Computational Approaches to Haplotype Inference

Ravi Vijaya Satya
Amar Mukherjee

Overview

- SNPs & Haplotypes
- The HapMap Project
- Why “Infer” Haplotypes?
- Computational Methods
 - Maximum Resolution
 - Perfect Phylogeny Haplotyping
 - Haplotyping with Pedigree information
- Haplotyping via sequencing
- Direct Approach for PPH (Bafna, Gusfield, et al.)
Genetic Variations

underlie phenotypic differences
cause inherited diseases
allow tracking ancestral human history

Source: Gabor T. Marth,
www.vanbug.org/talk_ppts/Gabor_2004.ppt

SNP: Single Nucleotide Polymorphism

“Loci in the human genome in which a considerable percentage of the population differs from the rest.”

...CATGATCACTCGACGATCGAT...
...CATGATCACGTCGACGATCGAT...
...CATGATCATGTCGACGATCGAT...
...CATGATCACGTCGACGATCGAT...
...CATGATCACGTCGACGATCGAT...

Allele - One of the possible states of a given a locus
The locations, or loci, are also called ‘markers’
Types of SNPs

- **Number of alleles:**
 - Bi-allelic: A site is called bi-allelic if there are only two possible states for that site.
 - Multi-allelic: A site is called multi-allelic if there are more than two possible states for that site.
 - Almost all the SNPs are bi-allelic.

- **Coding / Noncoding**
 - Coding (CSNP), if the SNP occurs in an exon.
 - Non-coding, if it occurs in an intron or in a non-coding region.

Types of SNPs (contd...)

- **Coding SNPs can be:**
 - Silent
 - Non-silent

...aca gat cag atc atg......
.......T D Q I M

...aca gaa cag atc atg......
.......T S Q I M
Haplotypes

Definition 1: “The sequence of a copy of the chromosome”
- Over 10 million SNPs in total
 - 1 SNP every 300 base pairs
 - If each SNP is independent, there can be $2^{10,000,000}$ combinations possible.
- Limited variation
 - Adjacent SNPs are interdependent
 - ‘A’ at SNP1 \rightarrow ‘G’ at SNP2, and:
 - ‘C’ at SNP1 \rightarrow ‘T’ at SNP2

Haplotypes (Contd…)

Definition 2: Each individual form taken by a block of adjacent, interdependent SNPs is called a ‘Haplotype’.
- A block consisting of 15 SNPs might in fact have only five or six common haplotypes.

One possible reason
- Limited number of loci where recombinations are possible
The International HapMap Project

“multi-country effort to identify and catalog genetic similarities and differences in human beings” - HapMap.org

Target:
A complete map of genetic variations in different populations

Countries currently involved:
United States, Japan, China, Canada, UK and Nigeria

HapMap Goals

- To provide tools and data for ‘association studies’
- The HapMap will help in:
 - Linking diseases to genetic variations
 - Diagnosing diseases
 - Preventing diseases
 - Estimating response to drugs
 - Designing ‘custom’ drugs
Construction of HapMap

- Identification of SNPs
- Compilation of SNPs into Haplotypes
- Finding ‘tag’ SNPs

Sample Populations

- Yoruba in Ibadan, Nigeria
 - Individuals having four Yoruba grand parents
- Japanese in Tokyo, Japan
 - Individuals from different parts of Japan
- Han Chinese in Beijing, China
 - Individuals having at least 3 out of four Han grand parents
- CEPH (Centre d’Etude du Polymorphisme Humain)
 - Utah Residents with Northern and Western European Ancestry
Sample Populations …

- 270 individuals in total:
 - Yoruba – 30 ‘trio’s (two parents an adult child)
 - Japanese – 45 unrelated individuals
 - Han Chinese – 45 unrelated individuals
 - CEPH – 30 ‘trio’s – collected in 1980’s
- The samples are anonymous with regards to individual identity

Why ‘infer’ Haplotypes?

- Humans are diploid:
 - Two copies of each chromosome
 - One each from each parent
 - A site is homozygous if it has the same allele in both chromosomes
 - A site is called heterozygous if it has different alleles on the two chromosomes
- Expensive to sequence each chromosome separately
 - The chromosomes are sequenced together, producing the ‘genotype’ information.
Genotype Data

- Genotype data tells whether each site is:
 - Heterozygous (Aa, unordered)
 - Homozygous with dominant allele (AA)
 - Homozygous with the minor allele (aa)

- Haplotype data:
 - Gives the actual alleles at each site
 - Need to infer haplotypes from genotypes.

Haplotype Inference Problem:
Given a set of genotypes, can the underlying haplotypes be determined computationally?

Types of Genotype data

- With pedigree information
 - Relationships between at least some of the individuals are known
 - Eg: trios

- Without pedigree information
 - Unrelated individuals
 - Relationship information not available.
Haplotyping: Definitions

- All sites are bi-allelic
- The two alleles are represented by ‘0’ and ‘1’
 - ‘0’ generally indicates the more frequent allele
 - ‘1’ indicates the less frequent, or the minor allele
- A haplotype of length m:
 - Is a vector $h = <h_1, \ldots, h_m>$ over $\{0,1\}^m$
 - Each position i is a site, or locus

Haplotyping: Definitions

- A genotype represents two haplotypes:
 - Each site (position) is an unordered pair over $\{0,1\}$
 - Can be written as: $g = <g_1, \ldots, g_m>$ over $\{0,1,2\}^m$
 - ‘0’ indicates the pair (0,0), 1 indicates (1,1)
 - ‘2’ indicates the pairs (0,1) or (1,0)

```
0 1 1 1 0 0 1 1 0  
1 1 0 1 0 0 1 0 0  
2 1 2 1 0 0 1 2 0  
```

The two haplotypes

The genotype
Haplotyping: Definitions

- **Resolution** of a genotype $g = \langle g_1, \ldots, g_m \rangle$
 - A pair $\langle h, k \rangle$ of haplotypes such that:
 - $h_i = k_i = g_i$ if $g_i = 0$ or 1
 - $h_i \neq k_i$ if $g_i = 2$, for each i, $1 \leq i \leq m$
 - A haplotype h is *compatible* with a genotype g if there exists another haplotype h' such that that pair $\langle h, h' \rangle$ resolves g
 - h' is called realization of g by h
 - h' is denoted as $R(g, h)$

Haplotyping: definitions

- Given h and g, there can be only one h':
 - $h'[i] = h[i]$ if $g[i]$ is homozygous
 - $h'[i] = 1 - h[i]$ if $g[i]$ is heterozygous

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>h</th>
<th>h'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 1 2 1 0 0 1 2 0</td>
<td>0 1 1 1 0 0 1 0 0</td>
<td>1 1 0 1 0 0 1 1 0</td>
</tr>
</tbody>
</table>

Compatible

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>h</th>
<th>h'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 1 2 1 0 0 1 2 0</td>
<td>0 0 1 1 0 0 1 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Incompatible
Haplotype inference problem

Input: a set $G = \{g_1, \ldots, g_n\}$ of genotypes

Output: for each $g \in G$ a pair $<h, h'>$ of haplotypes resolving g.

Simple solution:
- Find h by randomly assigning ‘1’ or ‘0’ for each ‘2’ in g
- $h' \leftarrow R(g,h)$

<table>
<thead>
<tr>
<th>g</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h'</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If there are p heterozygous sites, 2^{p-1} different solutions possible

Questions…

- Which of the solutions is *correct* for the given set of genotypes?
- What is a *correct* solution?
- Which solution is more acceptable?
Observations

- Block structure of the human genome
 - Long stretches within which recombinations are extremely rare
 - Very few distinct haplotypes are found within each block.

Mendelian Law

The child inherits exactly one copy of each locus from each parent.
Parsimony

- What are the minimum number of haplotypes that resolve the given set of genotypes?

Maximum Resolution (MR) Problem

- Given an initial set of haplotypes, what is the maximum number of genotypes that can be resolved by starting with these haplotypes?

Back to Genotypes:

Ambiguous: more than one heterozygous site

Unambiguous: Contains at most one heterozygous site.

Clark, 1990

- Resolve all the unambiguous genotypes
- Try to resolve the maximum number of genotypes by applying the *inference rule*

Inference Rule:

G is a set of genotypes, $\{g_1,...,g_m\}$

H is a non-empty set of distinct haplotypes (derived from the Unambiguous Genotypes)

Application of the Inference Rule:

Find $h \in H$ and $g \in G$ such that h is compatible with g. Add $R(g,h)$ to H and remove g from G
Applying the inference rule

- Not all sequence applications result in the same set of haplotypes

Example:

\[G = \{ g_1 = 020201, g_2 = 002002 \} \]
\[H = \{ h_1 = 010101, h_2 = 000101 \} \]

Sequence1: Apply \(h_2 \) to \(g_1 \):

\[G = \{ g_2 = 002002 \}, \]
\[H = \{ h_1 = 010101, h_2 = 000101, h_3 = 010000 \} \]

Stuck – cannot resolve \(g_2 \)

Sequence2: Apply \(h_1 \) to \(g_1 \):

\[G = \{ g_2 = 002002 \}, \]
\[H = \{ h_1 = 010101, h_2 = 000101, h_3 = 000001 \} \]

Apply \(h_3 \) to \(g_2 \):

\[G = \{ \}, H = \{ h_1 = 010101, h_2 = 000101, h_3 = 000001, h_4 = 001000 \} \]

Applying the inference rule

- Clark’s original approach
 - Pick a \((h, g)\) randomly and apply the inference rule
 - Repeat until stuck
 - Repeat the whole experiment many many times (10,000) times
 - Output the best solution

- Complexity of the MR decision Problem
 - Proven to be NP-hard by Gusfield (JCB, 2001)
 - A slightly better heuristic by Gusfield, 2000
Drawbacks of the MR approach

- No valid biological model assumed
 - Biological models might result in more realistic solutions

The Coalescent model

- The evolutionary history of the haplotypes can be represented by a rooted tree.
 - Each haplotype is given by an extant leaf of the tree
- Infinite site assumption:
 - Mutations are relatively rare, compared to the number of sites:
 - At most one mutation can occur in a given site in the whole tree
Haplotype Perfect phylogeny

Given a $n \times m \{0,1\}$ matrix B, in which each row is a haplotype, a haplotype perfect phylogeny for B is a rooted tree T such that:

- Each extant leaf is labeled by a distinct haplotype from B.
- Each internal edge of T is labeled exactly one SNP site j changing from 0 to 1.
- For each haplotype leaf h, the path from the root to h specifies the exact set of SNPs that are ‘1’ in T.
- The root of the tree is always assumed to an all-zero vector.

The Perfect Phylogeny Haplotyping (PPH) Problem

- Given a matrix G over the alphabet $\{0,1,2\}$
- Find a matrix H over the alphabet $\{0,1\}$ such that:
 - Each row in G is resolved by a pair of rows in H
 - There a haplotype perfect phylogeny T for H
 - Or, decide that such a matrix H does not exist.
PPH: Solutions

- Complexity: $O(nm^2)$
 - Gusfield, 2002
 - Halperin, Eskin and Karp, 2003
 - Bafna, Gusfield, et. al., 2002

- Complexity of the PPH problem
 - $O(nm)$?
 - Not proven yet

Haplotype inference when pedigree information is available

- Does Pedigree information help?
 - Yes
 - If at least one of the parents are homozygous at a locus, the child can be resolved even if it’s heterozygous in that locus

- Does it solve the problem?
 - No – there are still too many possibilities
 - Nothing can be done when both the parents are heterozygous
How does pedigree help?

Pedigree Graph

A weakly connected directed acyclic graph $G = <V,E>$, where $V = M \cup F \cup N$,

- M male nodes, F – female nodes, N – mating nodes
- $E = \{e = (u,v): u \in MUF$ and $V \in N$ or $u \in N$ and $v \in MUF$
- $M \cup F$: individual nodes - indegree ≤ 1
- N: mating nodes – indegree $= 2$
Pedigree Graph

![Pedigree Graph with mating nodes](Image 1)

![Pedigree graph without mating nodes](Image 2)

Genotype Pedigree graph:
A pedigree graph G in where each individual vertex is labeled by a m-site genotype vector.

Pedigree Graph Haplotype Inference (PHI) Problem

- A genotyped pedigree graph is g-valid if the consistency rules hold for each child v with parents u and w:
 - if $u[i] \neq w[i]$ are both defined, then $v[i] = ?$,
 - if $u[i] \neq w[i]$ and only one of $u[i]$ or $w[i]$ is defined, then $v[i] = u[i]$ or $v[i] = w[i]$,
 - if $u[i] = w[i] = ?$, then $v[i]$ can be 0, 1 or ?,
 - $u[i] = v[i] = w[i]$, otherwise.

PHI Problem:
Input: a g-valid pedigree graph G
Output: a haplotyped pedigree graph which is a realization of G

GMRHI (General Minimum recombinant Haplotype Inference Problem):
Output: A realization of G minimizing the recombination events
Haplotyping via Sequencing: Revisiting the sequence assembly problem

- The original sequence assembly problem:
 - Fragments from a single chromosome
- What if the fragments come from both the copies of the chromosome?
 - Assumptions:
 - All SNP locations within each fragment are known
 - Each SNP is bi-allelic
 - The sequence of SNPs along a fragment is described by a vector over the alphabet \{0,1\}

Formal Definition

- Given: a \(n \times m\) matrix \(M\) where:
 - each entry \(M[i,j]\) is ‘0’ or ‘1’ or ‘-’.
 - \(i\)-th row corresponds to the \(i\)-th fragment
 - \(j\)-th column corresponds to the \(j\)-th SNP
 - If \(M[i,j]\) is ‘-’, the \(i\)-th fragment does not cover the \(j\)-th SNP.
 - ‘-’ is called a ‘hole’
- Two fragments \(p\) and \(q\) conflict with each other if they don’t agree on a SNP \(k\):
 - \(M[p,k] \neq M[q,k]\), and neither \(M[p,k]\) or \(M[q,k]\) are holes
- The matrix M is error-free if the rows can be partitioned into two matrices M_1 and M_2 such that both M_1 and M_2 do not contain any conflicting fragments.
- Solved by constructing the fragment conflict graph

![SNPs and Conflicts Table]

What if there are errors?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Maximum Fragment Removal:
Minimum number of fragments to remove to make the matrix error free

Minimum SNP removal:
Minimum number of SNPs to remove to make the matrix error free

Minimum error correction:
Minimum number of modifications to make the matrix error free.

All are NP-Hard
PPH: basics

- Forbidden Matrix:

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h_3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The matrix H admits a hpp iff every submatrix induced by three rows and a pair of columns is not a forbidden matrix.

Extending the forbidden matrix rule to the matrix G

- A pair xy, $x, y \in \{0, 1\}$, is said to be forced in H if there is a pair $x2$ or $y2$ or xy in G.

(Eskin, Karp and Halperin, 2002)