
1

Longest Common Subsequence

Definition: The longest common
subsequence or LCS of two strings S1 and
S2 is the longest subsequence common
between two strings.

S1 : A -- A T -- G G C C -- A T A n=10
S2: A T A T A A T T C T A T -- m=12

The LCS is AATCAT. The length of the LCS is 6.
The solution is not unique for all pair of strings. Consider the pair (ATTA,
ATAT). The solutions are ATT, ATA. In general, for arbitrary pair of
strings, there may exist many solutions.

LCS Theorem

The LCS can be found by dynamic programming
formulation. One can easily show:

Theorem: With a score of 1 for each match and a zero for
each mismatch or space , the matched characters in an
alignment of maximum value for a LCS.

Since it is using the general dynamic programming
algorithm its complexity is O(nm) .
A longest substring problem, on the other hand has
a O(n+m) solution. Subsequences are much more
complex than substrings.
Can we do better for the LCS problem? We will
see …

2

The optimal alignment is shown above. Note the
alignment shows three insert (dark), one delete green)
and three substitution or replacement operations (blue),
which gives an edit distance of 7.
But, the 3 replacement operations can be realized by 3
insert and 3 delete operations because a replacement is
equivalent to first delete the character and then insert a
character in its place like:

S1 : A -- A T -- G G C C -- A T A n=10
S2: A T A T A A T T C T A T -- m=12

G -- G -- C --
-- A -- T -- T

if we give a cost of 2 for replace operation
and cost of 1 for both insert and delete
operations, the minimum edit distance D can
be computed in terms of the length L of LCS
as:

For the above example, n=10, m=12, L=6.
So, D=10 (6 insert and 4 delete).

LnmD 2−+=

3

Direct Computation of LCS by Dynamic
Programming

More efficient although the asymptotic complexity
remains the same, O(nm).
Let L denote The equations are given below without
proof (which is simple).

Again, if we leave suitable back pointers in the
matrix, trace(s) can be derived for the LCS.

)()(..)]........,1(),1,(max[),(
)()(................).........1,1(1),(

0),0(
0)0,(
0)0,0(

21

21

jSiSjiLjiLjiL
jSiSjiLjiL

jL
iL

L

≠−−=
=−−+=

=
=
=

Example 3: Edit Distance
= 6 + 8 – 2*5 = 4

↓↑
A

↓↓

ATACTAAT=S2

TACTA=S1

554443210T 6

544333210A 5

444322210A 4

333321110C 3

222221110T 2

111111100A 1

0000000000

A
8

T
7

A
6

C
5

T
4

A
3

A
2

T
1

0j
i

4

A Faster Algorithm for LCS

An algorithm that is asymptotically better than O(nm)
for determining LCS.
Implies that for special cases of edit distance, there
exist more efficient algorithm.
Definition:

Let π be a set of n integers, not necessarily distinct.
Definition:

An increasing subsequence(IS) of π is a subsequence of
π whose values are strictly increasing from left to right.

Example: π=(5,3,4,4, 9,6,2,1,8,7,10).
IS=(3,4,6,8,10), (5,9,10)

Definition:
A longest increasing subsequence(LIS) of π is
an IS π of maximum length.

Definition:
A decreasing subsequence (DS) of π is a non-
increasing subsequence f π.

Example: DS=(5,4,4,2,1).

5

Definition:
A cover is a set of disjoint DS of π that covers or
contains all elements of π. The size of the cover c
equals the number of DS in the cover.

Example: π=(5,3,4,9,6,2,1,8,7) Cover:{
(5,3,2,1),(4),(9,6),(8,7)}. C=#of DS=4.
Definition:

A smallest cover (SC) is a cover with a minimum
value of c.

Determine LIS and SC simultaneously in
O(nlogn)

Lemma:
If I is an IS of π with length equal to the size of a
cover C of π, then I is a LIS of π and C is the
smallest cover of size c.

6

Proof

If I is an increasing sequence, it cannot contain more than one
element from a decreasing sequence.
This means that no increasing subsequence can have size more
than the size of any cover C, that is, if

a maximum of one element from each can participate in any
increasing sequence.
Thus, an IS derived from this decomposition can have a
maximum length of |C |=c. Conversely, C must be the smallest. If
not, let c’ be the length of a cover C’ such that |C’|=< c i.e., if we
derive IS from C, it must contain more than one element from
one of the decreasing sequence of C’, which is not possible.
Hence C has to be of smallest size.

kCCCC UUU21=

Construction of a cover

Greedy algorithm to derive a cover:
Starting from the left of π, examine each
successive number in π.
Append the current number at the left-most
subsequence derived so far if it is possible do that
maintaining the decreasing sequence property.
If not start a new decreasing subsequence
beginning with the current element.
Proceed until π is exhausted.

7

Example

π=(5,3,4,9,6,2,1,8,7,10)
D1=(5,3,2,1), D2=(4), D3=(9,6), D4=(8,7),
D4=(10)
The algorithm has O (n2) complexity. We will
present an O (n logn) algorithm.

An Efficient Algorithm for Constructing
the Cover

We use a data structure which is a list containing the
last number of each of the decreasing sequence
that is being constructed.
The list is always sorted in increasing order. An
identifier indicating which list the number belongs to
also included.
Procedure Decreasing Sequence Cover
Input: π= , the list of input numbers.
Output: the set of decreasing sequences Di

constituting the cover.

).........,(,21 nxxx

8

O(n logn) Algorithm

Initialize: i←1; Di=(x1); L=(x1, i) ; j←1;
For i=2 to n do

Search the x-fields of L to find the first x-value such
that
xi < x. ….takes O(logn) time.
If such a value exists, then insert x at the end in the
list Di and set xi←x in L… This step takes constant
time.
If such a value does not exist in L, then set j←j+1.
insert in L a new element (x,j) and start a new
decreasing sequence Dj=(x)

End

Lemma:
At any point in the execution of the algorithm the list L is
sorted in increasing order with respect to x-values as well
as with respect to identifier value.

In fact two separate lists will be better from practical
implementation point of view.
Theorem:

The greedy cover can be constructed taking O(nlogn) time.
A longest increasing sequence and a smallest cover thus
can be constructed using O(nlogn) time.

9

Example: π=(5,3,4,9,6,2,1,8,7,10)

i=1 x1=5 L={(5,1)} D1=(5)
2 3 {(3,1)} (5,3)
3 4 {(3,1),(4,2)} (5,3) D2=(4)
4 9 {(3,1),(4,2),(9,3)} (5,3) (4) D3=(9)
5 6 {(3,1),(4,2),(6,3)} (5,3) (4) (9,6)
6 2 {(2,1),(4,2),(6,3) (5,3,2) (4) (9,6)
7 1 {(1,1),(4,2),(6,3)} (5,3,2,1) (4) (9,6)
8 8 {(1,1),(4,2),(6,3),(8,4)} (5,3,2,1) (4) (9,6) D4=(8)
9 7 {(1,1),(4,2),(6,3),(7,4)} (5,3,2,1) (4) (9,6) D4=(8,7)

10 10 {(1,1),(4,2),(6,3),(7,4),(10,5)} (5,3,2,1) (4) (9,6) D4=(8,7) D5=(10)

The x-component of the list, if separated, will look
like the following during execution:
(5),(3),(3,4), (3,4,9), (3,4,6), (2,4,6),(1,4,6),
(1,4,6,7),(1,4,6,7,10)

Reduction of LIS problem to LCS
problem

Definition:
Given sequences S1 and S2, let ri be the number
of occurrence of the ith character of S1 in S2.

(position index in sequence S2:) 1 2 3 4 5 6
Example:S1=a b a c x and S2= b a a b c a
Then, r(1)=3, r(2)=2, r(3)=3, r(4)=1, r(5)=0 .

10

Definition:
for each distinct character x in S1, define list(x) to
be the positions of x in S2 in decreasing order.

Example: list(a)= (6,3,2); list(b)=(4,1),
list(c)=(5), list(x)=φ (empty sequence).

Definition: Let Π (S1,S2) be a sequence
obtained by concatenating list(si) for
i=1,2,…,n where n is the length of S1 and si
is the ith symbol of S1.
Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5).

11

Theorem:
Every increasing sequence I of Π (S1,S2) specifies an
equal length common subsequence of S1 and S2 and vice
versa. Thus a longest common subsequence LCS of S1
and S2 corresponds to a longest increasing sequence of Π
(S1,S2).

Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5). The
possible longest increasing sequences used as
indices to access the characters in S2 yield the LCS
as: (1,2,5)= b a c, (2,3,5)=a a c, (3,4,6)= a b a for
S1=a b a c x and S2= b a a b c a.

