
Phylogenetic Trees

All species of organisms on our planet undergo slow transformation throughout ages.
This process has been identified by the biologist as evolution. One central problem in
biology is to explain the evolutionary history of species and in particular, how species are
related to each other and whether or not they shared a common ancestor. This is depicted
by constructing a tree whose leaves represent the present day species and whose internal
nodes represent possible ancestors. Such a tree is called a phylogenetic tree. With the
advent of molecular biology, the evolutionary processes have been linked to several basic
processes at the genome level such as insertion, deletion, substitution, inversion and
transposition of its DNA. All these operations are grouped under a common name called
mutation. In the past, biologists used morphology data (the so-called phenotypes: color of
hair, skin, eye, physical characteristics like presence of wings, length of arms, legs etc) or
biochemistry data (such as amino acid synthesis pathways) to come up with taxonomy
and ancestral relationship. In recent times, use of molecular sequence data has given rise
to a more precise science of phylogenies which incorporates mathematical and
algorithmic approaches. There are also many software tools that have been designed
based on these algorithms to re-create phylognetic trees. There is a vast amount of
literature and competing theories of evolutionary biology and classification of species.
Our aim here is very much limited to studies of a few algorithmic approaches for
constructing phylogenetic trees.

An example of a phylogenetic tree is shown in Fig.1. The tree is an undirected acyclic
graph. The leaves of the tree denote denote “objects” under study which could be a group
of seemingly related organism, mammals, birds, reptiles or DNA or amino acid
sequences which also undergo evolution along with the evolution of the associated
organisms. An internal node represents a hypothetical common ancestor of all the leaf
objects under it. The topology or the branching patterns shows the history of evolution
of the object via the unique path from it to the root of the tree which is supposed to be the
common ancestor of all the objects under study. The existence of a root node in practical
situations is not always guaranteed because of lack of enough biological evidence but this
is a challenge that the biologists constantly face with. .If we assign a weight to each edge
of the tree, we can define the concept of evolutionary distance between a pair of nodes. If
the weight of an edge denotes estimated elapsed time to evolve or transform the two
objects connected by the edge, the distance between an internal node to a leaf in the sub-
tree under the internal node, may be interpreted as the total estimated elapsed time for the
object representing the internal node to evolve to the leaf object.

Tree-Building Algorithms

The phylogenetic tree construction algorithms can be classified into two broad classes:
maximum parsimony based methods and distance-based methods.

 Parsimony Based Method

This is also known as the character-based method. The input is a set of characters or
attributes that the objects may posses. The input characters are chosen for biological
significance for evolutionary studies. The characters used have traditionally been
morphological features such as having a back-bone or wings . But characters can also be
based on DNA or protein sequences possessed by different species. For example presence
of a particular amino-acid sequence for a given protein as a substring may be an attribute
of relevance.

We will make some simplifying assumptions contrary to certain counter-examples found
in nature: first, we assume that the attributes or characters can be inherited independently
from one another and that reverse inheritance is not possible. Reverse inheritance means
that an attribute can be gained by inheritance, then lost and then gained back again. We
also assume that that the characters are homologous, that is, all observed states of a given
character (viz. if the beak of a bird can assume four different structures, the state for this
attributes has four values) from one original state of the nearest common ancestor for the
objects under study. We also make a third assumption: parallel evolution or convergence
state does not happen. This says that if two objects share an attribute, they should have a
common ancestor.

The characters could be ordered or unordered. In general, if a character has r values, the
character can assume any one of the r values. For an unordered character, we assume that
any state can change to any state (although the same state may not repeat – reverse
inheritance). For an ordered character, the state changes may follow a particular
specified total or partial order. For example, a linear order 3↔4↔1↔2 means that a
transition from state 3 to 1 or from 1 to 3 has to go through an intermediate state 4. Note
the state transitions are not directed, simply ordered. Thhe transition is undirected if
there is a precedence relation between pairs of state transitions. For example, state 3
precedes state 4 which precedes state1 etc. The unordered, ordered and directed
characters are also known as qualitative, cladistic and polar characters , respectively.
The perfect phylogeny can now be formally defined as follows:

Definition: Let M be an n by m r-ary matrix, representing n objects each having m
attributes or characters. The i-th row of M represents the i-th object. The j-th column
represents the j-th character. A perfect phylogenetic tree for M is a rooted tree T with
exactly n leaves that obeys the following properties:

1) Each of the n objects labels exactly one leaf of T.
2) For each state s (s=0,1,..,r) of each character c(c=1,2,…, m), the set of all u

nodes (leaves and interior nodes) for which the state is s with respect to c must
form a subtree of T (that is, a connected subgraph of T). This means that the edge
leading to this subtree is uniquely associated with a transition from some state w
to state s.

The perfect phylogeny is special case of maximum parsimony tree. The perfect
phylogeny tree with binary characters is defined as:
Definition: Let M be an n by binary (0-1)- matrix, representing n objects each having m
attributes or characters. The i-th row of M represents the i-th object. The j-th column
represents the j-th character. A perfect phylogenetic tree for M is a rooted tree T with
exactly n leaves that obeys the following properties:

1) Each of the n objects labels exactly one leaf of T.
2) Each of the m- characters labels exactly one edge.
3) For any object, the characters that label the edges along the unique path from the

root to leaf , specify all the characters of the object whose state is ‘1’

 1 2 3 4 5
A 1 1 0 0 0
B 0 0 1 0 1
C 1 1 0 0 1
D 0 0 1 1 0
E 0 1 0 0 1

 1 2 3 4 5
A 1 1 0 0 0
B 0 0 1 0 0
C 1 1 0 0 1
D 0 0 1 1 0
E 0 1 0 0 1

Example: The first matrix has no perfect phylogenetic tree. The second matrix M has a
solution tree as shown below.

Perfect Phylogeny Problem

For n objects, it can be shown that there are ∏ possible labeled trees which

grows faster than n! , so building all trees and then deciding which one of them is a
perfect phylogeny is out of question. For unordered characters, the problem is NP-
complete. For ordered character, there exist algorithms with complexity polynomial in n,
m and r. For the binary matrix case, the problem is: Given a n by m 0-1 matrix M,
determine whether there is a phylogenetic tree for M, and if so, build one. This problem
has a O(nm) solution. For convenience of proof, it will be simpler to transform M to a

=

−
n

i

i
3

)52(

3

4

2

1

5

00000

00100
01000

11000

11001
C

E

00110
D B A

matrix M whose columns are sorted in a in decreasing order from left to right. For our
example, we have M as shown below

Cols. of M

Cols. of M

2

1

1

2

3

3

5

4

4

5

 A 1 1 0 0 0

B 0 0 1 0 0

C 1 1 0 1 0

D 0 0 1 0 1

E 1 0 0 0 0

It is obvious if M has a perfect tree so does M which is simply a reordering of the
columns. The edges of the tree has to be renamed according to the permutation given on
top of the table.

Definition: For any column k of M , let Ok be the set of objects (rows) that have ‘1’ in
column k.

Theorem: Matrix M (or M) has a phylogenetic tree if and only if for every pair of
columns i,j either Oi and Oj are disjoint or one contains the other.

Proof: A detailed proof is given in Gusfield p.462. The proof can be understood easily if
we note that each character or attribute appears only once in the phylogenetic tree. Thus,
the characters that appear in the left side of a branching point must be disjoint from those
appearing on the right side of the same branching point and this is true for every interior
node. Second, once a character c appears in an edge, this introduces a ‘1’ in all object
vectors that are in the leaves of the subtree below this edge. The succeeding nodes in
any path of this subtree must obey the containment requirement.

A straightforward algorithm to test the validity of the above theorem would take)(2nmΩ
since there are O(m2) pairs of columns and testing for the validity of the conditions will
take O(n) time for each pair. A more efficient algorithm exists which is described below.

Perfect Phylogeny Algorithm taking O(nm) time

1. Sort matrix M to obtain matrix M using radix sort taking O (nm) time.
2. For each row of M , construct the character strings corresponding to ‘1’ in the

row from left to right. Use the characters of original M to write these strings.

There will be n such strings each of maximum length m. (For our example, these
strings are ‘21’, ‘3’,’215’, ‘34’, ‘2’).

3. Build a ‘Keyword Tree T for these ‘patterns’ constructed in step 2. This step takes
O(nm) time.

4. Test whether T is a perfect phylogeny (each character appears once and only once
in an edge in the tree, the tree is rooted and connected).

If the characters are unordered, one can also develop a O(nm) algorithm to obtain a
perfect phylogeny. (Prove)

Tree Compatibility Problem

The problem is : given two or more phylogenetic trees, do they represent a consistent
evolution history and if so how to connect these trees into one phylogenetic tree
incorporating all the evolutionary history of the constituent trees. Problems like this
arises in handling real data because people use different tree building methods .

Definition: A phylogenetic tree T’ is a refinement of T if T can be obtained by a series of
contraction of edges of T’.

If T’ refines T then T’ contains all the revolutionary history contained in T and it will
have additional history not displayed in T. Let T1 and T2 be two phylogenetic trees on n
objects in “reduced” form (both binary trees, no node except the root node can have
exactly one child).

 Definition:Trees T1 and T2 are compatible if there exists a phylogenetic tree T3 refining
both T1 and T 2.

Let M1 and M2 be matrices corresponding to the given trees T1 and T2. Let M3 be a matrix
formed as the union of matrices M1 and M2. Then, prove

Theorem: Trees T1 and T2 are compatible if and only if there is a phylogenetic tree for
M3. Further, a phylogenetic tree T3 is a refinement of both T1 and T2.

(See Gusfield for example and further discussion).

Generalized Perfect Phylogeny

Problem: Given a character matrix M where each character may take upto r states,
determine if there isa perfect phylogeny for M and if so, construct one.

In this case, a perfect phylogeny for M isa directed tree where each edge is labeled by an
ordered triple (c,x,y) of character-state transition indicating that the character c changes
from state x to state y and this triple appears on only one edge of the tree. All other
conditions of binary trees remain valid viz. one root, the path from root the node labeled i
describe the character states of the object i.

If r is fixed at 3 or 4 , there is a polynomial bounded solution. If r is fixed and constant,
then the solution is again polynomially bounded by n and m with an exponential factor
in r. But, if r is variable, the problem has been shown to be NP-cokmplete. (See
Gusfield, p.465).

Parsimony

Algorithms with fixed parameters may seem good enough but real practical data does not
fit with perfect phylogeny model most of the times. The reasons are that the experimental
data always have errors, and convergence and reversals sometimes happen. If we ignore
the errors, one way to handle the problem is to minimize convergence and reversal
occurrences. This is called maximum parsimony criterion. Maximizing parsimony is
equivalent to minimizing mutations The other approach is not to use those characters in
the construction of the tree that cause these problems. This is equivalent to finding a
maximum set of characters which allows perfect phylogeny. This is known as the
compatibility criterion. Use of these criteria lead to optimization problems rather than
decision problems and remain NP-complete both for ordered and unordered characters.
Proofs of NP-completeness will not be discussed here.

Distance-Based Methods

In distance-based approach, the input consists of evolutionary distance data (viz. edit
distances of DNA or RNA sequences, melting temperature from DNA hybridization etc.).
The problem is to construct a weighted tree whose pair wise distances agree with pair
wise input distance data. We will later characterize the data as ultra-metric or additive
and show that for this kind of data trees can be constructed efficiently. Real data do not
satisfy these characterizations and approximate algorithms have been proposed for these
cases. We will discuss some of them.

Ultrametric Tree

Ultrametric trees have applications in many numerically-based tree construction methods,
and can be used to find the branching patterns of evolutionary history and measures of
elapsed time among nodes in the tree. Although the input data is a set of numbers, these
numbers are usually the output of some string algorithm such as sequence comparisons or
pair wise distance data of multiple alignment of a set of sequences.

Definition: Let D be a n by n symmetric matrix of real numbers. An ultrametric tree for
D is a rooted tree T with the following properties:

1) T contains n leaves, each labeled by a unique row of D.
2) Each internal node of the tree is labeled by one entry in D and has two children.
3) The numbers labeling internal nodes in the tree along any path from the root to

leaf are strictly decreasing.
4) For any two leaves i and j of T , D(i,j) is the label of the least common ancestor of

i and j in T.

Example:

 A B C D E
A 0 8 8 5 3
B 0 3 8 8
C 0 8 8
D 0 5
E 0

If the property 3) above is changed to : labels in the internal nodes must strictly increase,
then the tree is called a min-ultrametric tree (in absence of any better name). Obviously,
not all matrices are untra- or min-ultrametric. Since with n leaf nodes the tree must have
only n-1 internal nodes, if the matrix has more than n-1 distinct values in D, the matrix
cannot be untra- or min-ultrametric.

Evolutionary Trees as Ultrametric Trees.

If the evolutionary history of n taxa form a rooted directed tree, with extant taxa
represented at the leaf nodes, then each inte al node can be looked upon as a divergence
event. A divergent point is a point v in time
means that before the point v the two taxa p
the absolute or relative times when the dive
times at the internal nodes (e branching n
for the nodes in a path from root to a leaf . F
nodes p and q, is the time when p and q dive
n by n matrix D and D(p,q) is the time that
want to interpret the label at each node to re
happened, then the times must be trictly de
node and the corresponding matrix becomes

Test for an Ultrametric Tree

 Definition: A symmetric matrix D of eal n
only if for every three indices i, j and k , the
and D(j,k). Similarly, D defines a min-ultra
indices i, j and k , there is a tie for the miniu

Theorem: A symmetric matrix D has an ultr
only if D is an ultrametric (or min-ultramet
rn

 when two taxa p and q diverge. It simply
 and q shared a common ancestor. If we know
rgences to place and if we append these
odes), these times must be strictly increasing
th

urther, the label at common ancestor v of leaf
rged. Thus, T a min-ultrametric tree for the

p and q iverged. On the other hand, if we
present
creasin
 ultram

umbers
re is a t
metric
mum o

ametric
ric) ma
 d

 elapsed tim since the divergent v

in the at from the root to the leaf
etric.

 defines
ie for th
distance
f D(i,j),

 tree (o
trix.
 p
 an
e m
 if a

 D(i

r a m
e
h
 s
ok

is
ultrametric distance if and
 r
g
axi
nd
, k)

in-
8

5

mum of D(i,j), D
only if for every
 and D(j,k).

ultrametric tree)
3

3

A
 E
D

B

(i, k)
 three

 if and
C

Proof: First, show that if D has an ultrametric tree, then D is an ultrametric matrix.

u

v

kj i

Here v and u are common ancestors of i and j, and i and k, respectively. Since it is an
ultrametric tree, u>v, strictly. By definition of D, D(i,k)= D(j,k)=maximum. Hence D is
an ultrametric matrix.

Now, assume D is an ultrametric matrix. We have to show that there exists an ultrametric
tree. By definition, if in a row a of D, there are d distinct entries, then any ultrametric tree
for D must have these numbers from the leaf representing the row a to the root in strictly
increasing order. This also induces a partition of the remaining (besides row a) rows in d-
1 disjoint partitions, as shown below

Now, if we can find ultrametric tree for each of these partitions, we can simply attach
these trees and get an ultrametric tree for the entire matrix. We would like to apply the
procedure recursively. We show now that the approach works correctly.

Consider the class defined by the internal node v and assume the leaf node j is a member
of this class . Let l be some other leaf node. We have three cases:

1) l is in the same class as that of j: This means that D(i, j)= D(i,l). There fore,

 since D is ultrametric. If we can now attach an ultrametric subtree
containing j and l, we are done. If

),(),(jiDljD ≤
),(),(jiDljD = , then node v will have degree

greater than 2

root

v l

j,l

i l

2) l is in a class between the leaf node i and node v: In this case, D(i,l)<D(i,j)
and and v must be the least common ancestor of j and l.
Therefore, if the ultrametric tree containing j is connected at v , then D(j,l)
will be correctly written at the least common ancestor of leaves j and l.

),(),(jiDljD =

),(),(liDljD =
3) l is in a class between v and the root node : In this case, D(i,l)>D(i,j) and so

. So, if an ultrametric tree for the class containing j is
connected at node v , D(j,l) will be correctly the least common ancestor of j
and l.

This completes the proof.

Additional Notes: http://www.cs.ucdavis.edu/~gusfield/ultraerrat/ultraerrat.html

On page 451, the proof of Theorem 17.1.1 presents an algorithm for building an
ultrametric tree. The algorithm is correct, however Theorem 17.1.3 states that the
algorithm can be implemented in O(n2) time. In fact, I don't see how to do that, although
O(n2log n) is an easy bound for the algorithm. Rather than continuing to try to find a
clever implementation of that algorithm, here is another combinatorial algorithm that I
claim is correct and that does run in O(n2) time. The algorithm is described in terms of a
graph G, based on matrix D, but it can be implemented without an explicit graph.

Let each row i of matrix D be represented by a node i in G, and each edge (i,j) be given
the value D(i,j). In O(n2) time, the algorithm will find a very particular path in graph G:

set N equal to all the indices 1 through n; set L to the empty path; set i to any node.

repeat n-1 times: begin remove i from N; find an index j in N such that

for any k in N. place edge (i,j) in the path L; set i to j; end;

What this produces is a path L of exactly n edges, and the algorithm can be implemented
in O(n2) time. It turns out that L is a minimum spanning tree of G, but that fact is not
needed.

We will now use L to create the ultrametric tree recursively.

Concentrate on an edge (p,q) in the path L with the largest edge weight of all edges in L,
and let P be the set of nodes at or to the left of p in L, and let Q be the set of nodes at or to
the right of q in L. The fact that D is an ultrametric matrix implies that for any pair of
nodes (i,j) where i is in P and j is in Q, D(i,j) = D(p,q). One way to prove this is by
induction on the number of edges between i and j in L (applying the ultrametric condition
that the in any triangle, the max of the three edge weights is not unique). What this means
is that in the ultrametric tree we are building (and in any ultrametric tree for D), any pair
of leaves (i,j) where i is in P and j is in Q must have their least common ancestor at the
root of the ultrametric tree, and that root must be labelled D(p,q).

If there are k > 1 ties for the global max edge weight in L, then removing those k edges
creates k+1 subpaths of nodes, and applying the above argument, any two nodes i and j
which are in different subpaths must have their least common ancestor at the root of the
tree, which again must be labeled D(p,q). Hence, any ultrametric tree T for D must have
exactly k+1 edges out of D, and the leaf set below any such edge must be exactly the
(distinct) set of nodes in one of the k+1 subpaths.

No matter what k is, removing the k max weight edges in L, and partitioning N, takes only
O(n) time.

http://www.cs.ucdavis.edu/~gusfield/ultraerrat/ultraerrat.html

To continue the description of the algorithm, we assume for convenience that k = 1. Let
LP and LQ denote the two subpaths created by removing the max weight edge in L. Now
we want to find an ultrametric tree for set P and one for set Q; these two ultrametric trees
will then be attached to the root to creat the full ultrametric tree for D. But note that we
already have the needed paths LP and LQ that would be created if we were to recursively
apply the above method (clearly LP could result if we applied the path building algorithm
to P alone, and similarly for LQ and Q). So we only need to find the max weight edge(s)
in LP and the max weight edge(s) in LQ. Those two edges can be found in O(n) total
time. Again, because the nodes were partitioned in the first step, this time bound holds
even for k > 1.

Continuing, we build the ultrametric tree in O(n2) total time.

Note that at each step of the algorithm, the node partitions that are created, and the
associated edges that are put into T, are forced. Hence if D is an ultrametric matrix, the
ultrametric tree T for D is unique.

Additive Distance Tree

If the data giving time-since-divergence is correct, the ultrametric tree gives the true
evolutionary history. But, in practice, data is rarely ultrametric. This is handled by
imposing a weaker requirement on the evolutionary data, that is, data is additive.

(To be continued)

