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Ringe-Warnow Phylogenetic 
Tree of Indo-European 

Major methods for phylogeny 
reconstruction 

• Biology: Polynomial time methods (good 
enough for small datasets), and local search 
heuristics for NP-hard optimization 
problems 

• Linguistics: exact algorithms for NP-hard
optimization problems  
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Evolution informs about 
everything in biology

• Big genome sequencing projects just produce data -- so 
what?

• Evolutionary history relates all organisms and genes, and 
helps us understand and predict 
– interactions between genes (genetic networks)
– drug design
– predicting functions of genes
– influenza vaccine development
– origins and spread of disease
– origins and migrations of humans

Main research foci

• Solving maximum parsimony and 
maximum likelihood more effectively

• “Fast converging methods”
• Gene order and content phylogeny
• Reticulate evolution
• Phylogenetic multiple sequence alignment
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Gene Order/Content Phylogeny

• Group leader: Bernard Moret
• Software: (1) simulating genome evolution 

on trees (2)  GRAPPA: Genome 
Rearrangement Analysis using Parsimony 
and other Phylogenetic Algorithms

• Currently limited to equal content genomes
• Ongoing research: handling unequal gene 

content

Reticulate Evolution
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DNA Sequence Evolution

AAGACTT

TGGACTTAAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTTAGCACAAAGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTTAAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTTAGCACAATAGACTTTAGCCCAAGGGCAT

Molecular Systematics

TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT

U V W X Y

U

V W

X

Y



6

Basic challenges in molecular
phylogenetics

• Most favored approaches attempt to solve hard 
optimization problems such as maximum 
parsimony and maximum likelihood - can we 
design better methods?

• DNA sequence evolution may be too “noisy” -
perhaps we need new types of data?

• Many equally good solutions for a given dataset -
how can we figure out “truth”?

• Not all evolution is tree-like - how can we detect 
and infer reticulate evolution?

Some of our projects

• Divide-and-conquer strategies for maximum 
parsimony and maximum likelihood

• Using “rare genomic changes” for deep evolution
• Consensus/clustering methods for sets of optimal 

trees
• Detection and reconstruction of reticulate 

evolution
(All projects are joint with biologists and computer 

scientists at various universities, and are part of 
the new ITR grant)
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Coping with NP-hard problems

Since  NP-hard problems may not be solvable 
in polynomial time, the options are:
– Solve the problem exactly (but use lots of time 

on some inputs)
– Use heuristics which may not solve the problem 

exactly (and which might be computationally 
expensive, anyway)

General comments for NP-hard 
optimization problems

• Getting exact solutions may not be possible for some 
problems on some inputs, without spending a great deal of 
time.

• You may not know when you have an optimal solution, if 
you use a heuristic.

• Sometimes exact solutions may not be necessary, and 
approximate solutions may suffice. (But this may not be 
true for biology.)
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DNA Sequence Evolution
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Major phylogeny reconstruction 
methods

• In biology: mostly hill-climbing heuristics 
that attempt to solve NP-hard optimization 
problems (maximum parsimony or 
maximum likelihood)

• In historical linguistics: much less is 
established, but an exact solution to an 
NP-hard problem looks very promising.
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Maximum Parsimony
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Maximum Parsimony: 
computational complexity
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Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)

Maximum Parsimony
• Given a set S of strings of the same length over a fixed 

alphabet, find a tree T leaf-labelled by S and with all 
internal nodes labelled by strings of the same length over 
the same alphabet which minimizes the sum of the edge 
lengths.

• Motivation: seeks to minimize the total number of point 
mutations needed to explain the data

• NP-hard
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Solving MP (maximum parsimony) 
and ML (maximum likelihood)

Phylogenetic trees

MP score
Global optimum

Local optimum

• Why are MP and ML hard? The search space is huge -- there are  (2n-5)!! 
trees, it is easy to get stuck in local optima, and there can be many optimal 
trees.

• Why try to solve MP or ML? Our experimental studies show that polynomial 
time algorithms don’t do as well as MP or ML when trees are big and have 
high rates of evolution.

• Why solve MP and ML well? Because trees can change in biologically 
significant ways with small changes in objective criterion. (Open problem!)

Using divide-and-conquer for MP 
and ML

• Conjecture: better (more accurate) solutions 
will be found in less time, if we analyze a 
small number of smaller subsets  and then 
combine solutions

• Need: 
– 1. techniques for decomposing datasets, 
– 2. base methods for subproblems, and 
– 3. techniques for combining subtrees
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Comparison between TBR and 
the Ratchet

• Quite dramatic differences -- the Ratchet 
finds better trees than the best ways of 
running TBR branch-swapping, on all our 
datasets

• Even the Ratchet can take too long on some 
datasets!Ochoterena dataset: 834 DNA sequences

The DCM3 technique for 
speeding up MP/ML searches
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Strict Consensus Merger (SCM)

DCM3-boosting a base method 

1. Decompose the dataset into smaller, 
overlapping subsets, using DCM3

2. Construct phylogenetic trees on the 
subsets using a base method

3. Merge the subtrees into a single tree using 
the Strict Consensus Merger

4. Use PAUP* constrained search to refine 
the resultant tree
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What we found

• I-DCM3-TBR is much faster than TBR on 
all the datasets we examined

• I-DCM3-Ratchet is better than the Ratchet, 
but by less (depends on dataset)

• I-DCM3-ML improves upon ML using 
PAUP* ML searches (by a huge amount)

What we found

• DCM3-TBR is much faster than TBR on all 
the datasets we examined

• DCM3-Ratchet is better than the Ratchet, 
but by less (depends on dataset)

• DCM3-ML improves upon ML using 
PAUP* ML searches (by a huge amount)
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New technique: Iterative DCM3
Repeat:

1. Apply base method for a specified number of 
iterations.
2. Obtain a DCM3-decomposition based upon the 
current best tree (the “guide tree” ).
3.  Apply base method to subproblems, and merge       
subtrees using the strict consensus merger.  
4.  Refine the tree.

Variants we have examined: 
I-DCM3(TBR) and I-DCM3(Ratchet).

Popular heuristics
• PAUP*4.0 hill-climbing heuristics: 

– Phase 1:  do greedy insertions, with limited TBR, 
to get good starting trees

– Phase 2: do TBR branch swapping on the best 
trees obtained in phase I.

• Ratchet: 
– Do standard TBR hillclimbing until stuck in local 

optima.
– Then reweight characters and do TBR hill-climbing 

to get out of local optima.
– Go back to original character set, and repeat.
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rbcL500 dataset: 500 DNA sequences

All 10 runs of Iterative-DCM3 find trees with current best score 
within75 minutes, whereas Ratchet takes at least 3 hours 

Gutell dataset: 854 rRNA sequences

Iterative-DCM3 trials find trees of MP score 103210 in 30 hours,
whereas ratchet500 trials take 45 hours to find trees of same score
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Iterative-DCM3 vs Ratchet

0
1
2
3
4
5
6
7
8

Average time 
(in hours) to 

reach within 
1 step of 
optimal 

(averaged over 
10 runs)

Dataset #1
(taxa=500)

Dataset #2
(taxa=567)

Dataset #3
(taxa=854)

Iterative-DCM3 Ratchet

Iterative-DCM3 vs Ratchet

0
2
4
6
8

10
12
14
16
18
20

Average time 
(in hours) to 

reach optimal 
(averaged over 

10 runs)

Dataset #1
(taxa=500)

Dataset #2
(taxa=567)

Dataset #3
(taxa=854)

Iterative-DCM3 Ratchet



18

Conclusions

• I-DCM3 finds trees with MP scores at least 
as good as Ratchet at every point in time 
(within first few hours, I-DCM3 is always 
better)

• On all datasets I-DCM3 finds good MP 
trees very quickly

• Improvements over TBR-based analyses 
even better

Ongoing research projects

• ML/MP: Getting better (faster and more 
accurate) divide-and-conquer strategies, and 
determining just how well we really need to 
analyze biomolecular datasets

• Analyzing whole genomes using gene order 
and content data

• Reticulate evolution inference
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Comments 
• Developing heuristics with good performance takes 

mathematical insights, but may not involve proofs.  Even 
so, it’s really important.

• Extracting information from the set of optimal (and near-
optimal) solutions is a major open problem.

• Other types of data (gene orders, morphology) present 
novel challenges.

• Reticulate evolution detection and reconstruction is a 
major open problem.

Ringe-Warnow Phylogenetic 
Tree of Indo-European 
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Historical Linguistic Data

• A character is a function that maps a set of 
languages, L, to a set of states.

• Three kinds of characters:
– Phonological (sound changes)
– Lexical (meanings based on a wordlist)
– Morphological (grammatical features)

Cognate Classes
• Two words w1 and w2 are in the same cognate class, if they 

evolved from the same word through sound changes.

• French “champ” and Italian “champo” are both descendants 
of Latin “campus”; thus the two words belong to the same 
cognate class.

• Spanish “mucho” and English “much” are not in the same 
cognate class.



21

Phylogenies of Languages

• Languages evolve over time, just as biological 
species do (geographic and other separations 
induce changes that over time make different 
dialects incomprehensible -- and new languages 
appear)

• The result can be modelled as a rooted tree
• The interesting thing is that many characteristics 

of languages evolve without back mutation or 
parallel evolution -- so a “perfect phylogeny” is 
possible!

Perfect Phylogeny

• A phylogeny T for a set S of taxa is a 
perfect phylogeny if each state of each 
character occupies a subtree (no character 
has back-mutations or parallel evolution)
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“Homoplasy-Free” Evolution 
(perfect phylogenies)

YES                                            NO

The Perfect Phylogeny Problem

• Given a set S of taxa (species, languages, 
etc.) determine if a perfect phylogeny T 
exists for S.

• The problem of determining whether a 
perfect phylogeny exists is NP-hard 
(McMorris et al. 1994, Steel 1991).
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The Indo-European (IE) Dataset
• 24 languages
• 22 phonological characters, 15 morphological characters, 

and 333 lexical characters
• Total number of working characters is 390 (multiple 

character coding, and parallel development)
• A phylogenetic tree T on the IE dataset (Ringe, Taylor and 

Warnow)
• T is compatible with all but 22 characters: 16 (18) 

monomorphic and 6 polymorphic
• Resolves most of the significant controversies in Indo-European 

evolution; shows however that Germanic is a problem (not treelike)

Phylogenetic Tree of the IE 
Dataset 
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