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Longest Common Subsequence

Definition: The longest  common 
subsequence or LCS of two strings S1 and 
S2 is the longest subsequence common 
between two strings.

S1 :   A -- A T -- G     G     C C -- A       T A n=10
S2:    A T     A      T A    A     T     T C T   A       T -- m=12

The LCS is AATCAT. The length of the LCS is 6. 
The solution is not unique for all pair of strings. Consider the pair (ATTA, 
ATAT).  The solutions are ATT, ATA. In general, for arbitrary pair of 
strings, there may exist many solutions.

LCS Theorem

The LCS can be found by dynamic programming 
formulation. One can easily show:

Theorem: With a score of 1 for each match and a zero for 
each mismatch or space , the matched characters in an 
alignment of maximum value for a LCS.

Since it is using the general dynamic programming 
algorithm its complexity is O(nm) .
A longest substring problem, on the other hand has 
a O(n+m) solution. Subsequences are much more 
complex than substrings. 
Can we do better for the LCS problem? We will 
see …
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The optimal alignment is shown above.  Note the 
alignment shows three insert (dark), one delete green) 
and three substitution or replacement operations (blue), 
which gives an edit distance of 7. 
But, the 3 replacement operations can be realized by 3
insert and 3 delete operations because a replacement is 
equivalent to first delete the character and then insert a 
character in its place like:

S1 :   A -- A T -- G     G     C C -- A       T A n=10
S2:    A T     A      T A    A     T     T C T   A       T -- m=12

G -- G -- C --
-- A    -- T    -- T

if we give a cost of 2 for replace operation 
and cost of 1 for both insert and delete
operations, the minimum edit distance D can 
be computed in terms of the length L of LCS
as:

For the above example, n=10, m=12, L=6. 
So, D=10 ( 6 insert and 4 delete).

LnmD 2−+=
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Direct Computation of LCS by Dynamic 
Programming

More efficient although the asymptotic complexity 
remains the same, O(nm). 
Let L denote The equations are given below without 
proof (which is simple).

Again, if we leave suitable back pointers in the 
matrix, trace(s) can be derived for the LCS.
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Example 3: Edit Distance 
= 6 + 8 – 2*5  = 4 
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A  Faster Algorithm for LCS

An algorithm that is asymptotically better than O(nm)  
for determining LCS. 
Implies that for special cases of edit distance, there 
exist more efficient algorithm.
Definition: 

Let π be a set of n integers, not necessarily distinct.
Definition: 

An increasing subsequence(IS) of π is a subsequence of 
π whose values are strictly increasing from left to right.

Example: π=(5,3,4,4, 9,6,2,1,8,7,10).  
IS=(3,4,6,8,10), (5,9,10)

Definition: 
A longest increasing subsequence(LIS) of π is 
an IS π of maximum length.

Definition: 
A decreasing subsequence (DS) of π is a non-
increasing subsequence f π.

Example: DS=(5,4,4,2,1).
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Definition: 
A cover is a set of disjoint DS of π that covers or 
contains all elements of π. The size of the cover c
equals the number of DS in the cover.

Example: π=(5,3,4,9,6,2,1,8,7) Cover:{ 
(5,3,2,1),(4),(9,6),(8,7)}. C=#of DS=4.
Definition: 

A smallest cover (SC) is a cover with a minimum 
value of c.

Determine LIS and SC simultaneously in 
O(nlogn)

Lemma: 
If I is an IS of π with length equal to the size of a 
cover C of π, then I is a LIS of π and C is the 
smallest cover of size c.
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Proof

If I is an increasing sequence, it cannot contain more than one 
element from a decreasing sequence. 
This means that no increasing subsequence can have size more 
than the size of any cover C, that is, if

a maximum of one element from each can participate in any 
increasing sequence. 
Thus, an IS derived from this decomposition can have a 
maximum length of |C |=c. Conversely, C must be the smallest. If 
not, let c’ be the length of a cover C’ such that |C’|=< c i.e., if we 
derive IS from C, it must contain more than one element from 
one of the decreasing sequence of C’, which is not possible.
Hence C has to be of smallest size.

kCCCC UUU .........21=

Construction of a cover

Greedy algorithm to derive a cover:
Starting from the left of π, examine each 
successive number in π. 
Append the current number at the left-most 
subsequence derived so far if it is possible do that 
maintaining the decreasing sequence property. 
If not start a new decreasing subsequence 
beginning with the current element. 
Proceed until π is exhausted.
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Example

π=(5,3,4,9,6,2,1,8,7,10)
D1=(5,3,2,1), D2=(4), D3=(9,6), D4=(8,7), 
D4=(10)
The algorithm has O (n2) complexity. We will 
present an O (n logn) algorithm.

An Efficient Algorithm for Constructing 
the Cover

We use a data structure which is a list containing the 
last number of each of the decreasing sequence 
that is being constructed. 
The list is always sorted in increasing order. An 
identifier indicating which list the number belongs to 
also included.
Procedure Decreasing Sequence Cover
Input: π= , the list of input numbers.
Output: the set of decreasing sequences Di

constituting the cover.

).........,( ,21 nxxx
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O(n logn) Algorithm

Initialize:  i←1;  Di=(x1);  L=(x1, i) ; j←1;
For i=2 to n do

Search the x-fields of L to find the first x-value such 
that 
xi < x.   ….takes O( logn) time.
If such a value exists, then insert x at the end in the 
list Di and set xi←x in L… This step takes constant 
time.
If such a value does not exist in L, then set j←j+1. 
insert in L a new  element (x,j) and  start a new 
decreasing sequence Dj=(x)

End

Lemma: 
At any point in the execution of the algorithm the list L is 
sorted in increasing order with respect to x-values as well 
as with respect to identifier value.

In fact two separate lists will be better from practical 
implementation point of view.
Theorem: 

The greedy cover can be constructed taking O(nlogn) time. 
A longest increasing sequence and a smallest cover thus 
can be constructed using O(nlogn) time.
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Example:  π=(5,3,4,9,6,2,1,8,7,10)

i=1     x1=5 L={(5,1)}                            D1=(5)         
2          3       {(3,1)}                              (5,3)        
3          4       {(3,1),(4,2)}                        (5,3)    D2=(4)
4          9       {(3,1),(4,2),(9,3)}                  (5,3)          (4)  D3=(9)
5          6        {(3,1),(4,2),(6,3)}                 (5,3)          (4)  (9,6)
6          2        {(2,1),(4,2),(6,3)                  (5,3,2)       (4)  (9,6)
7          1        {(1,1),(4,2),(6,3)}                 (5,3,2,1)    (4)   (9,6)
8          8        {(1,1),(4,2),(6,3),(8,4)}           (5,3,2,1)   (4)   (9,6)  D4=(8)
9          7        {(1,1),(4,2),(6,3),(7,4)}           (5,3,2,1)    (4)   (9,6)  D4=(8,7)

10         10 {(1,1),(4,2),(6,3),(7,4),(10,5)} (5,3,2,1)    (4)   (9,6)  D4=(8,7) D5=(10)

The x-component of the list, if separated, will look 
like the following during execution: 
(5),(3),(3,4), (3,4,9), (3,4,6), (2,4,6),(1,4,6), 
(1,4,6,7),(1,4,6,7,10)

Reduction of LIS problem to LCS 
problem

Definition: 
Given sequences S1 and S2, let ri be the number 
of occurrence of the ith character of S1 in S2.

(position index in sequence S2: ) 1 2 3 4 5 6  
Example:S1=a b a c x and S2= b a a b c a  
Then, r(1)=3,  r(2)=2,  r(3)=3, r(4)=1, r(5)=0 .
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Definition: 
for each distinct character x in S1, define list(x) to 
be the positions of x in S2 in decreasing order.

Example:   list(a)= (6,3,2);   list(b)=(4,1),   
list(c)=(5), list(x)=φ (empty sequence).

Definition: Let Π (S1,S2) be a sequence 
obtained by concatenating list(si) for 
i=1,2,…,n where n is the length of S1 and si
is the ith symbol of S1.
Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5).
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Theorem: 
Every increasing sequence I of Π (S1,S2) specifies an 
equal length common subsequence of  S1 and S2 and vice 
versa. Thus a longest common subsequence LCS of S1 
and S2 corresponds to a longest increasing sequence of Π
(S1,S2).

Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5). The 
possible longest increasing sequences used as 
indices to access the characters in S2 yield the LCS 
as: (1,2,5)= b a c,   (2,3,5)=a a c,  (3,4,6)= a b a for 
S1=a b a c x and S2= b a a b c a.


