Microarrays

CAP 5937-01 Bioinformatics Fall 2004 Amar Mukherjee

Molecular Biology Laboratory Techniques :Hybridization

- Given a short (8- to 30-nuclreotides) synthetic fragment DNA, called *probe*, a target single stranded DNA molecule (produced by denaturing) will *hybridize* or bind to the probe if there is a substring in the target sequence that is complementary to the probe.
- For example, a target DNA sequence <u>CCCTGGCACCTA</u> will hybridize to a probe <u>ACCGTGGA</u> since the complementary sequence <u>TGGCACCT</u> is present in the target.
- In a mix of DNA sequences, the presence of a particular DNA can be tested by making the probe fluorescent or radioactive. This idea has lead to the development of DNA chips or *microarrays* that allows rapid DNA sequencing.

DNA Microchip: Microarrays- A Large-scale Biological Tool

• An excellent presentations about microarray:

 <u>http://www.ncbi.nlm.nih.gov/About/primer/micr</u> <u>oarrays.html</u>

 We will discuss here only the principle and show how a DNA sequence can be derived by using a microarray.

Microarray

- The more important application of microarray is to determine the expression level of different genes rapidly and simultaneously.
- It can give information about gene expression of 30,000 or more genes in one experiment.
- It has also been used for proteomics and study of biological pathways. Another important application is diagnosis of a disease.

Example		
<i>I=</i> 4. The array looks like		
	AA AT AG AC	TA TI TG TC GA GT GG GC CA CT CG CC
	otor	
	atag	
AG		acuc
ТА		tagg
TT		
TG		
тс		
GA		
GT		
GG	0000	ggca
GC CA	yuda	
СТ	Cada	
CG		
CC		
1		

Gene Expression Determination using DNA Micropchip

- Although each cell of human body contains the same genetic material, not all cells produce the same proteins.
- For example the proteins synthesized by a muscle cells are quite different from those that create growth of hair.
- If a gene is active in a cell, it is **expressed**. By studying the expression levels of different genes in a cell the biologists can understand the function of a cell.
- Microarrays can determine the expression levels of thousands of genes simultaneously. The set up is as follows.

Determining Gene Expression using Microarray

- The micorarry spots are filled up with functional DNA.
- Each spot may contain an oligonucleotide or a cDNA fragment which is characteristic of an mRNA.
- Then, mRNA from a cell or cell population are labeled with fluorescent tags and allowed to hybridize with the cDNAs.
- If the cDNA is complimentary to a substring of the mRNA, the mRNA will hybridize to that spot.

Determine the Expression Using Microarray

- A strong intensity of fluorescent light indicates that a high level of mRNA hybridizes to that spot and therefore the gene which is characterized by that spot is very active in that cell or cell population.
- Conversely, if the spot is dark it means that the gene for that spot is inactive and a moderate amount of intensity means that the gene is somehow active.
- The level of intensity is measured by a laser beam and the intensity levels are pre-calibrated for the activity level.
- For further details, visit the website mentioned earlier.

Cancer Detection Using Microchip

- Cancers that are caused by mutations of genes (such as BRCA1 and BRCA2 which are responsible of 60% of breast and ovarian cancer) can be identified by a microchip.
- Since a large gene has several possible places where mutations may occur to cause diseases other than cancer, it is a difficult task to pinpoint exactly which mutation is responsible for cancer by trial

