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Computational methods in
phylogenetic analysis

Tutorial at CSB 2004
Tandy Warnow

Reconstructing the “Tree” of Life

Handling large datasets: Handling large datasets: 
millions of speciesmillions of species
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Phylogenetic Inference

• Hard optimization problems (e.g. MP, ML)
– Better heuristics
– Better approximations/lower bounds 

Relationship between quality of optimization 
criterion and topological accuracy

Phylogenetic Inference, cont.

• Bayesian inference 
• Whole Genome Rearrangements 
• Reticulate evolution 
• Processing sets of trees: compact representations 

and consensus methods 
• Supertree methods 
• Statistical issues with respect to stochastic models 

of evolution (e.g., “fast converging methods”) 
• Multiple sequence alignment
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Major challenge: MP and ML

• Maximum Parsimony (MP) and Maximum 
Likelihood (ML) remain the methods of 
choice for most systematists

• The main challenge here is to make it 
possible to obtain good solutions to MP or 
ML in reasonable time periods on large 
datasets

Outline

• Part I (Basics): 40 minutes
• Part II (Models of evolution): 20 min.
• Part III (Distance-based methods): 30 min.
• Part IV (Maximum Parsimony): 30 min.
• Part V (Maximum Likelihood): 15 minutes
• Part VI (Open problems/research 

directions): 30 minutes
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Part I: Basics (40 minutes)

Questions: 
• What is a phylogeny? 
• What data are used?
• What are the most popular methods?
• What is meant by “accuracy”, and how is it 

measured?
• What is involved in a phylogenetic 

analysis?

Phylogeny

Orangutan Gorilla Chimpanzee Human

From the Tree of the Life Website,
University of Arizona
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Data

• Biomolecular sequences: DNA, RNA, amino acid, 
in a multiple alignment

• Molecular markers (e.g., SNPs, RFLPs, etc.)
• Morphology
• Gene order and content

These are “character data”: each character is a 
function mapping the set of taxa to distinct states 
(equivalence classes), with evolution modelled as 
a process that changes the state of a character 

DNA Sequence Evolution

AAGACTT

TGGACTTAAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTTAGCACAAAGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTTAAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTTAGCACAATAGACTTTAGCCCAAGGGCAT
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Phylogeny Problem

TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT

U V W X Y

U

V W

X

Y

Phylogenetic Analyses

• Step 1: Gather sequence data, and estimate 
the multiple alignment of the sequences.

• Step 2: Reconstruct trees on the data. (This 
can result in many trees.)

• Step 3: Apply consensus methods to the set 
of trees to figure out what is reliable.
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Reconstruction methods

• Much software exists, most of which attempt to 
solve one of two major optimization criteria: 
Maximum Parsimony and Maximum Likelihood.  
The most frequently used software package is 
PAUP*, which contains many different heuristics.

• Methods for phylogeny reconstruction are 
evaluated primarily in simulation studies, based 
upon stochastic models of evolution.

Consensus and agreement 
methods

• Consensus methods take a set of trees on the same 
set of taxa, and return a single tree on the full set.  
Standard approaches: strict consensus and 
majority tree.

• Agreement methods take a set of trees on the same 
set of taxa, and return a single tree on a subset of 
the taxa.  Standard approaches: maximum 
agreement subtree.

• Much new research needs to be done
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The Jukes-Cantor model of site 
evolution

• Each “site” is a position in a sequence
• The state (i.e., nucleotide) of each site at the root 

is random
• The sites evolve independently and identically 

(i.i.d.)
• If the site changes its state on an edge, it changes 

with equal probability to the other states
• For every edge e, p(e) is defined, which is the 

probability of change for a random site on the 
edge e.

Methods for phylogenetic 
inference

• Polynomial time methods, mostly based 
upon estimating evolutionary distances 
between sequences, and then using them to 
construct a tree with edge lengths

• Heuristics for hard optimization problems 
(such as maximum parsimony and 
maximum likelihood)

• Bayesian MCMC methods 
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Additive Distance Matrices

Distance-based Phylogenetic Methods
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Standard problem: Maximum Parsimony 
(Hamming distance Steiner Tree)

• Input: Set S of n aligned sequences of 
length k

• Output: A phylogenetic tree T
– leaf-labeled by sequences in S
– additional sequences of length k labeling the 

internal nodes of T

such that                     is minimized. ∑
∈ )(),(

),(
TEji

jiH

Maximum parsimony (example)

• Input: Four sequences
– ACT
– ACA
– GTT
– GTA

• Question: which of the three trees has the 
best MP scores?
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Maximum Parsimony

ACT

GTT ACA

GTA ACA ACT

GTAGTT

ACT

ACA

GTT

GTA

Maximum Parsimony

ACT

GTT

GTT GTA

ACA

GTA

1
2

2

MP score = 5

ACA ACT

GTAGTT

ACA ACT
3 1 3

MP score = 7

ACT

ACA

GTT

GTA
ACA GTA
1 2 1

MP score = 4

Optimal MP tree
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Maximum Parsimony: 
computational complexity

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)

Maximum Likelihood (ML)

• Given:  stochastic model of sequence evolution 
(e.g. Jukes-Cantor) and a set S of sequences 

• Objective: Find tree T and probabilities p(e) of 
substitution on each edge, to maximize the 
probability of the data.

Preferred by some systematists, but even harder than 
MP in practice.
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Bayesian MCMC

• Assumes a model of evolution (e.g., Jukes-Cantor)
• The basic algorithmic approach is a random walk 

through the space of model trees, with the 
probability of the data on the model tree 
determining whether the proposed new model tree 
is accepted or rejected. 

• Statistics on the set of trees visited after “burn-in” 
constitute the output.

Performance criteria for phylogeny 
reconstruction methods

• Speed
• Space
• Optimality criterion accuracy
• “Topological accuracy” (specifically statistical 

consistency, convergence rate, and performance 
on finite data)

These criteria can be evaluated on real or simulated 
data.
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Evaluating MP heuristics with 
respect to MP scores

Time

MP score
of best trees

Performance of Heuristic 1

Performance of Heuristic 2

Fake study

Quantifying Topological Error

FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate

FN

FP
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Statistical performance issues

• Statistical consistency: an estimation method is 
statistically consistent under a model if the 
probability that the method returns the true tree 
goes to 1 as the sequence length goes to infinity

• Convergence rate: the amount of data that a 
method needs to return the true tree with high 
probability, as a function of the model tree

Practice

• In practice, most systematic biologists use 
either MP or ML on small datasets, and MP 
or MCMC methods on moderate to large 
datasets

• Distance-based methods (such as neighbor 
joining) are used by some, but are not 
considered as reliable as these other 
approaches.
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Major challenges

• The main challenge here is to make it 
possible to obtain good solutions to MP or 
ML in reasonable time periods on large 
datasets

• MCMC methods are increasingly used 
(often as a surrogate for a decent ML 
analysis), but it is not clear how to evaluate 
MCMC methods

Part II: Models of evolution 
(20 minutes)

• Site evolution models
• Variation across sites
• Statistical performance issues: statistical

identifiability, statistical consistency, 
convergence rates

• Special issues: molecular clock, 
no-common-mechanism
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The Jukes-Cantor model of site 
evolution

• Each “site” is a position in a sequence
• The state (i.e., nucleotide) of each site at the root 

is random
• The sites evolve independently and identically 

(i.i.d.)
• If the site changes its state on an edge, it changes 

with equal probability to the other states
• For every edge e, p(e) is defined, which is the 

probability of change for a random site on the 
edge e.

General Markov (GM) Model
• A GM model tree is a pair           where

– is a rooted binary tree.

– , and         is a stochastic 
substitution matrix with   

– The state at the root of  T is random.
• GM contains models like Jukes-Cantor (JC), 

Kimura 2-Parameter (K2P), and the Generalized 
Time Reversible (GTR) models.

)( MT,

)}(:)({ TEeeM ∈=M

T
)(eM

1,0))(det( ±≠eM



18

Variation across sites

• Standard assumption of how sites can vary 
is that each site has a multiplicative scaling 
factor

• Typically these scaling factors are drawn 
from a Gamma distribution (or Gamma plus 
invariant)

Special issues

• Molecular clock: the expected number of 
changes for a site is proportional to time

• No-common-mechanism model: there is a 
random variable for every combination of 
edge and site
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Statistical performance issues

• Statistical consistency: an estimation method is 
statistically consistent under a model if the 
probability that the method returns the true tree 
goes to 1 as the sequence length goes to infinity

• Convergence rate: the amount of data that a 
method needs to return the true tree with high 
probability, as a function of the model tree

Statistical consistency and convergence 
rates
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Statistical performance

• Standard distance-based methods and Maximum 
Likelihood (solved exactly) are statistically 
consistent under the General Markov model 

• Maximum Parsimony is not always statistically 
consistent, even for the (simplest) Jukes-Cantor 
model

• No method can be statistically consistent under the 
No Common Mechanism model - because the 
model is not identifiable. (In fact, under this 
model, MP = ML)

Part III: Distance-based methods 
(30 minutes)
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Overview

• Additive matrices and the four-point 
condition and method

• The Naïve Quartet Method
• Statistical consistency
• Convergence rates (sequence length 

requirements)
• Absolute fast convergence versus 

exponential convergence

Distance-based Phylogenetic Methods
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Additive Distance Matrices

Four-point condition

• A matrix D is additive if and only if for 
every four indices i,j,k,l, the maximum and 
median of the three pairwise sums are 
identical

Dij+Dkl < Dik+Djl = Dil+Djk

The Four-Point Method computes trees on 
quartets using the Four-point condition
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Naïve Quartet Method

• Compute the tree on each quartet using the 
four-point condition

• Merge them into a tree on the entire set if 
they are compatible:
– Find a sibling pair A,B
– Recurse on S-{A}
– If S-{A} has a tree T, insert A into T by making 

A a sibling to B, and return the tree

Statistical Consistency

The Naïve Quartet Method (NQM) returns the true 
tree if                is small enough.),( λdL∞

∞→Sequence length

Hence NQM is statistically consistent for many 
models of evolution.
(The same result holds for many distance-based
methods.)
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Absolute fast convergence vs. 
exponential convergence

Absolute Fast Convergence

• Let           .  Define                              .  We 
parameterize the GM model:

• A phylogenetic reconstruction method  is 
absolute fast-converging (AFC) for the GM 
model if for all positive            there is a 
polynomial   such that for all                       on 
set    of    sequences of length at least     generated 
on    , we have

0, ≥gf |)det(|log)( eMe −=λ

})(),(:),{(, gefTEeGMTGM gf ≤≤∈∀∈= λM

Φ

ε,, gf
p gfGMT ,),( ∈M

S n )(np

T ε−>=Φ 1])(Pr[ TS



25

Theoretical Comparison of Methods

• Theorem 1 [Warnow et al. 2001]
DCMNJ+SQS is absolute fast converging for the 
GM model.

• Theorem 2 [Atteson 1999]
NJ is exponentially converging for the GM model.

• Theorem 3 [Szekely and Steel] ML is 
exponentially converging for the GM model.

DCM-Boosting [Warnow et al. 2001]

• DCM+SQS is a two-phase procedure which 
reduces the sequence length requirement of 
methods.

DCM SQS
Exponentially
converging
method

Absolute fast 
converging
method

• DCMNJ+SQS is the result of DCM-boosting NJ.
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Main Result: DCM-boosting phylogenetic 
reconstruction methods [Nakhleh et al. ISMB 2001]

• DCM-boosting makes 
fast methods more 
accurate 

• DCM-boosting speeds-
up heuristics for hard 
optimization problems

NJ
DCM-NJ
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Part III: Maximum Parsimony 
(30 minutes) 
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MP is not statistically consistent

• Jukes-Cantor evolution
• The Felsenstein zone

A

B

C

D

A

C

B

D

Maximum Parsimony: 
computational complexity

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)
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Approximation algorithms

• 2-approximation algorithm:  Compute MST 
on the graph where the vertex set is the set 
of sequences

• More generally, approximation algorithms 
for the Steiner Tree problem can be applied 
to the MP problem

Local search strategies

Phylogenetic trees

Cost

Global optimum

Local optimum
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Heuristics for MP

• Hill-climbing based upon TBR, SPR, or 
NNI moves

• The Parsimony Ratchet
• Sectorial Search
• Disk-Covering

How good an MP analysis do we 
need?

• Our research (Moret, Roshan, Warnow, and 
Williams) shows that we need to get within 
0.01% of optimal MP scores (or better 
even, on large datasets) to return reasonable 
estimates of the true tree’s “topology”
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Comparison of MP heuristics
• Methods: TBR search, Ratchet, I-DCM3(TBR), I-

DCM3(Ratchet)
• Datasets: Biological data
• Experimental Methodology: 

– On each dataset we ran 10 trials of each method (each trial 
for 24 hours).

– We then plotted avg. best MP scores after fixed time 
intervals.

• Implementation: Ratchet was implemented using 
PAUP*4.0 and I-DCM3 was implemented by us 
using C++. We used Linux Pentium machines for our 
experiments. 

2000 Eukaryotes sRNA (Gutell et. al.)
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2594 rbcL DNA (Kallersjo et. al.)

Datasets

• 1322 lsu rRNA of all organisms
• 2000 Eukaryotic rRNA
• 2594 rbcL DNA
• 4583 Actinobacteria 16s rRNA 
• 6590 ssu rRNA of all Eukaryotes
• 7180 three-domain rRNA
• 7322 Firmicutes bacteria 16s rRNA
• 8506 three-domain+2org rRNA
• 11361 ssu rRNA of all Bacteria
• 13921 Proteobacteria 16s rRNA

Obtained from various researchers and online databases
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Problems with current techniques for MP

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

Average MP 
score above 

optimal at 24 
hours, shown as a 
percentage of the 

optimal

1 2 3 4 5 6 7 8 9 10
Dataset#

TNT

Average MP scores above optimal of best methods at 24 hours across 10 datasets

Best current techniques fail to reach 0.01% of optimal at the end of 24 hours, on large datasets

Problems with current techniques for MP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 4 8 12 16 20 24

Hours

Average MP 
score above 

optimal, shown as 
a percentage of 

the optimal

Best methods are a combination of simulated annealing, divide-and-conquer and 
genetic algorithms, as implemented in the software package TNT. However, they
do not reach 0.01% of optimal on large datasets in 24 hours.

Performance of TNT with time
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Challenges

• Good lower bounds
• More effective heuristics
• Branch-and-bound
• Statistical performance issues

Part V: Maximum Likelihood 
(15 minutes)
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Computational problems

• Given a model tree (and its associated 
parameters) and sequences at the leaves, 
compute the probability of the data

• Given a model tree (but not its associated 
parameters) and the sequences at the leaves, 
find the optimal parameter values

• Given the sequence set S, find the best 
model tree and its associated parameters

Maximum Likelihood

• Given a model tree and its model parameters (e.g., 
“branch lengths”), computing the probability of 
the data under the model tree can be done in 
polynomial time for most models (all popular 
ones).

• Finding the optimal parameters on a fixed tree is 
computationally hard (analytic solutions exist only 
for a handful of cases), but theoretically open.

• Finding the best model tree is computationally 
hard, but theoretically open.
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Statistical consistency

• If solved exactly, maximum likelihood is 
statistically consistent under the General Markov 
model (and its submodels)

• Maximum likelihood for the No-Common-
Mechanism model is not statistically consistent

• Maximum likelihood under the wrong model is 
not statistically consistent

Main challenges for ML 
estimation

• ML has the same problems as MP has 
(searching treespace)

• In addition, the “point estimation” problem 
(finding optimal branch lengths) is a major 
issue 
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Part VI: Open problems/research 
directions (1 hour)

• Speeding up searches through tree-space
• Speeding up the ML evaluation of a fixed 

model tree topology (assigning branch 
lengths)

• Non-tree models
• New data (e.g., gene order and content)
• Supertree methods

“Boosting” MP heuristics

• We use “Disk-covering methods” (DCMs) 
to improve heuristic searches for MP and 
ML

DCMBase method M DCM-M
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Rec-I-DCM3 significantly improves performance

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset
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Average MP 
score above 

optimal, shown as 
a percentage of 

the optimal

Current best techniques

DCM boosted version of best techniques

Why Networks?

• Lateral gene transfer (LGT)
– Ochman estimated that 755 of 4,288 ORF’s in E.coli 

were from at least 234 LGT events 

• Hybridization
– Estimates that as many as 30% of all plant lineages are 

the products of hybridization
– Fish
– Some frogs
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Species Networks

A B C D E

Reconstructing Phylogenetic 
Networks

Main question: to combine, or not to 
combine?

Separate analysis:
• Analyze individual genes separately
• Reconcile the resulting phylogenies
Combined analysis:
• Combine (via concatenation) the datasets, 

and attempt to infer the evolutionary history
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Gene Tree I in Species Networks

A B C D E

A B C D E

Gene Tree II in Species Networks

A B C D E

A B C D E A B C D E
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SPR Distances Among Gene Trees

A B C D E

A B C D E A B C D E

SPR Distance 1

Maddison’s Method

Given two gene datasets
• Construct two gene trees T1 and T2
• If SPR(T1,T2)=0

– Return a tree
• If SPR(T1,T2)=1

– Return a network with one reticulation event
• If SPR(T1,T2)>1, return FAIL
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Open problems for reticulation

• Detecting reticulation
• Representing reticulate evolutionary 

scenarios 
• Inferring reticulate evolution
• Visualization

Whole-Genome Phylogenetics

A
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Genomes As Signed Permutations

1 –5  3  4  -2  -6
or

6  2  -4 –3  5 –1
etc.

Genomes Evolve by Rearrangements

• Inverted Transposition

1  2  3  9 -8 –7 –6 –5 –4 10

1  2  3  4  5  6  7  8  9  10

• Inversion (Reversal)

1  2  3 –8 –7 –6 –5 -4 9  10

• Transposition

1  2  3  9  4  5  6  7  8 10
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Other types of events

• Duplications, Insertions, and Deletions (changes 
gene content)

• Fissions and Fusions (for genomes with more than 
one chromosome)

These events change the number of copies of each 
gene in each genome (“unequal gene content”)

Genome Rearrangement Has 
A Huge State Space

• DNA sequences :   4 states per site
• Signed circular genomes with n genes:

states, 1 site

• Circular genomes (1 site)

– with 37 genes (mitochondria):                                   states

– with 120 genes (chloroplasts):                                  states

)!1(2 1 −− nn

521056.2 ×
2321070.3 ×
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Why use gene orders?

• “Rare genomic changes”: huge state space 
and relative infrequency of events 
(compared to site substitutions) could make 
the inference of deep evolution easier, or 
more accurate.

• Our research shows this is true, but accurate 
analysis of gene order data is 
computationally very intensive!

Phylogeny reconstruction from 
gene orders

• Distance-based reconstruction: estimate pairwise 
distances, and apply methods like Neighbor-
Joining or Weighbor

• “Maximum Parsimony”: find tree with the 
minimum length (inversions, transpositions, or 
other edit distances)

• Maximum Likelihood: find tree and parameters of 
evolution most likely to generate the observed 
data
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Maximum Parsimony on Rearranged 
Genomes (MPRG)

• The leaves are rearranged genomes.
• Find the tree that minimizes the total number of rearrangement events (e.g., 

inversion phylogeny minimizes the number of inversions)

A

B

C

D

3 6

2

3

4

A

B

C

D

E
F

Total length
=  18

Software
• BPAnalysis (Sankoff): open source, restricted to the 

breakpoint phylogeny reconstruction
• GRAPPA (Moret et al.): open source, restricted to single 

chromosome genomes, but can handle both equal and 
unequal gene content 

• MGR (Pevzner et al.): multiple chromosome, limited to 
equal gene content, performs well if the dataset is small 
(less than 10 genomes)

• Bayesian analysis by Bret Larget (not yet released).


