
Hidden Markov models

Markov Chain
• Models a sequence S=x1x2x3…xn in which

probability of a symbol depends on its
previous symbol(s). Only the transitions
from and to the state A is shown. Each
transistion has an associated probability.

A

B

C G

T
E
End stateBegin state

A Markov Chain in DNA alphabet A, T , C and G

Probabilities

)|()|(
)|()(

)|()().....()(

1

1
2

121

tEPtxEP
BsPsxP

xxPxPxxxPxP

n

i

ni

i
in

==
==

== −

=

=
∏

Where both s and t could be any one of the states A, T, C and G

CpG Island Example

• Question 1
• Given a short sequence of DNA , does it

belong to CpG island family
• Question 2
• Given a long sequence, does this contain a

CpG island sequence.
• We answered the first question by

developing a discriminant model

Hidden Markov Model
• To answer the second question, we

introduced the notion of hidden Markov
model (HMM). Transitions from every state
to any other state are not shown.

G+A+ T+ C+

G-A- T- C-

HMM Definitio

• In Markov Chain, there is a one-to-one
correspondence between the state and the
symbols being generated.

• In HMM, there is no one-to-one
correspondence between the state and the
symbol. Given an output sequence of states,
there is no way to tell what state sequence
the HMM traveled.

Occasionally Dishonest Casino

1: 0.1
2: 0.1
3: 0.1
4: 0.1
5: 0.1
5: 0.5

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
5: 1/9

0.05

0.01

0.95 0.90

Definition of HMM

• We have to differentiate between a sequence of
output symbol generated with the sequence of
states in HMM .The sequence of states is called
a path

• The i-th state in the path is denoted
• The chain is characterized by the probabilities

P(l/k)= P(=l | =k) and
• P(k | 0)= The probability that the HMM starts

at state k as the begin state 0.

π

iπ

iπ

1−iπ

HMM Definition (cont.)

• Since the symbols are decoupled from the
states, we need to define what is called
emission probabilities as

)|()(kbxPbe iik === π

Probability of an Observed Sequence

• The joint probability of an observed
sequence x and a state sequence is:

)|()()|0(),(1
1

1 1 −
−
∏= iii

n

i

PxePxP ππππ π

where we require that 01 =+nπ

This formula is not very useful unless we know the path.
We could find the most likely path or the path using
a posteriori distribution over states. The algorithm to do that is
called the Viterbi Algorithm.

The Sequence Family Black Box
Given an alignment... ...design a black box that

generates similar sequences
S E F Q R
S - A Q K
S E F Q K
S E A Q K

S A Q K

S E F Q R

S E F Q K

S E A Q K

http://www.carvingtranquility.com/Images/tramp4 black box.gif

Random generator
S E FA Q RK

50% F
50% A

S E F Q R
S - A Q K
S E F Q K
S E A Q K

Always
S

25% R
75% K

Always
Q

Heads or tails
(fair coin)

Always
E

Heads or tails
(unfair coin)

Gaps (Deletes)

S E F Q R
S - A Q K
S E F Q K
S E A Q K

S E FA Q RK

Always
S

25% R
75% KAlways

Q

D

75%

50% F
50% A

Always
E

25% “Delete state”, outputs
no letter (“silent”).

Inserts

S E F - - - Q R
S - A V W I Q K
S E F - - - Q K
S E A - - - Q K

S E FA Q RK

50% F
50% A

Always
E

Always
Q

D

75%

25%

75%

25%

I

“Self-loop” allows
inserts of any length

Always
S

25% R
75% K

Insert relative to consensus “Insert state” outputs
any letter at random

Generalize
• So far, model is too specific
• Generated sequences all very similar to

training set
• Won’t generate more distant homologs
• Generalize: at each position, allow non-zero

probability for:
1. any letter
2. gap (delete)
3. inserts

Profile HMM

I

M

D

I

M

D

S

Start state
(all paths

begin here)

One node for each consensus
position (=column in training

alignment)

T...

Terminal state
(all paths end

here)

Profile HMM: graphical model

• Emitter states: Mk and Ik

– generate one letter on each visit
– letter emitted following a probability distribution over the alphabet

• Silent state: Dk

• Transitions between states
– each state has a probability distribution over next state to visit

• Special silent states: Start and Terminal
• Begin in Start state
• Repeat until in Terminal state:

1. Output letter according to emission distribution (unless silent).
2. Choose next state according to transition distribution.

M1

I1

M2 M3

I2

D2 D3

S ...

Hidden Markov Model
• Set of M states {Si i = 1 .. M}
• Alphabet {ak, k = 1 .. K} (K=4 for DNA, K=20 for amino acids)
• M x K emission probabilities eik

– eik = probability of emitting letter Ak from state Si

• M x M transition matrix tij = P(Sj | Si)
– nth order Markov model: probs depend on n predecessor states
– Profile HMM: only 3 transitions for each state, transition matrix is

sparse
• Model normalization, sum of probabilities = 1

– For all states, emissions sum to one and transitions sum to one
∑k eik = 1, ∀ i
∑j tij = 1, ∀ i

– Special case: silent state Si, eik = 0 for all letters k.

“Profile” HMM

• Profile = statistical model of sequence
family

• Other types of HMMs, e.g. genefinders, are
not profile HMMs

• From now on, HMM = profile HMM

Given sequence & HMM, path
“hidden”

• Any (generalized) HMM can generate all
possible sequences

• Many ways to generate given sequence
from given HMM

• Example: model of motif “SEQ”

M1

I1

M2 M3

I2

D2 D3

S T

D1

S E Q

M1

I1

M2 M3

I2

D2 D3

S T

D1

S E Q

81%
1%D1%

M1 M 98%
A C D E F G H I K L M N P Q R S T V W Y

I 1%

M2A C D E F G H I K L M N P Q R S T V W Y

M3A C D E F G H I K L M N P Q R S T V W Y

A C D E F G H I K L M N P Q R S T V W Y

I
5%

More than one way to generate
“SEQ”

S

I1

E Q

I2

D2 D3

S T

D1

P = 50.02%

S

E

Q M3

I2

D2 D3

S T

D1

P = 0.0002%

“Hidden” Markov Model

• Given string and model, path cannot be
determined

• May different paths may generate same string
• Path is “hidden”
• Any (generalized) model can generate all possible

strings
• Proof: consider a path like this:

S→D→D→I→I→I ... (visit Insert state once for
each letter) ... →I→D→D→T

HMMs for alignment

D1

• Find most probable path that generates the
string

• Path equivalent to assigning each letter to
an emitter state

• Letter assigned to match state is aligned to
consensus position (column) in training
alignment

S

I1

E Q

I2

D2 D3

S T

Most probable path

Alignment:
M1 ↔ S
M2 ↔ E
M3 ↔ Q

P(sequence | HMM)

• Longer paths always less probable...
• ...each transition & emission multiplies by

probability < 1
• More general model tends to give lower

probability

Viterbi algorithm

• Finds a most probable path (MPP) through HMM given a
sequence

• There may be more than one MPP
• Dynamic programming algorithm
• Closely related to standard pair-wise alignment with affine

gap penalties
– HMM has position-specific gap penalties
– Typically fixed in other methods, though ClustalW has

position-specific heuristics
– Gap penalties correspond to transition scores
– M→D or M→I = gap open
– D→D or I→I = gap extend

Key definition
• V(i, Q) = Probability of a most probable sub-path (MPSP)

• that (a) emits the first i letters of the sequence, and
(b) ends in state Q

• Informally, this is probability of best match of prefix of
model to prefix of sequence

• Recursively compute these probabilities (dynamic
programming)

• Reduces complexity to O(ML) time and space
– M=model length, L=sequence length

• This assumes fixed number of transitions into each state
– 3 for a profile HMM

• For general first-order HMM with K states, is order
O(K2L)

Recursion for Match state Mk
MPSP(i, Q) = most probable sub-path that (a) emits
first i letters in sequence S and (b) ends in state Q.

V(i, Q) = probability of MPSP(i, Q)

Three possibilities for MPSP(i, Mk):

MPSP(i – 1, Mk-1) + Mk-1→Mk,

MPSP(i – 1, Ik-1) + Ik-1→Mk, or

MPSP(i, Dk-1) + Dk-1→Mk

Hence:

V(i, Mk) = max {
V(i – 1, Mk-1) P(Mk-1→Mk)

V(i – 1, Ik-1) P(Ik-1→Mk)

V(i , Ik-1) P(Dk-1→Mk) }

MkMk-1

Dk-1

Ik-1

V(i, Mk)
Probability of an edge P(Q→R) is transition probability x emission probability

(unless silent).

Define:
t(Q→R) = transition probability P(R | Q)
e(Q, a) = emission probability of letter a in state Q.

Then:

P(Mk-1→Mk) = t(Mk-1→Mk) e(Mk, Si)
P(Ik-1→Mk) = t(Mk-1→Mk) e(Ik, Si)
P(Dk-1→Mk) = t(Dk-1→Mk)

Finally: V(i, Mk) = max {

V(i – 1, Mk-1) t(Mk-1→Mk) e(Mk, Si)

V(i – 1, Ik-1) t(Mk-1→Mk) e(Ik, Si)
V(i , Ik-1) t(Dk-1→Mk) }

May be two or three that
have max value, so may
be > 1 overall MPP.

General case V(i, Q)
In general:

V(i, Q) = max R (R ranges over all states in HMM)
{
V(i – 1, R) t(R→Q) e(Q, Si) (if R is emitter state)

V(i, R) t(R→Q) (if R is silent state)
}

Probability of MPP = V(L, T) (L=length of sequence, T=terminal state).

Edges of the MPP can be found by storing max case for each i,Q, or by trace-back.

Note that in a profile HMM, t(R→Q) is zero for most Q,R pairs, this is exploited
to make a more efficient implementation.

Forward / backward algorithm

• Computes probability that sequence is generated by the HMM
P(sequence | HMM)

• Considers all ways the sequence may be generated, not just the
most probable (as in Viterbi)

• Computes probability that a given position in the sequence output
by a given emitter state

P(i ↔ Q | sequence, HMM)
(↔ means “aligned to” or “emitted by”)

• Used to construct a “posterior decoding” alignment
– Allegedly more accurate than Viterbi
– See

Forward recursion for Match
state Mk

F(i, Q) = Probability that a sub-path (a) emits first i
letters in sequence S and (b) ends in state Q.

= Sum of probability over all sub-paths that
satisfy (a) and (b)

Three possibilities for final edge.

Hence:

F(i, Mk) = F(i – 1, Mk-1) P(Mk-1→Mk) +

F(i – 1, Ik-1) P(Ik-1→Mk) +

F(i , Ik-1) P(Dk-1→Mk)

sum vs. max in Viterbi

MkMk-1

Dk-1

Ik-1

General case F(i, Q)
In general:

F(i, Q) = ∑ R (R ranges over all states in HMM)
{
F(i – 1, R) t(R→Q) e(Q, Si) (if R is emitter state)
F(i, R) t(R→Q) (if R is silent state)
}

P(sequence | HMM) = F(L, T) (L=length of sequence,
T=terminal state).

Note that in a profile HMM, t(R→Q) is zero for most Q,R
pairs, this is exploited to make a more efficient
implementation.

Backward algorithm

• B(i, Q) = Probability that a sub-path Q --->
End (a) emits LAST L – i letters in
sequence S, given that (b) sub-path up to
state Q emitted FIRST i letters.

• Informally, is probability that SUFFIX of
model matches SUFFIX of sequence.

Backward recursion for Match
state Mk

Mk+1Mk

Dk+1

Ik+1

B(i, Q) = Probability that a sub-path Q ---> End
(a) emits LAST L – i letters in sequence

S given that
(b) sub-path up to state Q emitted FIRST

i letters.

= Sum of probability over all sub-paths that
satisfy (a) and (b)

Three ways to get from Mk to the End state.

B(i, Mk) = P(Mk→Mk+1) B(i + 1, Mk+1) +

P(Mk→Ik+1) B(i + 1, Ik+1) +

P(Mk-1→Dk+1) B(i + 1, Ik+1)

General case B(i, Q)
If Q is an emitter state:

B(i, Q) = ∑ R (R ranges over all states in HMM)
{
t(Q→R) e(Q, Si) B(i + 1, R)
}

If Q is a silent state:
B(i, Q) = ∑ R (R ranges over all states in HMM)

{
t(Q→R) B(i, R)
}

P(sequence | HMM) = B(0,S) = F(L,T) (S=Start,
T=Terminal, L=seq length)

P(i ↔ Q | sequence, HMM)

• Probability that position i in sequence is
emitted by state Q

P(i ↔ Q | sequence, HMM)
= (probability any sub-path reaches Q

and emits up to i) x
(probability any sub-path starts at Q

and emits rest)

Alignment “styles” (boundary
conds.)

• Local or global to model or sequence
Model

Sequence
Local-local
(like BLAST)

Model

Sequence
Global-global
(like ClustalW)

Semi-global

Model

Sequence

• Global to model, local to sequence (“glocal”)
• Typically used for finding domains or motifs,

e.g. PFAM
• Global-global more appropriate for modeling

whole proteins

Local to sequence

• Add N and C terminal insert states
• Emit zero or more letters before / after main

model
• Special rule: N and C emit only on self-

loop, not on first visit

M1

I1

M2 Mm

Im-1

D2 Dm

S

D1

N TC

Local to model

M1

I1

M2 Mm

Im-1

D2 Dm

S T

D1

N C

• Add “entry” and “exit” transitions
• Alignment can begin and end at any match

state

HMM software packages

• HMMER (“Hammer”)
– Sean Eddy, UWash St. Louis

• SAM (Sequence Analysis and Modeling)
– UC Santa Cruz

HMMER

• Free download
• Source code provided (“C” language)
• Runs on Linux, Unix, Windows, Mac, Sun
• Nice manual
• Relatively easy to install and use
• Most widely used in the community
• http://hmmer.wustl.edu/

SAM
• License required
• No source code available
• Harder to use -- more parameters, not well

explained
• Includes more algorithms and parameters

than HMMER
– buildmodel
– posterior decoding alignments
– SAM-Txx homolog recognition & alignment

(like PSI-BLAST, but better)
– Txx probably best in class

Implementation issues
• Underflow

– Probability 0.1
– Model length 100
– 0.1100 = 10-100, underflows floating point on many

CPUs
• min float in Microsoft C = 10-39

• Solution: convert to log2

• Multiplying probabilities becomes adding log-probabilities
• HMMER uses └1000 log2 P/PNULL┘

– Minus infinity = -100000
• Because integer arithmetic faster

– But not much faster these days, probably not worth it today
• But risks rounding error, integer under / overflow

Whole-genome alignment

• Sequence length very large
• Cannot use O(L2) algorithms
• Solution: use fast methods to find “seeds”

– also called “anchors”
• Extend seeds by dynamic programming
• (optional) combine local alignments into

global alignment or synteny graph

Whole-genome alignment
• MUMMER

– Delcher, A.L., Phillippy, A., Carlton, J. and Salzberg, S.L. (2002) Fast
algorithms for large-scale genome alignment and comparison. Nucleic
Acids Res 30(11): 2478-83.

• AVID and MAVID
– Bray, N., Dubchak, I. and Pachter, L. (2003) AVID: A global alignment

program. Genome Res 13(1): 97-102.
– Bray, N. and Pachter, L. (2004) MAVID: Constrained Ancestral

Alignment of Multiple Sequences. Genome Res 14(4): 693-9.
• LAGAN and Multi-LAGAN

– Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F., Davydov, E., Green,
E.D., Sidow, A. and Batzoglou, S. (2003) LAGAN and Multi-LAGAN:
efficient tools for large-scale multiple alignment of genomic DNA.
Genome Res 13(4): 721-31.

Textbooks
• Introduction to computational molecular biology, Setubal, J. and Meidanis, J.

– Introduction to biological sequences and fundamental sequence analysis
algorithms, many of which are based on dynamic programming. Gives pseudo-code
for many algorithms. Probably the most accessible textbook for programmers who
are not experts in computer science or biology.

• Biological sequence analysis, Durbin, R., Eddy, S., Krogh, A., Mitchison, G.
– Graduate text. Emphasizes probabilistic models, especially Bayesian methods and

graphical models (e.g., profile HMMs). Skimpy on biological background,
motivation and limitations of their algorithmic approaches, and assumes strong
math skills.

• Algorithms on strings, trees and sequences, Gusfield, D.
– Graduate / advanced undergraduate text. Not much on trees. Very much a computer

science perspective, again skimpy on the biology. Comprehensive coverage of
dynamic programming algorithms on sequences; also other approaches such as
suffix trees.

	Hidden Markov models
	
	Markov Chain
	Probabilities
	CpG Island Example
	Hidden Markov Model
	HMM Definitio
	Occasionally Dishonest Casino
	Definition of HMM
	HMM Definition (cont.)
	Probability of an Observed Sequence
	The Sequence Family Black Box
	Random generator
	Gaps (Deletes)
	Inserts
	Generalize
	Profile HMM
	Profile HMM: graphical model
	Hidden Markov Model
	“Profile” HMM
	Given sequence & HMM, path “hidden”
	More than one way to generate “SEQ”
	“Hidden” Markov Model
	HMMs for alignment
	P(sequence | HMM)
	Viterbi algorithm
	Key definition
	Recursion for Match state Mk
	V(i, Mk)
	General case V(i, Q)
	Forward / backward algorithm
	Forward recursion for Match state Mk
	General case F(i, Q)
	Backward algorithm
	Backward recursion for Match state Mk
	General case B(i, Q)
	P(i ↔ Q | sequence, HMM)
	Alignment “styles” (boundary conds.)
	Semi-global
	Local to sequence
	Local to model
	HMM software packages
	HMMER
	SAM
	Implementation issues
	Whole-genome alignment
	Whole-genome alignment
	Textbooks

