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Abstract 

In this paper, we present new algorithms for discovering monad patterns in DNA sequences. Monad 
patterns are of the form (l,d)-k, where l is the length of the pattern, d is the maximum number of 
mismatches allowed, and k is the minimum number of times the pattern is repeated in the given sample. 
The time-complexity of some of the best known algorithms to date is O(nt2ld|∑|d), where t is the number of 
input sequences, and n is the length of each input sequence. The first algorithm that we present in this paper 
takes O(n2t2ld/2|∑|d/2) and space O(ntld/2|∑|d/2), and the second algorithm takes O(n3t3 ld/2|∑|d/2) time using 
O(ld/2|∑|d/2) space. In practice, our algorithms have much better performance provided the d/l ratio is small. 
The second algorithm performs very well even for large values l and d as long is the d/l ratio is small.  

Keywords: Pattern discovery, regulatory patterns, k-mismatch patterns 

1. Introduction 
Discovering regulatory patterns in DNA sequences is a well known problem in 
computational biology. Due to mutations and other errors, the actual occurrences of these 
regulatory patterns allow for a certain degree of error. There fore, the actual regulatory 
pattern (or the consensus pattern) may never appear in a gene upstream region, but d-
mismatch occurrences of this pattern might appear. The general approach to this problem 
is to take a set of t DNA sequences each of length n, at least k of which are guaranteed to 
contain the desired binding site, and look for patterns of a certain length l that occur in at 
least k out of the t sequences with at most d mismatches at each occurrence. The values 
of l, d and k can be determined either from prior knowledge about the binding site, or by 
trail and error, trying different values of l and d. 

These single contiguous blocks of patterns are called monad patterns. In general, many 
regulatory signals are made up of a group of monad patterns occurring within a certain 
distance form each other [Eskin et. al, 2003, Eskin et. al. 2002, GuhaThakurtha et. al.  
2001, van Helden et. al. 2000]. In such a case, the patterns are called dyad, triad multi-ad, 
or in general as composite patterns. Finding the composite patterns by finding the 
component monad patterns individually is significantly more difficult, since the 
composite monad patterns might be too subtle to detect. Eskin & Pevzner [Eskin et. al., 
2002] present a simple transformation to convert a multi-ad problem into a slightly larger 
monad problem. In this paper, we present an algorithm to solve the monad problem. The 
same transformation as in [Eskin et. al., 2002] can be applied to transform a multi-ad 
problem into a monad problem that is handled by our algorithm.  

Pevzner and Sze [Pevzner et. al, 2000] have put forward a challenge problem: to find the 
signal in a sample of sequences, each 600 nucleotides long, each containing an unknown 
pattern of length 15 with at most 4 mismatches. They presented the WINNOWER and 
SP-STAR algorithms that could solve this problem, which was not solvable by many of 
the earlier techniques. Many other approaches that can solve this problem have been 
proposed [Sagot 1998, Eskin et. al 2002, Liang 2003]. Time-complexity of the best 
known algorithms[Sagot, 1998, Eskin et. al. 2002] is O(nt2ld|∑|d).  

Most of these algorithms search the d-mismatch neighborhood of each l-gram in the 
sample. The size of the d-mismatch neighborhood of an l-gram in O(ld|∑|d). The main 
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motivation for our algorithms is that in most practical scenarios, it might be possible to 
limit the search to a small portion of the d-mismatch neighborhood. We refer to the set of 
patterns that mismatch in at most d positions with two l-grams as the consistent patterns 
of the two l-grams. The following observations form the basis for our algorithm: 

Observation 1: At each l-gram, it is sufficient to search the consistent patterns of the l-
gram with all other l-grams.  

Observation 2: The number of other l-grams in the sample that are within h mismatches 
from the current l-gram reduces rapidly with decreasing h. When h is greater than 2d, this 
number is zero, as two l-grams that mismatch in more than 2d positions can not have any 
patterns that mismatch with both of them in at most d positions. This is illustrated in 
Figure-1 for a random sample of 20 sequences of 600 nucleotides each. The size of the 
average 2d-mismatch neighborhood is 571.395, where as the average size of the d-
mismatch neighborhood is just 1.23. 

 

 
Observation 3: The number of consistent patterns between two l-grams which mismatch 
in h positions decreases rapidly with increasing h. Therefore, as is illustrated in Figure-2, 
the number of consistent patterns between two l-grams which mismatch in more than d 
positions is quiet small. 

Figure2: Number of consistent patterns 
between two h -mismatch l -grams
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2. Previous approaches to pattern discovery 
The pattern discovery problem can be formally stated as follows: Given a set of DNA 
sequences (also referred to as the sample) S = {S1, S2,…St},  and a set of parameters l, d 
and k, the problem is to find all length-l patterns  that occur with up to d mismatches in at 
least  k different sequences in the sample.  

One of the earliest techniques to solve this problem, as presented in [Pevzner, 2000] is 
known as the pattern driven approach. The pattern driven approach searches all of the 
pattern space – it enumerates each possible pattern and checks if it meets the search 
criteria. If the pattern length is l, there are 4l possible patterns, assuming a DNA alphabet. 
Pattern based approaches take each one of these patterns and compare them with all the l-
grams in the sample. This approach takes exponential time in terms of l, and the problem 
quickly becomes practically unsolvable even for moderate values of l.  

A faster approach, termed by [Eskin et. al 2002] as the Sample Driven Approach(SDA),  
searches a reduced search space of only the l-grams that occur in the sample and their d-
mismatch neighbors. The SDA algorithm trades in space for time: it maintains a table of 
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size 4l, each entry in the table corresponding to a pattern. For each l-gram in the input 
sample, the algorithm enumerates all the patterns that make up its d-mismatch neighbor 
hood. For each pattern in the neighborhood, the corresponding entry in the table is 
incremented. After all the l-grams have been processed, the patterns in the table that have 
a score greater than k are reported. The problem with SDA approach is that the memory 
requirements are huge, and increase exponentially with l. Therefore the SDA approach, 
like the PDA approach, becomes quickly unmanageable, even for moderate values of l.  

The WINNOWER algorithm [Pevzner et. al. 2000] and the cWINNOWER algorithm 
[Liang 2003] are based on graph theory. In these algorithms, a graph is constructed in 
which each vertex is an l-gram in the input sequence. Two l-grams are connected by an 
edge if they mismatch in at most 2d positions. Now, the problem is mapped to the 
problem of finding k-cliques in the graph. The problem of finding k-cliques in graph, 
when k >3 is an np-complete problem. Therefore, WINNOWER and cWINNOWER try 
to apply some heuristics to arrive at a solution. In the first step, all the nodes that have a 
degree less than k-1 are removed. After that, different techniques are applied to try to 
remove the spurious edges in the graph that can not be part of a solution. The complexity 
of WINNOWER and cWINNOWER for the most sensitive versions of the algorithms are 
given by O(t3n2.66) and O(t4n4), respectively. However, it is important to note even though 
most sensitive versions of these algorithms solve almost all practical problems, they are 
not guaranteed to solve a given problem.  

Some of the other approaches include suffix tree –based approaches [Sagot 1998, Pavesi 
et. al. 2001]. The SPELLER algorithm presented in [Sagot 1998] first builds a suffix tree 
for the input sequence. It then examines all possible patterns traversing through the suffix 
tree. If the paths to k different leaves of length l mismatch with the pattern in at most d 
positions, then the pattern is reported. Starting with zero characters at the root, the pattern 
is extended one character at a time. At any time if there are less than k different paths in 
the suffix tree that mismatch in at most d positions with the current pattern, the search is 
stopped and the (alphabetical) next pattern of the same length, or the next pattern of a 
shorter length is searched. For example, we start with the pattern A. If there are k 
different paths in the suffix tree that mismatch with A in less than d positions, then we 
extend the path to AA. If there are k paths still, we extend it again, to AAA. Now, if the 
number of paths is less than k, we move on to the pattern AAC. Therefore, at a depth i in 
the suffix tree, we need to do min(4i, n) comparisons, since the tree can have n leaves at 
the most. In the worst-case scenario, we will be examining all d-mismatch neighbors of 
each l-gram in the sample, hence the complexity of the algorithm is given as O(nt2ld4d).  

In the sequence driven approach, each l-gram is searched separately. The Mitra-Count 
algorithm [Eskin & Pevzner, 2002] is based on the idea that if all the l-grams are 
searched concurrently, then only the information about those l-grams that meet the 
current search criteria need to be stored. This will reduce the memory requirements 
drastically. The MITRA algorithm searches the pattern search space in a depth first 
manner, abandoning the search whenever the search criterion is no longer met. For this it 
uses the mismatch tree data structure. The path from the root to a node at depth m in the 
mismatch tree represents a prefix of the pattern of length m. The list of l-grams from the 
sample whose m-length prefixes mismatch in at most d positions with the path label of 
the current node are stored at the node. The tree is built in a depth-first fashion. 
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Whenever the size of the list of l-grams at a node falls below k, the node is discarded, and 
the sub tree of the node is never searched. Whenever the search reaches a depth l, the 
pattern corresponding to the path label is reported. The algorithm is memory efficient, 
since only the nodes that lie in the current path need to be stored at any time.  

An improved algorithm, Mitra-Graph, also presented in [Eskin & Pevzner, 2002] applies 
WINNOWER-like pair wise similarity information in order to maintain a graph at each 
node of the mismatch tree. Two l-grams L1,L2 that mismatch in d1,d2 positions with node 
label, and if their suffixes beyond the current depth mismatch in q positions, the two l-
grams are connected by an edge if d1+d2+q ≤ 2d. The nodes can be discarded if there is 
no possibility for a k-clique in the graph. Even though there is an extra overhead of 
maintaining the graph and extending the graph at each node, much smaller pattern sub-
space needs to be searched in Mitra-Graph. Therefore, Mitra graph performs even better 
than Mitra-count. A detailed analysis of the time complexity for the Mitra-graph 
algorithm is not provided, but authors state that the theoretical complexity is the same as 
that of the SPELLER algorithm.   

3. The PRUNER Algorithm 

3.1 Our Contributions 
Our approach is based on the WINNOWER algorithm [Pevzner & Sze, 2000, Liang, 
2003]. As in WINNOWER, we build a graph based on pair-wise similarity information, 
and prune the graph eliminating vertices that can not be part of a solution. However, after 
this point, we employ a different approach. The algorithms try to successively remove 
edges from the graph, after checking all the patterns that mismatch in at most d positions 
from both the l-grams that are connected by the edge. We categorize the edges into two 
groups. Group1 consists of edges that connect l-grams that differ in more than d 
positions, and Group2 consists of edges that connect l-grams that differ in less than or 
equal to d positions. In the following sections, we will show that there will be relatively 
few patterns that mismatch in at most d positions from both the l-grams that are 
connected by a Group1-edge. Precisely, we will show that there will be at most 
O(ld/2|∑|d/2) such patterns for every Group-1 edge. We present a technique which 
enumerates all the patterns corresponding to each Group1-edge, checks each one of them 
to see if they satisfy the search criteria, and removes the Group1-edge. We show that if at 
any vertex, after all the Group-1 edges are removed, if the degree of the vertex is less 
than k-1, then the vertex can be safely removed from the graph, without affecting any 
patterns that are not yet examined and reported. After all Group1-edges are removed, this 
leaves us with a graph in which each vertex has a degree of at least k-1, and all the edges 
that are incident on the vertex are Group2-edges. Therefore, if the graph has any vertices 
left, there will be at least k vertices left. Since the degree of each vertex is at least k-1 and 
each edge is a Group-2 edge, the l-gram corresponding to each vertex has at least k-1 
other l-grams that mismatch with it in at most d positions. Therefore the l-gram 
corresponding to each vertex in the graph is itself a solution, and can be reported. Beyond 
this, there might be other patterns in the graph that meet the search criteria, but in a 
general case, we assume that there are fewer than k distinct monad patterns in the given 
sample. In the almost impractical scenario that there are more than k distinct monad 
patterns, the algorithms we present report at least k of them. Unlike WINNOWER and 
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cWINNOWER[Liang, 2003], our algorithm is guaranteed to find a solution in 
O(n2t2ld/2|∑|d/2) time using O(ntld/2|∑|d/2) space.  

3.2 Problem statement 
In the discussion that follows, for convenience in illustration, we treat the input sample as 
a single sequence of size n. The time and space complexities are not affected by this 
simplification. In section 3.5, we explain the enhancements to handle t different 
sequences, instead of a single sequence. Therefore, the problem can be stated as follows: 
given a string S of length n over the alphabet ∑ = {A,C,G,T}, the problem is to find a 
pattern P of length l that occurs at least k times in S with at most d mismatches in each 
occurrence.  

3.3 Terms and Definitions 
We denote a length-l substring(an l-gram) of  S starting at position i in S by Li. A score h 
= D(Li,Lj) indicates the number of positions in which the two l-grams Li, Lj mismatch. We 
denote the set of patterns that mismatch with both Li and Lj in at most d positions by 
ρ(Li,Lj). We refer to the set ρ(Li,Lj) also as the set of patterns that are consistent with Li 
and Lj. We now describe, briefly, how to compute the size of the set ρ(Li,Lj). Let P be any 
pattern such that P ∈ ρ(Li,Lj). Now, it is important to note that ρ(Li,Lj) = {φ} if h > 2d, as 
both D(Li,P) and D(Lj,P) have to be less than or equal to d. We have to enumerate all the 
different possibilities for P. Also, let us divide each l-gram into two regions: M-region, 
consisting of positions in which Li and Lj match with each other, and the H-region, 
consisting positions in which Li and Lj mismatch with each other, as shown in Figure3(a). 
Both the regions are shown to be contiguous for simplicity in illustration. In reality, these 
regions need not be contiguous. Now, let us assume patterns Li and Lj mismatch with P in 
dc positions within the M-region. Additionally, let Li mismatch with P in h1 positions, and 
let Lj mismatch with P in h2 positions, as shown in Figure 3(b). Again, none of these 
regions needs to be contiguous. 

 

Now, dc mismatch positions can be chosen from l-h positions in ways. At each 

one of these positions, we have |∑| -1 = 3 symbols to choose from. Similarly, h

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

cd
hl

1 positions 

Li 

Lj 

l-h h

Figure 3(a) The matching and 
mismatching regions of Li, Lj

Li

Li

l-h h

P

dc 
h2 

h1 

h1+h2 -h 
Figure 3(b) Different regions of the Pattern P. The shaded regions 
of Li, Lj indicate the regions in which Li, Lj mismatch with P. 
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in which Li can mismatch with P can be selected from h positions in ways. The 

remaining h-h
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Lj (since we know that Li mismatches with Lj in these positions). The remaining (h1+h2-h) 
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LLρ , if h ≤ 2d …..(1) 

        = 0   otherwise 

In the above expression, |ρ(Li,Lj)| increases when h decreases. When d < h ≤ 2d, the 
maximum value of |ρ(Li,Lj)| occurs when h = d+1. When h = d+1, the maximum value 
that dc can take is given by dc = (d-1)/2 which is equal to d/2 when d is odd, and (d/2)-1 

when d is even. Now,  is in O( ). Therefore, on the whole, |ρ(Lcd

cd
hl

3⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
cc ddl 3 i,Lj)| is in 

O(ld/24d/2).  

3.4 The PRUNER-I and PRUNER-II algorithms 
In both the algorithms, we construct a graph G(L,E) where each vertex is an l-gram in the 
input sample, and there is an edge e(Li,Lj, D(Li,Lj))  connecting two l-grams Li and Lj if 
D(Li,Lj) is less than or equal to 2d. The procedure for building the graph is given in 
Figure-4. We then successively remove vertices representing l-grams from the graph 
G(L,E) that have a degree less than k-1, and remove the edges that are incident on these 
vertices, following the algorithm given in Figure-5. Until this point, our algorithms are no 
different from WINNOWER. However, they differ from WINNOWER in the following 
steps. 

Both the PRUNER-I and the PRUNER-II algorithms process each vertex successively. 
The PRUNER-I algorithm enumerates the consistent patterns for every group1-edge (i.e., 
edges between l-grams which mismatch in more than 2d positions). It then computes how 
many times each pattern repeats. It does this by adding all the consistent patterns for each 
edge to a list, sorting and scanning the list  Each time a pattern appears, it means that the 
pattern is within d mismatches from another l-gram. Hence, if a pattern repeats k-1 times, 
it means that the pattern is within d mismatches from k-1 other l-grams. However, since 
we have not yet processed the Group2-edges(i.e., edges connecting l-grams that 
mismatch in d or fewer positions), we can not yet discard the patterns that repeat less than 
k-1 times. We do not want to evaluate all the consistent patterns for the Group2-edges, as 
there are too many (O(ld4d)) such patterns. Therefore, we will have to take each pattern in 
the list, and compare it with each l-gram that is connected to the current vertex through a 
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Group2-edge. Only then will we know how many times each one of those patterns has 

Algorithm PruneGraph() 

repeated. An efficient way of doing all this is presented below.   

nt patterns ρ(Li,Lj) for all the Group1-edges, 

there can be no new 

t there is a pattern P ∈ ρ(Li,Lj) that was not reported while 
o

Inputs: G(L,E), l, d, k 

k-1 
eLGram(G(L,E), i, l, d, k) 

Algorithm BuildGraph() 
Inputs: S, l, d, n 
Output: G(L,E) 
1. L ← {φ}, E ←{φ} /*L is the set of l-grams or vertices, E is the set of edges*/ 
2.  for i ← 0 to n-l+1 do 
3.  Li ← S[i,i+l] /* Li is substring of S of length l starting positions i*/ 
4.  L ← L ∪ Li
5. end for 
6. for i ← 0 to n-l do 
7.  for j ← i+1 to n-l+1 do 
8.   if D(Li,Lj) ≤ 2d 
9.    E ← E ∪ (Li,Lj, D(Li,Lj)) 
10.   end if 
11.  end for 
12. end for 
Figure-4. Procedure for building the graph G(L,E)

1.  for i ← 0 to n-l+1 do 
2.  if  Degree(Li) < 
3.   Remov
4.  end if 
5. end for 
Figu . Procedre-5 ure for pruning the graph G(L,E)

At each node Li, we enumerate the consiste
i.e., edges (Li,Lj, D(Li,Lj)), such that d < D(Li,Lj) ≤ 2d. We add these patterns to a list η(i), 
and remove the edge (Li,Lj, D(Li,Lj)). Lemma 3.1 states that we can safely remove the 
edge (Li,Lj, D(Li,Lj)) after enumerating and adding ρ(Li,Lj) to η(i). 

Lemma 3.1: After a vertex Li in (Li,Lj, D(Li,Lj)) is processed, 
patterns in ρ(Li,Lj) that were not reported while processing Li, but will be reported while 
processing the vertex Lj.  

Proof: Let us assume tha
processing node Li, but will be reported while pr cessing node Lj. This means that there 
are a set of l-grams ψ(P) other than Li, such that for each Lq ∈ ψ(P), there is an edge (Lq, 
Lj, D(Lq,Lj)) connecting Lq and Lj, and  D(Lq,P)≤ d. additionally, since P will be reported 
while processing Lj, |ψ(P)| ≥ k-2. Now, since for each Lq ∈ ψ(P), D(Lq,P)≤d and  
D(Li,P)≤d (as P ∈ ρ(Li,Lj) by definition), it implies that D(Li,Lq)≤2d.  Therefore, for each 
Lq ∈ ψ(P) there is an edge (Li,Lq, D(Li,Lq)) connecting Li and Lq. Since |ψ(P)| ≥ k-2, and 
P ∈ ρ(Li,Lj), there are at least k-1 edges incident in Li which contain P as one of their 
consistent patterns. Therefore, pattern P must have been reported while processing node 
Li. Hence there can be no pattern P ∈ ρ(Li,Lj) that is not reported while processing Li that 
can be reported while processing Lj.       � 
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Algorithm RemoveLGram() 
Inputs: G(L,E), Li  
1.  DeleteList ← {φ} 
2.  for every j such that (Li,Lj, D(Li,Lj)) ∈ E do 
3.  E ← E - (Li,Lj, D(Li,Lj)) 
4.  if Degree(Lj) = k-2  /* The degree of Lj just fell below k-1*/ 
5.   DeleteList ← DeleteList ∪ Lj
6.  end if 
7.  end for 
8.  for every Lj ∈  DeleteList 
9.  RemoveLGram(G(L,E),Lj) 
10. end for 
Figure-6. Procedure for deleting an l-gram from the graph  

Now, we need to find out how many times each pattern is repeated in η(i). An easy way 
of doing this will be to sort η(i), and scan η(i). As each pattern in η(i) is a length-l string 
of a fixed alphabet, η(i) can be sorted in linear time using radix sort. Let a pattern P 
repeat m times in η(i). Let R be the degree of node Li after processing and removing all 
Group1-edges. As explained in section1, R is expected to be very small. We do the 
following. 

• If m < k-1- R, we discard P. The number of times P repeats can increase by at 
most R, by comparing P with each one of the Group2-edges. If m < k-1-R, there is 
no way that P can repeat k-1 times. So we can discard P. 

• If m  ≥ k-1, report P, since it is clear that P has already occurred at least k-1 times. 

• If k-1- R ≤ m < k-1, we compare P with all l-grams that are still connected to Li. 
For each such l-gram that mismatches P in at most d locations, we increment the 
repeat count of P. If the repeat count reaches k-1, we report P. Other wise, we 
discard P.   

Before we leave Li and proceed to process the next vertex, we can do one more thing – 
we can remove the vertex Li from the graph if R<k-1, without ever enumerating the 
consistent patterns for these edges. Lemma 3.2 proves this. 

Lemma 3.2: If the residual degree R of vertex Li is less than k-1 after processing and 
removing all Group1-edges of Li, there can be no new patterns that will be reported by 
processing the Group2-edges. 

Proof: Let us assume that there is a pattern P that was not reported while processing the 
Group1-edges, but will be reported while processing the Group2-edges. Since we will be 
reporting P, and since R<k-1, there should have been at least one Group1-edge (Li, Lq, 
D(Li, Lq) such that P ∈ ρ(Li,Lq). Therefore, P was checked and reported while processing 
vertex Lq. Hence there can be no new patterns that will be reported by processing the 
Group2-edges.          � 
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Algorithm ProcessLGram() 
Inputs: G(L,E), i, l, d, k 
Output: Reports patterns in the d-mismatch neighborhood of Li that satisfy the search criteria 
1.  PatternList ← {φ} 
2.  for every j such that (Li,Lj, D(Li,Lj)) ∈ E do  
3.   if D(Li,Lj)  > d  
4.    PatternList ← PatternList ∪ ρ(Li,Lj) 
5.   end if 
6.  E ← E - (Li,Lj, D(Li,Lj))  
7.   end for 
8.   RadixSort(PatternList) 
9.    Cnt ← 0  /* Cnt is the number of times the current pattern has repeated */ 
10.  for j ← 1 to |PatternList|-1 
11.   if  PatternListj = PatternListj-1 /* if the current pattern is the same as the 
12.   Cnt ← Cnt+1   previous patterns*/ 
13.   else if Cnt ≥ k-1-Degree(Lj) /*if there are enough edge to push Cnt beyond k-1 */ 
14.   for every r S.T. (Li,Lr, D(Li,Lr)) ∈ E do 
15.    if D(PatternListj, Lr) ≤ d /*compare the current pattern with each such 
16.      Cnt ← Cnt +1  l-gram */ 
17.   end if 
18.   end for 
19.   if Cnt > k -1 
20.    Report(PatternListj) /* PatternListj is an (l,d)-k pattern*/ 
21.   end if 
22.   Cnt ← 0 
23.  end if 
24. end for 
Figure-7. Procedure for deleting an l-gram from the graph   

We are now left with a graph in which the score of each edge is at most d, and degree of 
each remaining vertex is at least k-1. In practice, we do not expect any vertices to remain 
at this stage, as our assumption is that there are not too many patterns that meet the search 
criteria. All the l-grams that do remain until this stage are valid solutions, since they 
mismatch in at most d positions with at least k-1 other l-grams. Hence, we report all the 
remaining l-grams.  

Algorithm SearchForPatterns() 
Inputs: S, l, d, k, n 
1.  BuildGraph(S, l, d, n) 
2.  PruneGraph(G(L,E), l, d, k, n) 
3.  for i ← 0 to n-l+1  
4.  ProcessLGram(G(L,E), i, l, d, k, n) 
5. if(Degree(Li) < k-1) 
6.   RemoveLGram(G(L,E),i) 
7.  end for 
8.  PruneGraph(G(L,E), l, d, k, n)  

/* Prune once again, to remove l-grams with degree < k-1 
9.  for i ← 0 to n-l+1  /*check if any l-grams are still remaining */ 
10.   if Degree( Li) > k-1  
11.   Report(Li) /* report all remaining l-grams */ 
12.  end if 
13. end for 

 
The PRUNER-II algorithm is very similar to the PRUNER-I algorithm in concept. 
However, the PRUNER-II algorithm attempts to eliminate the potentially huge memory 

Figure-8. The PRUNER-I algorithm  
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requirements of the PRUNER-I algorithm. While processing each node Li, the PRUNER-
I algorithm maintains a list η(i) that contains all the patterns that are consistent with each 
one of the Group1-edges. When the number of such edges is huge, the amount of 
memory required for η(i) may be too big. Especially, this might be the case when d is 
large and the d/l ratio is large, in which case the graph G(L,E) will be highly connected.  

At each vertex Li, the PRUNER-II algorithm processes edges one by one. For each edge 
(Li, Lj, D(Li,Lj)), it enumerates the set of consistent patterns ρ(Li,Lj). For each consistent 
pattern P∈ ρ(Li,Lj), if we compare P with all the l-grams that are directly connected with 
vertex Li, we can determine if P mismatches in at most d positions with at least k-1 of 
them. However, a deeper analysis reveals that it not necessary to compare P with all the l-
grams that share an edge with Li. For any l-gram Lq, if D(Lq,P) ≤ d, then D(Lq,Lj) will be 
less than or equal to 2d. This means that the l-grams Lq and Lj will also be connected. 
Therefore, we only need to compare P with all vertices Lq such that the edge (Lq, Lj, 
D(Lq,Lj)) ∈ E. If at least k-2 of them mismatch with P in fewer than d positions, it reports 
P. Otherwise, P is discarded. As in the PRUNER-I algorithm, it removes the edge (Li,Lj, 
D(Li,Lj)) after checking all the patterns in ρ(Li,Lj).  

3.5 Extending the algorithm to handle multiple sequences: 
When the input sample is made of t sequences of length n each, and the problem is find 
an (l,d) motif that occurs in at least k of them, the graph G(L,E) will be a t-partite graph. 
At each vertex in the graph, we need to maintain and update another variable, which we 
call t-degree. The variable t-degree stores the number of distinct sequences in t that the 
current vertex is connected to. In the algorithms that we discussed above, whenever we 
are referring to the degree of a vertex, we will be using t-degree instead of the actual 
degree of the vertex. Whenever we are checking for a pattern P, it is no longer sufficient 
to check if the pattern is within d mismatches from k-1 other l-grams. We need to make 
sure that the l-grams are derived from k-1 distinct sequence in the sample. The 
implementation typically involves maintaining a bit-vector of length t for the pattern that 
is being considered. Whenever the pattern is within d-mismatches from an l-gram, the bit 
corresponding to the sequence from which the l-gram is derived is set to 1. P satisfies the 
search criteria if at least k-1 (or whatever is necessary at that point in the algorithm) bits 
are set to 1.  

3.6 Complexity analysis: 

Building the graph involves calculating the mismatch count for each l-gram pair (Li, Lj) 
such that Li and Lj are derived from different input sequences. There are (n-l+1) l-grams 
for each input sequence, and n(t-1) other l-grams for each l-gram in the input sequence. 
Therefore, building the graph takes O(n2t2). Pruning the graph involves removing all the 
edges incident on each vertex whose degree is less than k-1. In the worst case, we might 
have to delete all the nodes, so the maximum number of edges that need to be removed is 
((k-1)*nt -1), which is O(ntk). This time is common for both PRUNER-I and PRUNER-
II. 

In the PRUNER-I algorithm, each l-gram can have up to n(t-1) 2d-mismatch neighbors. 
Therefore, at each l-gram, we might have to enumerate the consistent patterns with n(t-1) 
other l-grams. The maximum number of these consistent patterns as discussed in section 
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3.3, is O(ld/24d/2). Hence the worst-case time complexity at each node is given by 
O(ntld/24d/2). We need to store all these patterns in a list, so we need O(ntld/24d/2) space.   
In the worst case, we will have to process (t-k+1)n l-grams, since no new patterns can be 
discovered after removing all l-grams from (k-1) l-grams. Therefore, the overall 
complexity is given by O(n2t(t-k+1)ld/24d/2). If k is small w.r.t. t, this will be O(n2t2ld/24d/2). 
When k = t, the complexity of the PRUNER-I algorithm is O(n2tld/24d/2). 

In case of the PRUNER-II algorithm, each edge is processed separately. All the patterns 
consistent with each edge (Li,Lj) have to be compared with all the l-grams that are 
connected to both Li and Lj. In the worst case, there can be n(t-2) vertices that are 
connected to both Li and Lj. The total number of the edges could be n2t(t-1) in the worst 
case. The edge can have O(ld/24d/2) patterns that are consistent with it, so the total time 
taken will be O(n3t3 ld/24d/2). Each pattern could be compared separately; therefore the 
space needed is approximately the same as that necessary for the graph.    

4. Results 
The algorithms were tested on generated samples containing 20 sequences of 600 
nucleotides each. The sequences are implanted with randomly mutated patterns at 
randomly chosen positions. In order to make the patterns as realistic as possible, each 
occurrence of the pattern is allowed to have up to d mismatches, as against allowing 
exactly d mismatches in each pattern. The tests were carried out on a Pentium-4 3.2 GHz 
PC with 2GB of memory, running Redhat Linux 9.0. The time/memory results are 
illustrated in Table 4.1. 

The PRUNER-I algorithm ran out of memory for the (18,6) and the (28,7) cases. The 
implanted pattern was detected in all the test cases were allowed to run to completion.  

Table 4.1: Performance of the algorithms 

 PRUNER-I PRUNER-II Test 
Case(l,d) 

d/l  
Time Memory(MB) Time Memory(MB) 

13,3 0.23 17s 43 14s 43 
13,4 0.31 12m26s 166 29m58s 278 
14,4 0.28 5m35s 198 7m09s 178 
15,4 0.27 2m28s 122 1m34s 91 
16,4 0.25 56s 51 56s 43 
16,5 0.31 69m 540 4h44m59s 247 
17,5 0.29 29m54s 315 36m58s 161 
18,5 0.28 13m19s 174 13m19s 92 
18,6 0.33 * Out of memory 48hours(expected ) 457 
24,6 0.25 1m12s 720 16s 11 
28,7 0.25 * Out of memory 36s 640 

6. Conclusion  
We have presented two new algorithms for finding the monad patterns. Both the 
algorithms perform extremely well on the challenge problem of (15,4)  on 20 input 
sequences of 600 nucleotides. As d increases in comparison to l, i.e., when the d/l ratio 
increases, The PRUNER-I algorithm takes a longer time and a larger memory. The 
PRUNER-I algorithm runs out of memory for large values of l and d. The PRUNER-II 
algorithm, on the other hand, reacts very sharply to the d/l ratio. In this case, the memory 
requirements are not a bottle neck as much as the speed. However, as long as the d/l is 
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around 0.25, the PRUNER-II algorithm performs very well, independent of the actual 
values of l and d.  

Binaries for Mitra-Count and Mitra-Graph were requested, but were not available for 
comparison. We intend to provide comparisons with our own implementations of Mitra-
Count and Mitra-Graph in the final version of this paper. We will also be presenting 
results on actual gene upstream regions in the final version of the paper. 

Unlike Winnower and cWinnower, the algorithms we presented here are not sensitive to 
k. Our algorithms will be able to detect patterns even for very small values of k. The only 
concern when dealing with very small values of k is that there could be random signals in 
the input sample that meet the search criteria. 

An interesting observation from the test cases is that graph itself starts consuming more 
and more space as the ratio d/l gets bigger. This is because there are more and more edges 
in the graph, as there are a larger number of l-gram pairs that mismatch in less than 2d 
positions. In the future, we plan to investigate compact representations for the graph. 
Another approach may involve using a two-pass algorithm. WINNOWER or 
cWINNOWER can be used initially in order to remove some spurious edges. Our 
algorithms can be applied in the second pass. As the graph has much fewer edges now, 
PRUNER-I or PRUNER-II may have very good performance. For the first pass, we can 
use a low sensitivity version of WINNOWER or cWINNOWER in order to maximize the 
speed.  
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