
Hidden Markov models







Markov Chain
• Models a sequence  S=x1x2x3…xn in which 

probability of a symbol depends on its 
previous symbol(s).  Only the transitions 
from and to the state A is shown. Each 
transistion has an associated probability.
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A Markov Chain in DNA alphabet A, T , C and G



Probabilities
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Where both s and t could be any one of the states A, T, C and G



CpG Island Example

• Question 1
• Given a short sequence of DNA , does it 

belong to CpG island family
• Question 2
• Given a long sequence, does this contain a 

CpG island sequence.
• We answered the first question by 

developing a discriminant model



Hidden Markov Model
• To answer the second question, we 

introduced the notion of hidden Markov 
model (HMM). Transitions from every state 
to any other state are not shown.

G+A+ T+ C+

G-A- T- C-



HMM Definitio

• In Markov Chain, there is a one-to-one 
correspondence  between the state and the 
symbols being generated.

• In HMM, there is no one-to-one 
correspondence between the state and the 
symbol. Given an output sequence of states, 
there is no way to tell what state sequence 
the HMM traveled.



Occasionally Dishonest Casino

1: 0.1
2: 0.1
3: 0.1
4: 0.1
5: 0.1
5: 0.5

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
5: 1/9
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0.95 0.90



Definition of HMM

• We have to differentiate between a sequence of 
output symbol generated with the sequence of 
states in HMM .The sequence of states is called 
a path

• The i-th state in the path is denoted 
• The chain is characterized by the probabilities 

P(l/k)= P(    =l |     =k) and 
• P(k | 0)= The probability that the HMM starts 

at state k as the begin state 0.
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HMM Definition (cont.)

• Since the symbols are decoupled from the 
states, we need to define what is called
emission probabilities as

)|()( kbxPbe iik === π









Probability of an Observed Sequence

• The joint probability of an observed 
sequence x and a state sequence is:
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where we require that 01 =+nπ

This formula is not very useful unless we know the path.
We could find the most likely path or the path using 
a posteriori distribution over states. The algorithm to do that is
called the Viterbi Algorithm.



The Sequence Family Black Box
Given an alignment... ...design a black box that

generates similar sequences
S E F Q R
S - A Q K
S E F Q K
S E A Q K

S A Q K

S E F Q R

S E F Q K

S E A Q K

http://www.carvingtranquility.com/Images/tramp4 black box.gif


Random generator
S E FA Q RK

50% F
50% A

S E F Q R
S - A Q K
S E F Q K
S E A Q K

Always
S

25% R
75% K

Always
Q

Heads or tails 
(fair coin)

Always
E

Heads or tails 
(unfair coin)



Gaps (Deletes)

S E F Q R
S - A Q K
S E F Q K
S E A Q K

S E FA Q RK

Always
S

25% R
75% KAlways

Q

D

75%

50% F
50% A

Always
E

25% “Delete state”, outputs 
no letter (“silent”).



Inserts

S E F - - - Q R
S - A V W I Q K
S E F - - - Q K
S E A - - - Q K

S E FA Q RK

50% F
50% A

Always
E

Always
Q

D

75%

25%

75%

25%

I

“Self-loop” allows 
inserts of any length

Always
S

25% R
75% K

Insert relative to consensus “Insert state” outputs 
any letter at random



Generalize
• So far, model is too specific
• Generated sequences all very similar to 

training set
• Won’t generate more distant homologs
• Generalize: at each position, allow non-zero 

probability for:
1. any letter
2. gap (delete)
3. inserts



Profile HMM

I

M

D

I

M

D

S

Start state
(all paths 

begin here)

One node for each consensus 
position (=column in training 

alignment)

T...

Terminal state
(all paths end 

here)



Profile HMM: graphical model

• Emitter states: Mk and Ik

– generate one letter on each visit
– letter emitted following a probability distribution over the alphabet

• Silent state: Dk

• Transitions between states
– each state has a probability distribution over next state to visit

• Special silent states: Start and Terminal
• Begin in Start state
• Repeat until in Terminal state:

1. Output letter according to emission distribution (unless silent).
2. Choose next state according to transition distribution.

M1

I1

M2 M3

I2

D2 D3

S ...



Hidden Markov Model
• Set of M states {Si i = 1 .. M}
• Alphabet {ak, k = 1 .. K}    (K=4 for DNA, K=20 for amino acids)
• M x K emission probabilities eik

– eik = probability of emitting letter Ak from state Si

• M x M transition matrix tij = P(Sj | Si)
– nth order Markov model: probs depend on n predecessor states
– Profile HMM: only 3 transitions for each state, transition matrix is 

sparse
• Model normalization, sum of probabilities = 1

– For all states, emissions sum to one and transitions sum to one
∑k eik = 1, ∀ i
∑j tij = 1, ∀ i

– Special case: silent state Si, eik = 0 for all letters k.



“Profile” HMM

• Profile = statistical model of sequence 
family

• Other types of HMMs, e.g. genefinders, are 
not profile HMMs

• From now on, HMM = profile HMM



Given sequence & HMM, path 
“hidden”

• Any (generalized) HMM can generate all 
possible sequences

• Many ways to generate given sequence 
from given HMM

• Example: model of motif “SEQ”

M1

I1

M2 M3

I2

D2 D3

S T

D1

S E Q



M1

I1

M2 M3

I2

D2 D3

S T

D1

S E Q

81%
1%D1%

M1 M 98%
A C D E F G H I K L M N P Q R S T V W Y

I 1%

M2A C D E F G H I K L M N P Q R S T V W Y

M3A C D E F G H I K L M N P Q R S T V W Y

A C D E F G H I K L M N P Q R S T V W Y

I
5%



More than one way to generate 
“SEQ”

S

I1

E Q

I2

D2 D3

S T

D1

P = 50.02%

S

E

Q M3

I2

D2 D3

S T

D1

P = 0.0002%



“Hidden” Markov Model

• Given string and model, path cannot be 
determined

• May different paths may generate same string
• Path is “hidden”
• Any (generalized) model can generate all possible 

strings
• Proof: consider a path like this:

S→D→D→I→I→I ... (visit Insert state once for 
each letter) ... →I→D→D→T



HMMs for alignment

D1

• Find most probable path that generates the 
string

• Path equivalent to assigning each letter to 
an emitter state

• Letter assigned to match state is aligned to 
consensus position (column) in training 
alignment

S

I1

E Q

I2

D2 D3

S T

Most probable path

Alignment:
M1 ↔ S
M2 ↔ E
M3 ↔ Q



P(sequence | HMM)

• Longer paths always less probable...
• ...each transition & emission multiplies by 

probability < 1
• More general model tends to give lower 

probability



Viterbi algorithm

• Finds a most probable path (MPP) through HMM given a 
sequence

• There may be more than one MPP
• Dynamic programming algorithm
• Closely related to standard pair-wise alignment with affine 

gap penalties
– HMM has position-specific gap penalties
– Typically fixed in other methods, though ClustalW has 

position-specific heuristics
– Gap penalties correspond to transition scores
– M→D or M→I = gap open
– D→D or I→I = gap extend



Key definition
• V(i, Q)  = Probability of a most probable sub-path (MPSP) 

• that (a) emits the first i letters of the sequence, and
(b) ends in state Q

• Informally, this is probability of best match of prefix of 
model to prefix of sequence

• Recursively compute these probabilities (dynamic 
programming)

• Reduces complexity to O(ML) time and space
– M=model length, L=sequence length

• This assumes fixed number of transitions into each state
– 3 for a profile HMM

• For general first-order HMM with K states, is order 
O(K2L)



Recursion for Match state Mk
MPSP(i, Q) = most probable sub-path that (a) emits 
first i letters in sequence S and (b) ends in state Q.

V(i, Q) = probability of MPSP(i, Q)

Three possibilities for MPSP(i, Mk):

MPSP(i – 1, Mk-1) + Mk-1→Mk,

MPSP(i – 1, Ik-1) + Ik-1→Mk, or

MPSP(i, Dk-1) + Dk-1→Mk

Hence:

V(i, Mk) = max {
V(i – 1, Mk-1) P(Mk-1→Mk)

V(i – 1, Ik-1) P(Ik-1→Mk)

V(i , Ik-1) P(Dk-1→Mk)  }

MkMk-1

Dk-1

Ik-1



V(i, Mk)
Probability of an edge P(Q→R) is transition probability x emission probability 

(unless silent).

Define: 
t(Q→R) = transition probability P(R | Q)
e(Q, a) = emission probability of letter a in state Q.

Then:

P(Mk-1→Mk) = t(Mk-1→Mk) e(Mk, Si)
P(Ik-1→Mk) = t(Mk-1→Mk) e(Ik, Si)
P(Dk-1→Mk) = t(Dk-1→Mk)

Finally:   V(i, Mk) = max {

V(i – 1, Mk-1) t(Mk-1→Mk) e(Mk, Si)

V(i – 1, Ik-1) t(Mk-1→Mk) e(Ik, Si)
V(i , Ik-1) t(Dk-1→Mk)   }

May be two or three that 
have max value, so may 
be > 1 overall MPP.



General case V(i, Q)
In general:

V(i, Q) = max R (R ranges over all states in HMM)
{
V(i – 1, R) t(R→Q) e(Q, Si) (if R is emitter state)

V(i, R) t(R→Q) (if R is silent state)
}

Probability of MPP = V(L, T) (L=length of sequence, T=terminal state).

Edges of the MPP can be found by storing max case for each i,Q, or by trace-back.

Note that in a profile HMM, t(R→Q) is zero for most Q,R pairs, this is exploited 
to make a more efficient implementation.



Forward / backward algorithm

• Computes probability that sequence is generated by the HMM
P(sequence | HMM)

• Considers all ways the sequence may be generated, not just the 
most probable (as in Viterbi)

• Computes probability that a given position in the sequence output 
by a given emitter state

P(i ↔ Q | sequence, HMM)
(↔ means “aligned to” or “emitted by”)

• Used to construct a “posterior decoding” alignment
– Allegedly more accurate than Viterbi
– See 



Forward recursion for Match 
state Mk

F(i, Q) = Probability that a sub-path (a) emits first i 
letters in sequence S and (b) ends in state Q.

= Sum of probability over all sub-paths that
satisfy (a) and (b)

Three possibilities for final edge.

Hence:

F(i, Mk) = F(i – 1, Mk-1) P(Mk-1→Mk) +

F(i – 1, Ik-1) P(Ik-1→Mk) +

F(i , Ik-1) P(Dk-1→Mk)

sum vs. max in Viterbi

MkMk-1

Dk-1

Ik-1



General case F(i, Q)
In general:

F(i, Q) = ∑ R (R ranges over all states in HMM)
{
F(i – 1, R) t(R→Q) e(Q, Si) (if R is emitter state)
F(i, R) t(R→Q) (if R is silent state)
}

P(sequence | HMM) = F(L, T) (L=length of sequence, 
T=terminal state).

Note that in a profile HMM, t(R→Q) is zero for most Q,R 
pairs, this is exploited to make a more efficient 
implementation.



Backward algorithm

• B(i, Q) = Probability that a sub-path Q ---> 
End (a) emits LAST L – i letters in 
sequence S, given that (b) sub-path up to 
state Q emitted FIRST i letters.

• Informally, is probability that SUFFIX of 
model matches SUFFIX of sequence.



Backward recursion for Match 
state Mk

Mk+1Mk

Dk+1

Ik+1

B(i, Q) = Probability that a sub-path Q ---> End
(a) emits LAST L – i letters in sequence

S given that
(b) sub-path up to state Q emitted FIRST

i letters.

= Sum of probability over all sub-paths that
satisfy (a) and (b)

Three ways to get from Mk to the End state.

B(i, Mk) =  P(Mk→Mk+1) B(i + 1, Mk+1) +

P(Mk→Ik+1) B(i + 1, Ik+1) +

P(Mk-1→Dk+1) B(i + 1, Ik+1)



General case B(i, Q)
If Q is an emitter state:

B(i, Q) = ∑ R (R ranges over all states in HMM)
{
t(Q→R) e(Q, Si) B(i + 1, R)
}

If Q is a silent state:
B(i, Q) = ∑ R (R ranges over all states in HMM)

{
t(Q→R) B(i, R)
}

P(sequence | HMM) = B(0,S) = F(L,T) (S=Start, 
T=Terminal, L=seq length)



P(i ↔ Q | sequence, HMM)

• Probability that position i in sequence is 
emitted by state Q

P(i ↔ Q | sequence, HMM)
= (probability any sub-path reaches Q 

and emits up to i) x
(probability any sub-path starts at Q 

and emits rest)



Alignment “styles” (boundary 
conds.)

• Local or global to model or sequence
Model

Sequence
Local-local 
(like BLAST)

Model

Sequence
Global-global 
(like ClustalW)



Semi-global

Model

Sequence

• Global to model, local to sequence (“glocal”)
• Typically used for finding domains or motifs, 

e.g. PFAM
• Global-global more appropriate for modeling 

whole proteins



Local to sequence

• Add N and C terminal insert states
• Emit zero or more letters before / after main 

model
• Special rule: N and C emit only on self-

loop, not on first visit

M1

I1

M2 Mm

Im-1

D2 Dm

S

D1

N TC



Local to model

M1

I1

M2 Mm

Im-1

D2 Dm

S T

D1

N C

• Add “entry” and “exit” transitions
• Alignment can begin and end at any match 

state



HMM software packages

• HMMER (“Hammer”)
– Sean Eddy, UWash St. Louis

• SAM (Sequence Analysis and Modeling)
– UC Santa Cruz



HMMER

• Free download
• Source code provided (“C” language)
• Runs on Linux, Unix, Windows, Mac, Sun
• Nice manual
• Relatively easy to install and use
• Most widely used in the community
• http://hmmer.wustl.edu/



SAM
• License required
• No source code available
• Harder to use -- more parameters, not well 

explained
• Includes more algorithms and parameters 

than HMMER
– buildmodel
– posterior decoding alignments
– SAM-Txx homolog recognition & alignment 

(like PSI-BLAST, but better)
– Txx probably best in class



Implementation issues
• Underflow

– Probability 0.1
– Model length 100
– 0.1100 = 10-100, underflows floating point on many 

CPUs
• min float in Microsoft C = 10-39

• Solution: convert to log2

• Multiplying probabilities becomes adding log-probabilities
• HMMER uses └1000 log2 P/PNULL┘

– Minus infinity = -100000
• Because integer arithmetic faster

– But not much faster these days, probably not worth it today
• But risks rounding error, integer under / overflow



Whole-genome alignment

• Sequence length very large
• Cannot use O(L2) algorithms
• Solution: use fast methods to find “seeds”

– also called “anchors”
• Extend seeds by dynamic programming
• (optional) combine local alignments into 

global alignment or synteny graph



Whole-genome alignment
• MUMMER

– Delcher, A.L., Phillippy, A., Carlton, J. and Salzberg, S.L. (2002) Fast 
algorithms for large-scale genome alignment and comparison. Nucleic 
Acids Res 30(11): 2478-83.

• AVID and MAVID
– Bray, N., Dubchak, I. and Pachter, L. (2003) AVID: A global alignment 

program. Genome Res 13(1): 97-102.
– Bray, N. and Pachter, L. (2004) MAVID: Constrained Ancestral 

Alignment of Multiple Sequences. Genome Res 14(4): 693-9.
• LAGAN and Multi-LAGAN

– Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F., Davydov, E., Green, 
E.D., Sidow, A. and Batzoglou, S. (2003) LAGAN and Multi-LAGAN: 
efficient tools for large-scale multiple alignment of genomic DNA. 
Genome Res 13(4): 721-31.



Textbooks
• Introduction to computational molecular biology, Setubal, J. and  Meidanis, J. 

– Introduction to biological sequences and fundamental sequence analysis 
algorithms, many of which are based on dynamic programming. Gives pseudo-code 
for many algorithms. Probably the most accessible textbook for programmers who 
are not experts in computer science or biology.

• Biological sequence analysis, Durbin, R., Eddy, S., Krogh, A., Mitchison, G.
– Graduate text. Emphasizes probabilistic models, especially Bayesian methods and 

graphical models (e.g., profile HMMs). Skimpy on biological background, 
motivation and limitations of their algorithmic approaches, and assumes strong 
math skills.

• Algorithms on strings, trees and sequences, Gusfield, D.
– Graduate / advanced undergraduate text. Not much on trees. Very much a computer 

science perspective, again skimpy on the biology. Comprehensive coverage of 
dynamic programming algorithms on sequences; also other approaches such as 
suffix trees.
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