'
1 kSSS ===

'
iS iS .1 ki ≤≤

5

Multiple Alignment

Although the generalization of definition from two
sequences to multiple sequences seems
straightforward, it is not that obvious how to score
or assign value to a multiple alignment.
There are various scoring methods such as sum-of
–pairs (SP) functions, consensus functions, and
tree functions.
For the sake of mathematical ease, SP functions
have been widely used and good approximation
algorithms have also been developed.

Multiple alignment

Objective score: Sum-of-pairs (SP)
Sum of objective score for alignment of each
pair of sequences

SEQVENCE
SDQVE-CR
TEQVEACE

SP()=

SEQVENCE
SDQVE-CR

Score() +

SEQVENCE
TEQVEACE

Score() +

SDQVE-CR
TEQVEACE

Score()

6

Multiple Alignment with Sum-of-Pairs

Definition:
Given a global multiple alignment A of k
sequences, the sum-of-products value of A is
the sum of the values of all pairwise
alignments induced by A.

Definition:
The score of an induced pairwise alignment could
be any chosen scoring scheme for two string
alignment in the standard manner.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

Definition
We also assume that the pairwise scoring function is
symmetric.
We will not consider gap penalty for this discussion.
We use the edit distance function of two sequences
as the induced pairwise metric.
We use the symbol δ(x,y) to denote the distance
between two characters x and y which may include
space characters.
For two strings, our objective will be to minimize

where .))(,)(('

1

' qSqS j

l

q
i∑

=

δ |||| ''
ji SSl ==

7

Example

Consider the following alignment
S1: A C -- C T G --
S2: -- C -- A T G T
S3: A -- G C T A T

Using the distance function δ(x,x)=0, and
δ(x,y)=1 for x≠y, we have 3,

4 and 5, giving a total of
sum-of-pair value 12.

=),(2,1 SSd
=),(3,1 SSd =),(32 SSd

Definition:
An optimal SP global alignment of
sequences S1,S2…,Sk is an alignment
that has the minimum possible sum-of-
pairs value for these k sequences.

8

Dynamic Programming Formulation to
Compute Optimal Multiple Alignment

The dynamic programming method for two
sequences has a natural generalization for the
multiple sequence case.
Instead of a 2-dimensional matrix, we need a k-
dimensional matrix with n+1 ‘rows’ in each
dimension, giving a total of (n+1)k entries, each
entry depending on adjacent 2k-1 entries.
This neighborhood corresponds to the possibilities
for the last match in an optimal alignment: any of
2k-1 non-empty subsets of the k sequences can
participate in that match.

For two sequences, we had three
possibilities: both the last characters were
actual characters from the two sequences, or
one space, and the other an actual character
(two possibilities).
Gusfield gives a complete description of the
algorithm for three sequences. The details for
an arbitrary number of sequences is simply
an exercise in developing appropriate
notations and is left out.

9

Optimize SP for N sequences

Similarity matrices become N-dimensional
E.g., for 3 sequences are cubes

M[i,j,k] =
score of best alignment of
first i letters in A
first j letters in B
first k letters in C

i

j

k

Very slow

Because each of the (n+1)k entries can be
computed in time proportional to 2k, the running time
of the algorithm is O((2n)k). If n=200, the algorithm
may be practical for only up to k=3 or 4. We want
the algorithm to run for k=100 or more.
Is NP-complete

Wang, L. and Jiang, T. (1994) On the complexity of multiple
sequence alignment. J Comput Biol 1(4): 337-48.

Totally impractical for most biologically interesting
problems.
Faster methods needed.

10

Center Star Alignment Algorithm

Since the optimal SP alignment problem is
NP-complete, we need, approximate
algorithms.
Gusfield proposed such an algorithm, called
Center Star Alignment Algorithm whose
SP values are less than twice the optimal
value. We sketch this algorithm now.

Center Star Alignment Algorithm

We make the following assumptions about the
distance function induced by an alignment
obtained by the algorithm,d(S1,S2):

δ(x,x)=0, for all characters x.
Symmetric: δ(x,y)= δ(y,x), and d(S1,S2) = d(S2,S1)
Triangle inequality:
for all characters x, y and z. Cost of x to z is no more
than cost of x to y and then y to z. Consequently,
d(X,Y) ≤ d(X,Z) + d(Z,Y) for all sequences X,Y and Z

We have used the symbol to denote the edit
distance or minimum global alignment distance of S1 and
S2. Clearly, d(S1,S2) >= D(S1,S2))

),(),(),(yzzxyx δδδ +≤

),(21 SSD

11

S1

Sk

S5

S4
S3

S2

. . .

Center Star

A Center Star

Algorithm
The input is a set Γ of k strings.
1. First find S1ε Γ that minimizes . This can

be done by running the dynamic programming
algorithm on each of the pairs of sequences in
Γ.

Note: this S1 is not necessarily the first string specified in
the input set Γ. Call the remaining sequences in Γ to be
S2,S3,….,Sk.

2. Now add these strings S2,S3,…,Sk one at a time to
a multiple alignment that so far has only one
sequence viz. S1. Suppose are
already aligned as .

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

).........,(1,21 −iSSS
).........,('

1
'
2

'
1 −iSSS

),(
}{

1
1

SSD
SS

∑
−Γε

12

3. To add Si, run the dynamic programming
algorithm again on S1’ and Si to produce
S1’’ and Si’.

4. Then adjust by adding spaces
to those columns where spaces were added
to get S1’’ from S1’.

5. Replace S1’ by S1’’. (Note: to begin with one
sequence S1= S1’)

'
1

'
2 −iSS

Example

Γ=(AGTGC, ATC, ATTC, ATC, AGC)
Step1. S1 is ATC (any one of them) since the edit
distance between ATC and ATC is zero.

Call the remaining set S2=ATTC, S3=ATC, S4=AGTGC and
S5=AGC.

Step2 and 3: Add S2=ATTC. The alignment
between S1’ and S2 is:

S1’’= A T -- C
S2’ = A T T C

13

Step4 and 5: We only have one S1’ which is now
replace by S1’’= A T -- C.

To add ATC , the new alignment is
S1’’= A T -- C
S3’ = A T -- C

Since no extra space has been inserted in S1’’, we
don’t have to do anything. So the alignment at this
point look like.

A T -- C
A T T C
A T -- C

Next we add S4=AGTGC. The alignment is now
A – T – C
A G T GC

Now, we have introduced a ‘–‘ in the second
column of S1’= S1’’. So the new multiple alignment
have to be “adjusted” giving

A – T – C
A -- T T C
A – T – C
A G T G C

14

Finally, we have to add S5=AGC. Since the latest
S1’= S1’’= A – T – C, S5=AGC can be aligned in two
different ways by putting G aligned with any one of
the spaces for S1’.
Thus, one of the solutions is

A – T – C
A --T T C
A – T – C
A G T G C
A G -- -- C

Time Complexity

Theorem:
The algorithm just described above has a time
complexity O(k2n2), where k is the number of
sequences and each sequence has a maximum
length of n.

15

Proof:
The dynamic programming algorithm to compute
each of the edit distance values
take O(n2) time.
so the total time is O([k choose 2].n2)= O(k2n2) .
After adding Si to multiple string alignment, the
length of S1’ is at most (i.n) since a maximum of n
spaces can be inserted in each iteration. So, the
time to add all n strings to the multiple string
assignment is

= O(k2n2)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k),(

}{
1

1

SSD
SS

∑
−Γε

∑
−

=

1

1
))..((

k

i
nniO

Algorithm less than a factor 2 worse than
optimal

Total SP cost of the solution obtained by the
above algorithm is not worse than twice the
optimal cost. Let M be alignment produced
by this algorithm. Let be the edit
distance between Si and Sj induced by the
alignment M. Let

Note v(M) is exactly twice the SP score of M ,
since every pair of strings is counted twice.

),(jiM SSd

∑ ∑
=

≠
=

=
k

i

k

ji
j

jiM SSdMv
1 1

),()(

16

Error Analysis

Note: for all l. This is because the
algorithm used an optimal alignment of S1’ and
Sl ,and , since δ(--,--)=0. If the
algorithm later adds spaces to both S1’ and Sl, it
does so in the same columns.
Let M* be the optimal SP alignment, and
dM*(Si,Sj) be the distance that M* induces on
the pair , and let

),(),(11 llM SSDSSd =

),(),(11
'

ll SSDSSD =

∑∑
=

≠
=

=
k

i

k

ji
j

jiM SSdMv
1 1

**),()(

Theorem

That is, the algorithm produces an alignment
whose SP value isles than twice that of the
optimal SP alignment.

2)1(2
)(
)(

* <−≤
k

k
Mv
Mv

17

Proof

The theorem will be proved by deriving an upper
bound on v(M) and a lower bound on v(M*), and
then take their ratio.

∑∑
=

≠
=

=
k

i

k

ji
j

jiM SSdMv
1 1

),()(

),(),(1
1 1

1 jM

k

i

k

ji
j

iM SSdSSd +≤ ∑ ∑
=

≠
=

(By Triangle inequality)

),()1(2 1
2

l

k

l
M SSdk ∑

=

−=

(This is because occurs in 2(k-1) terms in the above
expression.)

),(),(11 lMlM SSdSSd =

),()1(2 1
2

l

k

l
SSDk ∑

=

−=

Example: k=3

Simplify notation dM=d and Si = i

v(M) =d(1,2) +d(1,3) +d(2,1)+d(2,3) +d(3,1)+d(3,2)
= 2[d(1,2) +d(1,3) +d(2,3)]

Apply triangle inequality with 1 being the intermediate
sequence for the triangle.

v(M) <= 2 { (1,1)+(1,2)} + {(1,1)+(1,3)} +{(2,1)+(1,3)}

Now, d(1,1)=0 and d(1,2)=d(2.1) and d(1,3)=d(3,1).

Thus, V(M)= 4[d(1,2)+d(1,3)]

18

Proof (cont.)

),()1(2 1
2

l

k

l
SSDk ∑

=

−=

Now Consider,

∑ ∑
=

≠
=

=
k

i

k

ji
j

jiM SSdMv
1 1

**),()(

∑ ∑
=

≠
=

≥
k

i

k

ji
j

ji SSD
1 1

),(
By definition, since D(Si,Sj) is the
Minimum global alignment, whereas
dM is with respect to alignment M.

∑∑
= =

≥
k

i

k

j
jSSD

1 2
1),(

),(1
2

l

k

l
SSDk∑

=

=

Since S1 is the center star

Since the summation is repeated for I with
Value 1 to k.

Proof (cont.)

Combining these two equations, we have

For small values of k, the approximation solution is
significantly better than by a factor of 2.
For example, for k=3, the bound is 4/3, that is, for
three strings, the multiple alignment produced by the
central star algorithm will not be worse more than
34% from optimal. For k=4, the upper bound is 1.5
and for k=6, it is 1.67.

2)1(2
)(
)(

* <−≤
k

k
Mv
Mv

19

Cluster Approach

In center star algorithm, the unaligned strings
are always aligned with the chosen center
string. But, a group of already aligned
sequences may be very “near” to each other
and might form a cluster. It might be
advantageous to align strings in the same
cluster firsrt, and then merge the clusters to
give the multiple alignment. One variation of
this is called Iterative Pairwise Alignment.

Iterative pairwise Alignment

An unaligned string nearest to some aligned
string is picked and aligned with previously
aligned group.
How to align a string with a group of strings?
We have discussed it earlier as a profile to
character alignment.

20

Profile alignment

Align an existing multiple alignment (“profile”)
to a sequence
Columns of the existing alignment kept intact

SEQV-ENCE
SDQV-E-CR
TEQV-EACE

Arrows indicate gaps
added to create the profile-
sequence alignment.

SE-VIENCE

Profile alignment
A profile is a sequence of columns
Apply algorithms used to align two sequences
Replace substitution matrix for letter + letter (e.g.
BLOSUM62)...
...by function that gives a score to column + letter

E.g. average BLOSUM62 score vs. all letters in the
column

S
S
T

S

= high score

L
I
L

C

= low score

21

Example: PSI-BLAST

First iteration: BLAST search of database
Create profile (=multiple alignment) from
alignment of each hit to the query sequence
Search database with profile as a query

Uses modified BLAST algorithm
Create new profile by aligning each hit to
search profile
Iterate
Able to find more distantly related proteins
than BLAST alone

Example: SAM-Txx

Similar design to PSI-BLAST
Uses hidden Markov model (HMMs) profile
SAM-Txx significantly more sensitive than
PSI-BLAST
Also much slower
http://www.soe.ucsc.edu/research/compbio/s
am.html

Public Web server
License required to run locally
Source code not available

22

Consensus Sequence
Given a multiple alignment M of strings
S1,S2…,Sk , the consensus character ci of M is
the character that minimizes the sum of
distances to it from all the characters in column i.
That is, it minimizes)],[(

1

'
i

k

j
j ciS∑

=

δ

Let d(i) be this minimum sum. The consensus
sequence is the concatenation c1c2c3 …cl of all
the consensus characters, where l is the length
of the alignment.

Consensus Sequence

23

Position Specific Score Matrix
(Positional Weight Matrix, Profile)

Use of Positional Weight Matrix
for matching sequence

