
Phylogenetic Trees 
 

All species of organisms on our planet undergo slow transformation throughout ages. 
This process has been identified by the biologist as evolution. One central problem in 
biology is to explain the evolutionary history of species and in particular, how species are 
related to each other and whether or not they shared a common ancestor. This is depicted 
by constructing a tree whose leaves represent the present day species and whose internal 
nodes represent possible ancestors. Such a tree is called a phylogenetic tree. With the 
advent of molecular biology, the evolutionary processes have been linked to several basic 
processes at the genome level such as insertion, deletion, substitution, inversion and 
transposition of its DNA. All these operations are grouped under a common name called 
mutation. In the past, biologists used morphology data (the so-called phenotypes: color of 
hair, skin, eye, physical characteristics like presence of wings, length of arms, legs etc) or 
biochemistry data (such as amino acid synthesis pathways) to come up with taxonomy 
and ancestral relationship. In recent times, use of molecular sequence data has given rise 
to a more precise science of phylogenies which incorporates mathematical and 
algorithmic approaches. There are also many software tools that have been designed 
based on these algorithms to re-create phylognetic trees. There is a vast amount of 
literature and competing theories of evolutionary biology and classification of species. 
Our aim here is very much limited to studies of a few algorithmic approaches for 
constructing phylogenetic trees. 
 
 
An example of a phylogenetic tree is shown in Fig.1.  The tree is an undirected acyclic 
graph. The leaves of the tree denote denote “objects” under study which could be a group 
of seemingly related organism, mammals, birds, reptiles or DNA or amino acid 
sequences which also undergo evolution along with the evolution of the associated 
organisms. An internal node represents a hypothetical common ancestor of all the leaf 
objects under it.  The topology or the branching patterns shows the history of evolution 
of the object via the unique path from it to the root of the tree which is supposed to be the 
common ancestor of all the objects under study. The existence of a root node in practical 
situations is not always guaranteed because of lack of enough biological evidence but this 
is a challenge that the biologists constantly face with.  .If we assign a weight to each edge 
of the tree, we can define the concept of evolutionary distance between a pair of nodes. If 
the weight of an edge denotes estimated elapsed time to evolve or transform the two 
objects connected by the edge, the distance between an internal node to a leaf in the sub-
tree under the internal node, may be interpreted as the total estimated elapsed time for the 
object representing the internal node to evolve to the leaf object. 
 
Tree-Building Algorithms 
 
The phylogenetic tree construction algorithms can be classified into two broad classes: 
maximum parsimony based methods and distance-based methods. 
 
 
 



 Parsimony Based  Method 
 
This is also known as the character-based method. The input is a set of characters or 
attributes that the objects may posses.  The input characters are chosen for biological 
significance for evolutionary studies. The characters used have traditionally been 
morphological features such as having a back-bone or wings . But characters can also be 
based on DNA or protein sequences possessed by different species. For example presence 
of a particular amino-acid sequence for a given protein as a substring may be an attribute 
of relevance.  
 
We will make some simplifying assumptions contrary to certain counter-examples found 
in nature: first, we assume that the attributes or characters can be inherited independently 
from one another and that reverse inheritance is not possible. Reverse inheritance means 
that an attribute can be gained by inheritance, then lost and then gained back again. We 
also assume that that the characters are homologous, that is, all observed states of a given 
character (viz. if the beak of a bird can assume four different structures, the state for this 
attributes has four values) from one original state of the nearest common ancestor for the 
objects under study. We also make a third assumption:  parallel evolution or convergence 
state does not happen. This says that if two objects share an attribute, they should have a 
common ancestor.  
 
The characters could be ordered or unordered. In general, if a character has r values, the 
character can assume any one of the r values. For an unordered character, we assume that 
any state can change to any state ( although the same state may not repeat – reverse 
inheritance). For an ordered character, the  state changes may follow a particular 
specified total or partial order. For example, a linear order 3↔4↔1↔2 means that a 
transition from state 3 to 1 or from 1 to 3 has to go through an intermediate state 4. Note 
the state transitions are not directed, simply ordered. Thhe transition is undirected if 
there is a precedence relation between pairs of state transitions. For example, state 3 
precedes state 4 which precedes state1 etc.  The unordered, ordered and directed 
characters are also known as qualitative, cladistic and polar characters , respectively. 
The perfect phylogeny can now be formally defined as follows: 
 
Definition: Let M be an n by m  r-ary matrix, representing n objects each having m 
attributes or characters. The  i-th row of M represents the i-th object. The j-th column 
represents the j-th character. A perfect phylogenetic tree for M is a rooted tree T with 
exactly n  leaves that obeys the following properties: 
 

1) Each of the n objects labels exactly one leaf of T. 
2) For each state s (s=0,1,..,r) of each  character c(c=1,2,…, m),  the set of all u 

nodes (leaves and interior nodes) for which the state is s with respect to c must 
form a subtree of T  (that is, a connected subgraph of T). This means that the edge 
leading to this subtree is uniquely associated with a transition from some state w 
to state s. 

 



The perfect phylogeny is special case of maximum parsimony tree. The perfect 
phylogeny tree with binary characters is defined as:  
Definition: Let M be an n by binary (0-1)- matrix, representing n objects each having m 
attributes or characters. The  i-th row of M represents the i-th object. The j-th column 
represents the j-th character. A perfect phylogenetic tree for M is a rooted tree T with 
exactly n  leaves that obeys the following properties: 
 

1) Each of the n objects labels exactly one leaf of T. 
2) Each of the m- characters labels exactly one edge. 
3) For any object, the characters that label the edges along the unique path from the 

root to leaf , specify all the characters of the object whose state is ‘1’ 
 
 
 1 2 3 4 5 
A 1 1 0 0 0 
B 0 0 1 0 1 
C 1 1 0 0 1 
D 0 0 1 1 0 
E 0 1 0 0 1 

 1 2 3 4 5 
A 1 1 0 0 0 
B 0 0 1 0 0 
C 1 1 0 0 1 
D 0 0 1 1 0 
E 0 1 0 0 1 

 
Example: The first matrix has no perfect phylogenetic tree. The second matrix  M  has a 
solution   tree  as shown below.            
 

      
Perfect Phylogeny Problem 
 

For n  objects, it can be shown that there are ∏  possible labeled trees which 

grows faster than n! , so building all trees and then deciding which one of them is a 
perfect phylogeny is out of question.  For unordered characters, the problem is NP-
complete. For ordered character, there exist algorithms with complexity polynomial in n, 
m and r. For the binary matrix case, the problem is: Given  a n by m 0-1 matrix M, 
determine whether there is a phylogenetic tree for M, and if so, build one. This problem 
has a O(nm) solution. For convenience of proof, it will be simpler to transform M to a 
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matrix M whose columns are sorted in a in decreasing order from left to right. For our 
example, we have M  as shown below 

 

Cols. of M 

Cols. of M  
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 A 1 1 0 0 0 

B 0 0 1 0 0 

C 1 1 0 1 0 

D 0 0 1 0 1 

E 1 0 0 0 0 

It is obvious if M  has a perfect tree so does M  which is simply a reordering of the 
columns.  The edges of the tree has to be renamed according to the permutation given on 
top of the table. 

Definition: For any column k  of M , let Ok be the set of objects ( rows) that have ‘1’ in 
column k. 

Theorem:  Matrix M (or M ) has a phylogenetic tree if and only if for every pair of 
columns i,j either Oi and  Oj  are disjoint or one contains the other. 

Proof: A detailed proof is given in Gusfield p.462. The proof can be understood easily if 
we note that each character or attribute appears only once in the phylogenetic tree. Thus, 
the characters that appear in the left side of a branching point must be disjoint from those 
appearing on the right side of the same branching point and this is true for every interior 
node. Second, once a character c appears in an edge, this introduces a ‘1’ in all object 
vectors that are in the leaves of  the subtree below this  edge. The succeeding nodes in 
any path of this subtree must obey the containment requirement. 

A straightforward algorithm to test the validity of the above theorem would take  )( 2nmΩ
since there are O(m2) pairs of columns and testing for the validity of the conditions will 
take O(n) time for each pair.  A more efficient algorithm exists which is described below. 
 
Perfect Phylogeny Algorithm taking O(nm) time 
 

1. Sort matrix M to obtain matrix M  using radix sort taking O (nm) time. 
2. For each row of M , construct the character strings corresponding to ‘1’ in the 

row from left to right. Use the characters of original M  to write these strings. 



There will be n such strings each of maximum length m. (For our example, these 
strings are ‘21’,  ‘3’,’215’, ‘34’, ‘2’). 

3. Build a ‘Keyword Tree T for these ‘patterns’ constructed in step 2. This step takes 
O(nm) time. 

4. Test whether T is a perfect phylogeny ( each character appears once and only once 
in an edge in the tree, the tree is rooted and connected). 

 
If the characters are unordered, one can also develop a O(nm) algorithm to obtain a 
perfect phylogeny. ( Prove ) 
 
Tree Compatibility Problem 
 
The problem is : given two or more phylogenetic trees, do they represent a consistent 
evolution history and if so how to connect these trees into one phylogenetic tree 
incorporating all the evolutionary history of the constituent trees. Problems like this 
arises in handling real data because people use different tree building methods . 
 
Definition: A phylogenetic tree T’  is a refinement of T if T can be obtained by a series of 
contraction of edges of  T’. 
 
If T’ refines T then T’ contains all the revolutionary history contained in T and it will 
have additional history not displayed in T. Let T1 and T2 be two phylogenetic trees  on n 
objects in “reduced” form  (both binary trees, no node except the root node can have 
exactly one child). 
 
 Definition:Trees T1 and T2 are compatible if there exists a phylogenetic tree T3 refining 
both T1 and T 2. 
 
Let M1 and M2 be matrices corresponding to the given trees T1 and T2. Let M3 be a matrix 
formed as the union of matrices M1 and M2. Then, prove 
 
Theorem: Trees T1 and T2 are compatible if and only if there is a phylogenetic tree for 
M3. Further, a phylogenetic tree T3 is a refinement of both T1 and T2. 
 
(See Gusfield for example and further discussion). 
 
Generalized Perfect Phylogeny 
 
Problem: Given a character matrix M where each character may take upto r  states, 
determine if there isa perfect phylogeny for M and if so, construct one. 
 
In this case,  a perfect phylogeny for M isa directed tree where each edge is labeled by an 
ordered triple (c,x,y)  of character-state transition indicating that the character c changes 
from state x  to state y and this triple appears on only one edge of the tree. All other 
conditions of binary trees remain valid viz. one root, the path from root the node labeled i  
describe the character states of the object i.  



If r  is fixed at 3 or 4 , there is a polynomial bounded solution. If  r  is fixed and constant, 
then the solution is again polynomially  bounded by n and m  with an exponential factor 
in r. But, if r is variable, the problem has been shown to be NP-cokmplete. ( See 
Gusfield, p.465). 
 
Parsimony 
 
Algorithms with fixed parameters may seem good enough but real practical data does not 
fit with perfect phylogeny model most of the times. The reasons are that the experimental 
data always have errors, and convergence and reversals sometimes happen. If we ignore 
the errors, one way to handle the problem is to minimize convergence and reversal 
occurrences. This is called maximum parsimony criterion. Maximizing parsimony is 
equivalent to minimizing mutations  The other approach is not to use those characters in 
the construction of the tree that cause these problems. This is equivalent to finding a 
maximum set of characters which allows perfect phylogeny. This is known as the 
compatibility criterion.  Use of these criteria lead to optimization problems rather than 
decision problems and remain NP-complete both for ordered and unordered characters. 
Proofs of NP-completeness will not be discussed here. 
 
Distance-Based Methods 
 
In distance-based approach, the input consists of evolutionary distance data ( viz. edit 
distances of DNA or RNA sequences, melting temperature from DNA hybridization etc.). 
The problem is to construct a weighted tree whose pair wise distances agree with pair 
wise input distance data. We will later characterize the data as ultra-metric or  additive 
and show that for this kind of data trees can be constructed efficiently. Real data do not 
satisfy these characterizations and approximate algorithms have been proposed for these 
cases. We will discuss some of them. 
 
Ultrametric Tree 
 
Ultrametric trees have applications in many numerically-based tree construction methods, 
and can be used to find the branching patterns of evolutionary history  and measures of 
elapsed time among nodes in the tree. Although the input data is a set of numbers, these 
numbers are usually the output of some string algorithm such as sequence comparisons or 
pair wise distance data of multiple alignment of a set of sequences. 
 
Definition: Let D  be a  n by n symmetric matrix of real numbers. An ultrametric tree for 
D  is a rooted tree  T  with the following properties: 
 

1) T contains n leaves, each labeled by a unique row of D. 
2) Each internal node of the tree is labeled by one entry in D and has two children. 
3) The numbers labeling internal nodes in the tree along any path from the root to 

leaf are strictly decreasing. 
4) For any two leaves i and j of T , D(i,j) is the label of the least common ancestor of 

i  and j in  T. 



Example:                                                                                                                              
          

 

 

 A B C D E 
A 0 8 8 5 3 
B  0 3 8 8 
C   0 8 8 
D    0 5 
E     0 
      

If the property 3) above is changed to : labels in the internal nodes must strictly increase,  
then the tree is called a min-ultrametric tree ( in absence of any better name). Obviously, 
not all matrices are untra- or min-ultrametric. Since with n leaf nodes the tree must have 
only n-1 internal nodes, if the matrix has more than n-1 distinct values in D, the matrix 
cannot be untra- or min-ultrametric. 
 
Evolutionary Trees as Ultrametric Trees. 
 
If the evolutionary history of  n taxa form  a rooted directed tree, with extant taxa 
represented at the leaf nodes, then each inte al node can be looked upon as a divergence 
event.  A divergent point is a point v in time
means that before the point v the two taxa p
the absolute or relative times when the dive
times at the internal nodes ( e branching n
for the nodes in a path from root to a leaf . F
nodes p and q, is the time when p and q dive
n by n matrix D and D(p,q) is the time that 
want to interpret the label at each node to re
happened, then the times must be trictly de
node and the corresponding matrix becomes

 

 
Test for an Ultrametric Tree 
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Proof:  First, show that if  D  has an ultrametric tree, then D is an ultrametric matrix. 

u 

v 

kj i 
 

Here v and u are common ancestors of i and j,  and  i  and k, respectively. Since it is an 
ultrametric tree, u>v, strictly. By definition of D, D(i,k)= D(j,k)=maximum. Hence D is 
an ultrametric matrix. 

Now, assume  D is an ultrametric matrix. We have to show that there exists an ultrametric 
tree. By definition, if in a row a of D, there are d distinct entries, then any ultrametric tree 
for D must have these numbers from the leaf representing the row a to the root in strictly 
increasing order. This also induces a partition of the remaining (besides row a) rows in d-
1 disjoint partitions, as shown below 

 

Now, if we can find ultrametric tree for each of these partitions, we can simply attach 
these trees and get an ultrametric tree for the entire matrix. We would like to  apply  the 
procedure recursively. We show now that the approach works correctly. 



Consider the class defined by the internal node v and assume the leaf node j is a member 
of this class . Let l be some other leaf node. We have three cases: 

 
1) l is in the same class as that of j: This means that D(i, j)= D(i,l). There fore, 

  since D is ultrametric. If we can now attach an ultrametric subtree  
containing j and l, we are done. If 

),(),( jiDljD ≤
),(),( jiDljD = , then node v  will have degree 

greater than 2 
 

 

root

v l

j,l

i l
 

 

2) l is in a class between the leaf node i and  node v: In this case, D(i,l)<D(i,j) 
and  and  v must be the least common ancestor of j and l. 
Therefore, if the ultrametric tree containing j is connected at v , then D(j,l) 
will be correctly written at the least common ancestor of leaves j and  l. 

),(),( jiDljD =

),(),( liDljD =
3) l is in a class between v and the root node : In this case, D(i,l)>D(i,j) and so 

. So, if an ultrametric tree for the class containing j is 
connected at node v , D(j,l) will be correctly the least common ancestor of j 
and l. 

This completes the proof. 

 



Additional Notes: http://www.cs.ucdavis.edu/~gusfield/ultraerrat/ultraerrat.html  

On page 451, the proof of Theorem 17.1.1 presents an algorithm for building an 
ultrametric tree. The algorithm is correct, however Theorem 17.1.3 states that the 
algorithm can be implemented in O(n2) time. In fact, I don't see how to do that, although 
O(n2log n) is an easy bound for the algorithm. Rather than continuing to try to find a 
clever implementation of that algorithm, here is another combinatorial algorithm that I 
claim is correct and that does run in O(n2) time. The algorithm is described in terms of a 
graph G, based on matrix D, but it can be implemented without an explicit graph.  

Let each row i of matrix D be represented by a node i in G, and each edge (i,j) be given 
the value D(i,j). In O(n2) time, the algorithm will find a very particular path in graph G:  

set N equal to all the indices 1 through n; set L to the empty path; set i to any node.  

repeat n-1 times: begin remove i from N; find an index j in N such that 

for any k in N. place edge (i,j) in the path L; set i to j; end;  

What this produces is a path L of exactly n edges, and the algorithm can be implemented 
in O(n2) time. It turns out that L is a minimum spanning tree of G, but that fact is not 
needed.  

We will now use L to create the ultrametric tree recursively.  

Concentrate on an edge (p,q) in the path L with the largest edge weight of all edges in L, 
and let P be the set of nodes at or to the left of p in L, and let Q be the set of nodes at or to 
the right of q in L. The fact that D is an ultrametric matrix implies that for any pair of 
nodes (i,j) where i is in P and j is in Q, D(i,j) = D(p,q). One way to prove this is by 
induction on the number of edges between i and j in L (applying the ultrametric condition 
that the in any triangle, the max of the three edge weights is not unique). What this means 
is that in the ultrametric tree we are building (and in any ultrametric tree for D), any pair 
of leaves (i,j) where i is in P and j is in Q must have their least common ancestor at the 
root of the ultrametric tree, and that root must be labelled D(p,q).  

If there are k > 1 ties for the global max edge weight in L, then removing those k edges 
creates k+1 subpaths of nodes, and applying the above argument, any two nodes i and j 
which are in different subpaths must have their least common ancestor at the root of the 
tree, which again must be labeled D(p,q). Hence, any ultrametric tree T for D must have 
exactly k+1 edges out of D, and the leaf set below any such edge must be exactly the 
(distinct) set of nodes in one of the k+1 subpaths.  

No matter what k is, removing the k max weight edges in L, and partitioning N, takes only 
O(n) time.  

http://www.cs.ucdavis.edu/~gusfield/ultraerrat/ultraerrat.html


To continue the description of the algorithm, we assume for convenience that k = 1. Let 
LP and LQ denote the two subpaths created by removing the max weight edge in L. Now 
we want to find an ultrametric tree for set P and one for set Q; these two ultrametric trees 
will then be attached to the root to creat the full ultrametric tree for D. But note that we 
already have the needed paths LP and LQ that would be created if we were to recursively 
apply the above method (clearly LP could result if we applied the path building algorithm 
to P alone, and similarly for LQ and Q). So we only need to find the max weight edge(s) 
in LP and the max weight edge(s) in LQ. Those two edges can be found in O(n) total 
time. Again, because the nodes were partitioned in the first step, this time bound holds 
even for k > 1.  

Continuing, we build the ultrametric tree in O(n2) total time.  

Note that at each step of the algorithm, the node partitions that are created, and the 
associated edges that are put into T, are forced. Hence if D is an ultrametric matrix, the 
ultrametric tree T for D is unique.  

 

  

Additive Distance Tree 

If the data giving time-since-divergence is correct, the ultrametric tree gives the true 
evolutionary history. But, in practice, data is rarely ultrametric.  This is handled by 
imposing a weaker requirement on the evolutionary data, that is, data is additive. 

(To be continued) 


