Computational Approaches
 to Haplotype Inference

Ravi Vijaya Satya

Amar Mukherjee

Overview

- SNPs \& Haplotypes
- The HapMap Project
- Why "Infer" Haplotypes?
- Computational Methods
- Maximum Resolution
- Perfect Phylogeny Haplotyping
- Haplotyping with Pedigree information
- Haplotyping via sequencing
- Direct Approach for PPH (Bafna, Gusfield, et. al.)

Genetic Variations

cause inherited
 diseases

Source: Gabor T. Marth,
www.vanbug.org/talk_ppts/Gabor_2004.ppt

SNP: Single Nucleotide Polymorphism

"Loci in the human genome in which a considerable percentage of the population differs from the rest."
...CATGATCACGTCGACGATCGAT...
...CATGATCACGTCGACGATCGAT...
...CATGATCATGTCGACGATCGAT...
...CATGATCACGTCGACGGTCGAT...
Allele - One of the possible states of a given a locus
The locations, or loci, are also called 'markers'

Types of SNPs

- Number of alleles:
- Bi-allelic: A site is called bi-allelic if there are only two possible states for that site.
- Multi-allelic: A site is called multi-allelic if there are more than two possible states for that site
- Almost all the SNPs are bi-allelic
- Coding / Noncoding
- Coding (CSNP), if the SNP occurs in an exon
- Non-coding, if it occurs in an intron or in a noncoding region

Types of SNPs (contd...)

- Coding SNPs can be:aca gat cag atc atg.....
- Silent T D $\quad \mathbf{D} \quad \mathbf{I} \quad$ M
- Non-silent

$$
\begin{aligned}
& \text {.....aca gat cag atc atg..... } \\
& \ldots \ldots . . \\
& \ldots .
\end{aligned}
$$

Haplotypes

Definition1: "The sequence of a copy of the chromosome"

- Over 10 million SNPs in total
- 1 SNP every 300 base pairs
- If each SNP is independent, there can be $2^{10,000,000}$ combinations possible.
- Limited variation
- Adjacent SNPs are interdependent
- 'A' at SNP1 \rightarrow ' G ' at SNP2, and:
- 'C' at SNP1 \rightarrow ' T ' at SNP2

Haplotypes(Contd...)

Defintion2: Each individual form taken by a block of adjacent, interdependent SNPs is called a 'Haplotype'.

- A block consisting of 15 SNPs might in fact have only five or six common haplotypes.

> Haplotype 1 CTCAAAGTACGGTTCAGGCA
> Haplotype 2 TTGATTGCGCAACAGTAATA
> Haplotype 3 CCCGATCTGTGATACTGGTG
> Haplotype 4 TCGATTCCGCGGTTCAGACA

- One possible reason
- Limited number of loci where recombinations are possible

The International HapMap Project

"multi-country effort to identify and catalog genetic similarities and differences in human beings"

- HapMap.org

Target:
A complete map of genetic variations in different populations

Countries currently involved:
United States, Japan, China, Canada, UK and Nigeria

HapMap Goals

- To provide tools and data for 'association studies'
- The HapMap will help in:
- Linking diseases to genetic variations
- Diagnosing diseases
- Preventing diseases
- Estimating response to drugs
- Designing 'custom' drugs

Construction of HapMap

a SNPS | SNP | | |
| :---: | :---: | :---: |
| \downarrow | SNP | SNP |
| \downarrow | \quad Identification of SNPS | |

Chromosome 1 AACACGCCA.... TTCGGGTC.... AGTCGACCG.... Chromosome2 AACACGCCA.... TTCGAGGTC.... AGTCAACCG.... Chromosome 3 AACATGCCA.... TTCGGGGTC.... AGTCAACCG.... Chromosome 4 AACACGCCA.... TTCGGGGTC.... AGTCGACCG....

- Compilation of SNPs into Haplotypes
- Finding 'tag' SNPs

Picture Source:
HapMap.org

Sample Populations

- Yoruba in Ibadan, Nigeria
- Individuals having four Yoruba grand parents
- Japanese in Tokyo, Japan
- Individuals from different parts of Japan
- Han Chinese in Beijing, China
- Individuals having at least 3 out of four Han grand parents
- CEPH (Centre d'Etude du Polymorphisme Humain)
- Utah Residents with Northern and Western European Ancestry

Sample Populations ...

- 270 individuals in total:
- Yoruba - 30 'trio's (two parents an adult child)
- Japanese - 45 unrelated individuals
- Han Chinese - 45 unrelated individuals
- CEPH - 30 'trio's - collected in 1980's
- The samples are anonymous with regards to individual identity

Why 'infer’ Haplotypes?

- Humans are diploid:
- Two copies of each chromosome
- One each from each parent
- A site is homozygous if it has the same allele in both chromosomes
- A site is called heterozygous if it has different alleles on the two chromosomes
- Expensive to sequence each chromosome separately
- The chromosomes are sequenced together, producing the 'genotype' information.

Genotype Data

- Genotype data tells whether each site is:
- Heterozygous (Aa, unordered)
- Homozygous with dominant allele (AA)
- Homozygous with the minor allele (aa)
- Haplotype data:
- Gives the actual alleles at each site
- Need to infer haplotypes from genotypes.

Haplotype Inference Problem:
Given a set of genotypes, can the underlying
haplotypes be determined computationally?

Types of Genotype data

- With pedigree information
- Relationships between at least some of the individuals are known
- Eg: trios
- Without pedigree information
- Unrelated individuals
- Relationship information not available.

Haplotyping: Definitions

- All sites are bi-allelic
- The two alleles are represented by '0' and ' 1 '
- '0’ generally indicates the more frequent allele
- '1' indicates the less frequent, or the minor allele
- A haplotype of length m :
- Is a vector $h=<h_{1}, \ldots, h_{m}>$ over $\{0,1\}^{m}$
- Each position i is a site, or locus

Haplotyping: Definitoins

- A genotype represents two haplotypes:
- Each site (position) is an unordered pair over $\{0,1\}$
- Can be written as: $g=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ over $\{0,1,2\}^{m}$
- ' 0 ' indicates the pair(0,0), 1 indicates (1,1)
- ' 2 ' indicates the pairs $(0,1)$ or $(1,0)$

011100110
110100100

212100120
The two haplotypes
,
The genotype

Haplotyping: Definitoins

- Resolution of a genotype $g=\left\langle g_{1}, \ldots, g_{m}\right\rangle$
- A pair $<h, k>$ of haplotypes such that:
- $h_{i}=k_{i}=g_{i}$ if $g_{i}=0$ or 1
- $h_{i} \neq k_{i}$ if $g_{i}=2$, for each $i, 1 \leq i \leq m$
- A haplotype h is compatible with a genotype g if there exists another haplotype h ' such that that pair <h,h'>resolves g
- h^{\prime} is called realization of g by h
- h ' is denoted as $R(g, h)$

Haplotyping: definitions

- Given h and g, there can be only one h ':
- $h^{\prime}[]=h[]$ if $g[]$ is homozygous
- $h^{\prime}[1]=1-h[]$ if $g[]$ is heterozygous
$\begin{array}{lllllllllllll}\boldsymbol{g} & 2 & 1 & 2 & 1 & 0 & 0 & 1 & 2 & 0 & \\ \boldsymbol{h} & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & \\ \boldsymbol{h} & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$,

Haplotype inference problem

Input: a set $G=\left\{g_{1}, \ldots \ldots, g_{n}\right\}$ of genotypes
Output: for each $g \in G$ a pair $<h, h>$ of haplotypes resolving g.
Simple solution:

- Find h by randomly assigning '1' or '0' for each '2' in g
- $h^{\prime} \leftarrow R(g, h)$

$$
\begin{array}{llllllllll}
\boldsymbol{g} & 2 & 1 & 2 & 1 & 0 & 0 & 1 & 2 & 0 \\
\boldsymbol{h} & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\boldsymbol{h}^{\prime} & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}
$$

If there are p heterozygous sites, 2^{p-1} different solutions possible

Questions...

- Which of the solutions is correct for the given set of genotypes?
- What is a correct solution?
- Which solution is more acceptable?

Observations

- Block structure of the human genome
- Long stretches within which recombinations are extremely rare
- Very few distinct haplotypes are found within each block.

Mendelian Law

The child inherits exactly one copy of each locus from each parent.

Parsimony

- What are the minimum number of haplotypes that resolve the given set of genotypes?
Maximum Resolution (MR) Problem
Given an initial set of haplotypes, what is the maximum number of genotypes that can be resolved by starting with these haplotypes?

Back to Genotypes:
Ambiguous: more than one heterozygous site Unambiguous: Contains at most one heterozygous site.

Clark, 1990

- Resolve all the unambiguous genotypes
- Try to resolve the maximum number of genotypes by applying the inference rule
Inference Rule:
G is a set of genotypes, $\left\{g_{1}, \ldots g_{m}\right\}$
H is a non-empty set of distinct haplotypes (derived from the Unambiguous Genotypes)
Application of the Inference Rule:
Find $h \in H$ and $g \in G$ such that h is compatible with g. Add $R(g, h)$ to H and remove g from G

Applying the inference rule

- Not all sequence applications result in the same set of haplotypes
Example:
$G=\left\{g_{1}=020201, g_{2}=002002\right\}$
$H=\left\{h_{1}=010101, h_{2}=000101\right\}$
Sequence1: Apply h_{2} to g_{1} :
$\mathrm{G}=\left\{g_{2}=002002\right\}, H=\left\{h_{1}=010101, h_{2}=000101, h_{3}=010000\right\}$
Stuck - cannot resolve g_{2}
Sequence2: Apply h_{1} to g_{1} :
$\mathrm{G}=\left\{g_{2}=002002\right\}, H=\left\{h_{1}=010101, h_{2}=000101, h_{3}=000001\right\}$
Apply h_{3} to g_{2} :
$\mathrm{G}=\{ \}, H=\left\{h_{1}=010101, h_{2}=000101, h_{3}=000001, h_{4}=001000\right\}$

Applying the inference rule

- Clark's original approach
- Pick a (h, g) randomly and apply the inference rule
- Repeat until stuck
- Repeat the whole experiment many many times $(10,000)$ times
- Output the best solution
- Complexity of the MR decision Problem
- Proven to be NP-hard by Gusfield (JCB, 2001)
- A slightly better heuristic by Gusfield, 2000

Draw backs of the MR approach

- No valid biological model assumed
- Biological models might result in more realistic solutions

The Coalescent model

- The evolutionary history of the haplotypes can be represented by a rooted tree.
- Each haplotype is given by an extant leaf of the tree
- Infinite site assumption:
- Mutations are relatively rare, compared to the number of sites:
- At most one mutation can occur in a given site in the whole tree

Haplotype Perfect phylogeny

Given a $n \times m\{0,1\}$ matrix B, in which each row is a haplotype, a haplotype perfect phylogeny for B is a rooted tree T such that:

- Each extant leaf is labeled by a distinct haplotype from B.
- Each internal edge of T is labeled exactly one SNP site j changing from 0 to 1 .
- For each haplotype leaf h, the path from the root to h specifies the exact set of SNPs that are ' 1 ' in T.
- The root of the tree is always assumed to an all-zero vector.

The Perfect Phylogeny Haplotyping (PPH) Problem

- Given a matrix G over the alphabet $\{0,1,2\}$
- Find a matrix H over the alphabet $\{0,1\}$ such that:
- Each row in G is resolved by a pair of rows in H
- There a haplotype perfect phylogeny T for H
- Or, decide that such a matrix H does not exist.

PPH: Solutions

- Complexity: $\mathrm{O}\left(n m^{2}\right)$
- Gusfield, 2002
- Halperin, Eskin and Karp, 2003
- Bafna, Gusfield, et. al., 2002
- Complexity of the PPH problem
- O(nm) ?
- Not proven yet

Haplotype inference when pedigree information is available

- Does Pedigree information help?
- Yes
- If at least one of the parents are homozygous at a locus, the child can be resolved even if it's hetrozygous in that locus
- Does it solve the problem?
- No - there are still too many possibilities
- Nothing can be done when both the parents are heterozygous

How does pedigree help?

Father	Mother
1	2
2	2
0	0
2	0
1	2
0	1
2	2

Father	Mother
11	2
2	2
00	00
2	00
11	2
00	11
2	2

2
2
0
2
2

Pedigree Graph

Pedigree Graph:

A weakly connected directed acyclic graph $G=$ $\langle V, E\rangle$, where $V=M \cup F \cup N$,

- M male nodes, F - female nodes, N - mating nodes
- $E=\{e=(u, v): u \in M U F$ and $V \in N$ or $u \in N$ and $v \in M U F$
- M \mathcal{F} : individual nodes - indegree ≤ 1
- N : mating nodes - indegree $=2$

Pedigree Graph

Pedigree graph with mating nodes

Pedigree graph without mating nodes

Genotype Pedigree graph:
A pedigree graph G in where each individual vertex is labeled by a m-site genotype vector.

Pedigree Graph Haplotype Inference (PHI) Problem

- A genotyped pedigree graph is g-valid if the consistency rules hold for each child v with parents u and w :
- if $u[i] \neq w[i]$ are both defined, then $v[i]=$?,
- if $u[i] \neq w[i]$ and only one of $u[i]$ or $w[i]$ is defined, then $v[i]=w[i]$ or $v[i]=u[i]$,
- if $u[i]=w[i]=$?, then $v[i]$ can be 0,1 or ?,
- $u[i]=v[i]=w[i]$, otherwise.

PHI Problem:
Input: a g-valid pedigree graph G
Output: a haplotyped pedigree graph which is a realization of G
GMRHI (General Minimum recombinant Haplotype Inference Problem):
Output: A realization of G minimizing the recombination events

Haplotyping via Sequencing:
 Revisiting the sequence assembly problem

- The original sequence assembly problem:
- Fragments from a single chromosome
- What if the fragments come from both the copies of the chromosome?
- Assumptions:
- All SNP locations within each fragment are known
- Each SNP is bi-allelic
- The sequence of SNPs along a fragment is described by a vector over the alphabet $\{0,1\}$

Formal Definition

- Given: a $n \times m$ matrix M where:
- each entry $M[i, j]$ is ' 0 ' or ' 1 ' or ' - '.
- i-th row corresponds to the i-th fragment
- j-th column corresponds to the j-th SNP
- If $M[i, j]$ is ' - ', the i-th fragment does not cover the j-th SNP.
- '-' is called a 'hole'
- Two fragments p and q conflict with each other if they don't agree on a SNP k :
- $M[p, k] \neq M[q, k]$, and neither $M[p, k]$ or $M[q, k]$ are holes
- The matrix M is error-free if the rows can be parttioned into two matrices M_{1} and M_{2} such that both M_{1} and M_{2} do not contain any conflicting fragments.
- Solved by constructing the fragment conflict graph

SNPs							
Conflicts	1	2	3	4	5	6	
	1	0	1	-	0	-	0
2	0	-	1	-	-	0	
3	1	0	-	-	1	1	
4	-	1	1	-	0	-	
5	1	-	-	1	-	1	

What if there are errors?

	1	2	3	4	5	6
1	0	1	-	0	-	0
2	0	-	1	-	-	0
3	1	0	-	-	1	1
4	-	1	1	-	0	-
5	1	1	-	1	-	1

Maximum Fragment Removal:

Minimum number of fragments to remove to make the matrix error free

Minimum SNP removal:

Minimum number of SNPs to remove to make the matrix error free

Minimum error correction:
Minimum number of modifications to make the matrix error free.
All are NP-Hard

PPH: basics

The matrix H admits a hpp iff every submatrix induced by three rows and a pair of columns is not a forbidden matrix.

Extending the forbidden matrix rule to the matrix G

- A pair $x y, x, y \in\{0,1\}$, is said to be forced in H if there is a pair $x 2$ or $2 y$ or $x y$ in G. (Eskin, Karp and Halperin, 2002)

