
1

1

Exact String Matching, Suffix
Trees, and Applications

CAP 5937 Bioinformatics
University of Central Florida

Fall 2004

2

Problem

Given a string P called the pattern and longer
string T called the text, the exact matching
problem is to find all occurrences, if any, of
pattern P in text.

2

3

Notations

T: Text m: length = |T|
P: Pattern n: length = |P|
S: String s1 s2 s3 …….sn

Example: S=“AGCTTGA” |S| = 7
Substring: Si,j=SiS i+1…Sj

Example: S2,4=“GCT”
Subsequence of S: deleting zero or more characters from S

“ACT” and “GCTT” are subsquences.
Prefix of S: S1,k

“AGCT” is a prefix of S.
Suffix of S: Sh,|S|

“CTTGA” is a suffix of S.

4

0 1

1234567890123

T:xabxyabxyabxz

P:abxyabxz

*abxyabxz

^^^^^^^*

abxyabxz

*abxyabxz

*abxyabxz

*abxyabxz

^^^^^^^^

0 1
1234567890123

T:xabxyabxyabxz

P:abxyabxz

*abxyabxz

^^^^^^^*

abxyabxz

^^^^^^^^
^^^^

3

5

Z

Given a string S, and position i > 1, let Zi(S)
be the length of the longest substring of S
that starts at i and matches a prefix of S.

12345678901

S= aabcaabxaaz

Z5(S) = 3 (aabc…aabx)

Z6(S) = 1 (aa…ab)

Z7(S) = Z8(S) = 0
Z9(S) = 2 (aab…aaz)

6

For any position i > 1 where Zi is greater than zero,
the Z-box at i is defined as the substring starting
at i and ending at position i + Zi -1

i
Zi

αα

4

7

For every i > 1, ri is the right-most endpoint
of the Z-boxes that begin at or before
position i and li is the left end of the Z-box.

12345678901234567

S = aabaabcaxaabaabcy

Z10 = 7, r15=16, l15 =10

8

Z calculation (Linear)

Ref: Gusfield’s book Section 1.4
Given Zi for all 1 < i ≤ k-1 and the current
values r and l, Zk and updated r and l are
computed as follows:

1. k > r. Find Zk by comparing the characters
starting at position1 of S.

5

9

2. k < r.

S

k’ Zl l rk

α α
β β

S

k’ Zl l rk

α αβ βγγγ

k’+Zk’-1

Zk’

k+Zk-1

S

k’ Zl l rk

α α
β ββ ?

k’+Zk’-1

Zk’ < | β |

Zk’ ≥ | β |

10

First string matching algorithm

Consider string P$T, where P is the pattern,
T is the text and $ is special alphabet.
The algorithm is to calculate the Z value of
the string P$T. For all i such that Zi = |P|, P
matches the subsrting T[i..i+|P|-1].
The calculation time is linear.

6

11

Classical Comparison-Based Methods

Boyer-Moore Algorithm
Knuth-Morris-Pratt Algorithm
Apostolico-Giancarlo Algorithm
Aho-Corasick Algorithm

12

Boyer-Morris Algorithm

Right-to-left scan

12345678901234567890

T: xpbctbzabpqxctbpq

P: tpabxab

7

13

Bad character rule
For each character x in the alphabet, let
R(x) be the position of right-most
occurrence of character x in P. R(x) is
defined to be zero if x does not occur in P.

12345678901234567890

T: xpbctbxabpqxctbpq

P: tpabxab R(t)= 1
tpabxab R(q)= 0

tpabxab

14

Extended bad character rule

12345678901234567890

T: xpbcabxabpqxctbpq

P: aptbxab R(a)= 6
aptbxab R(q)= 0

aptbxab

When a mismatch occurs at position i of P and the mismatched character
in T is x, then shift P to the right so that the closest x to the left of position i

in P is below the mismatched x in T

8

15

Strong good suffix rule

α

α

αα

α

x

y

z

z

T

P before shift

P after shift

16

0 1
123456789012345678

T: prstabstubabvqxrst
*

P: qcabdabdab
1234567890

qcabdabdab weak rule
qcabdabdab strong rule

9

17

For each i, L(i) is the largest position less
than n such that string P[i..n] matches a
suffix of P[1..L(i)]. If no, L(i) = 0.
So is L’(i) with the characters to the left of
the suffix are different.

P
i

αα
nL(i)

i
αα

n
P

L’(i)
xy

x≠y

18

Nj(P) is the length of the longest suffix of
the substring P[1..j] that is also a
suffix of the full string P.

Zi(P) is the length of the longest prefix of
P[i..n] that is also a prefix of the full
string P.

So, Nj(P) = Zn-j+1(Pr)

P
j-Nj(P)+1

αα
nj

10

19

P
j-Nj(P)+1

αα
nj

123456789

P cabdabdab L(8) = 6, L’(8) = 3

abdab

abdab N3(P)=2, N6(P)=5

i

αα

i+Zi-11

20

Calculation of L(i)

L(i) is the largest index j less than n such that
Nj(P) ≥|P[i..n]|.
L’(i) is the largest index j less than n such that
Nj(P) = |P[i..n]|.
Algorithm

For i := 1 to n-1 do L’(i) := 0;

For j := 1 to n-1 do
Begin i := n-Nj(P) +1; L’(i) := j End

11

21

Let l’(i) denote the length of the largest
suffix of |P[i..n]| that is also a prefix of P, if
one exists. If none exists, then let l’(i) = 0.
l’(i) equals the largest j < |P[i..n]| such that
Nj(P) = j.

22

Knuth-Morris-Pratt Algorithm

For each position i in pattern P, defines spi(P)
(resp. spi’(P))to be the length of the longest
proper suffix of P[1..i] that matches a prefix
of P and (resp. P(i+1) ≠ P(sp’i(P)+1)).

i

αα

spi(P)1
P

x y

12

23

k-1

P before shift

P after shift

Missed occurrence of P

T
α β

αβ is a prefix of P.
Up to position k-1, P matches T,
Thus, αβ is also a suffix of P[1..k-1].

Shift rule of Knuth-Morris-Pratt algorithm

24

spi(P) calculation

For any i >1, spi(P) = Zj = i-j+1, where j> 1 is
the smallest position that maps to i.

i

αα

spi’(P)1
P

x y

i- spi’(P)+1

Z i- spi’(P)+1= spi’(P)

13

25

123456789012345678

xyabcxabcxadcdqfeg

abcxabcde

123456789

abcxabcde

abcxabcde

sp2=0, sp3=0, sp4=0, sp5=1, sp6=2,
sp7=3, sp8=0, sp9=0.

26

Theorem

After a mismatch at postion i+1 of P and a
shift of i-spi’ places to the right, the left-most
i-spi’ characters of P are gurranteed to match
their counterparts in T.
For any alignment of P with T, if character 1
through i of P match the opposing characters
of T but character i+1 mismatches T(k), then
P can be shifted by i-spi’ places to the right
without passing any occurrence of P in T.

14

27

Classical Comparison-Based Methods

Boyer-Moore Algorithm
Knuth-Morris-Pratt Algorithm
Apostolico-Giancarlo Algorithm
Aho-Corasick Algorithm

A Demonstration

28

Exact matching with a set of patterns

Exact set matching problem is to find all the
occurrences in a text T of a set of patterns P
= {P1, …, Pz}.

Dictionary problem: Given a text T, ask if T is a
pattern in P.

15

29

Keyword Tree

Keyword tree K for P
each edge is labeled with exactly one character
any two edges out of the same node have distinct
labels
every pattern Pi in P maps to some node v of K
such that the characters on the path from the root
of K to v exactly spell out Pi, and every leaf of K is
mapped to by some pattern in P.

30

Assumption: No pattern in P is a proper substring
of any other pattern in P.

L(v) = the labels from root to the node v.
lp(v) = the length of the longest proper suffix of

string of L(v) that is a prefix of some pattern in P.
Lemma: Let α be the lp(v)-length suffix of string

L(v). Then there is a unique node in the keyword
tree that is labeled by string α.

The unique node is denoted by nv.
When lp(v) =0, nv is the root.
nv for all v can be constructed in linear time.

16

31

P = {potato, tattoo, theater, other} L(v) = pota
lp(v) = 2

p

o

t

a

t

o

1

t

t

t

t

o

o

o

t
h

e
r

h
e

e

aa

r

2

3

4
v

nv

T = xxpotattooxx

32

p

o

t

a

t

o

1

t

t

t

t

o

o

o

t
h

e
r

h
e

e

aa

r

2

3

4

T = xxpotattooxx

17

33

nv is computed in linear time.
Consider, for each pattern, two pointers, one points the current
processing position and the other points to left end of the match
suffix.
We will see that each operation causes the pointers move
forward, but they only move 2n times.

34

p

o

t

a

t

o

1

t

t

t

t

o

o

o

t
h

e
r

h
e

e

aa

r

2

3

4

T = xxpotattooxx

18

35

Aho-Corasick Algorithm

Without assumption.
P = {acatt, ca}, T= acatx
Suppose in a keyword tree K there is a direct
path of failure links from a node v to a node
that numbered with pattern i. Then pattern Pi
must occur in T ending at position c
whenever node v is reached during the
search of Aho-Corasick algorithm.

36

Suppose a node v has been reached
during the algorithm. Then the pattern Pi
occurs in T ending at position c only if v is
numbered i or there is a directed path of
failure links from links from v to the node
numbered i.
The output link at v points to that
numbered node other than v that is
reachable from v by the fewest failure links.

19

37

P = {abcdefg, de, bcde, defg}
T = xabcdefxcdefgx

a

b
b

c c

d d

d

e

e

e

g

f

f
g

38

Matching against DNA Library

Sequence-tagged-sites(STS)
A DNA string of 200-300 bps whose right and left
ends, of length 20 – 30 bps each, occur only once
in the entire genome.

Expressed sequence tags (EST)
A STS that comes from genes rather than parts of
inter-gene DNA. (Obtained from mRNA or cDNA)

20

39

The set of patterns: all known STSs or
ESTs
Text: a newly sequenced genome
Goal: To identify STSs or ESTs occur in
the newly sequences genome

40

Seminumerical String Matching

Shift-And Method
Let M be an n by m+1 binary matrix. M(i,j) = 1 if
and only if the first i characters of P exact match
the i characters of T ending at character j.
M(n,j) = 1 if and only if an occurrence of P ends at
position j of T.
Bit-Shift(j-1) : shift column j-1 down by one
position and set the first to 1.

21

41

T= xabxabaaxa

P= abaac

C(8)T=(1 0 1 0 0)
Bit-Shift C(8)T= (1 1 0 1 0)
T(9)= a, Ua

T= (1 0 1 1 0)
C(9)T = C(8)T AND Ua

T = (1 0 0 1 0)
M(i, j) = 1 if and only if

M(i-1, j-1) =1 and UT(j) (i) =1

42

Advantage of Shift-And
Very efficient if n is less than the size of single
computer word.
Only two columns are needed in each
computation time.

Agrep: The Shift-And method with errors.
Mk(i,j) is 1 if and only if at least i-k of the first i
characters of P match the i characters up
through character j of T.

In Agrep, the user chooses a value of k
and then the arrays M, M1, …, Mk are
computed.

22

43

Ml(j) = Ml-1(j)
OR [Bit-Shift(Ml(j-1)) AND U(T(j))]
OR Ml-1(j-1)

Computation time = O(kmn)

44

Karp-Rabin fingerprint method

Tr
n denote the n-length substring of T starting

character r.

1

() 2 ()
n

n i

i

H P P i−

=

=∑

1

() 2 (1)
n

n i
r

i

H T T r i−

=

= − −∑

23

45

There is an occurrence of P starting at
position r if and only if H(P) = H(Tr).
Hp(P) = H(P) mod p and Hp(Tr) = H(Tr)
mod p are called fingerprint of P and Tr .
Hp(P) = Hp(Tr) may introduce false match.
π(u) = the number of primes that are less

than or equal to u.

() 1.26
ln() ln()

u uπ u
u u

≤ ≤

46

If u ≥ 29, then the product of all the primes
that are less than or equal to u is greater
than 2u.
If u ≥ 29 and x is any number less than or
equal to 2u, than x has fewer than π(u)
(distinct) prime divisors.

24

47

Let P and T be any strings such that nm >
29. Let I be any positive integer. If p is a
randomly chosen prime number less than
or equal to I, then the probability of a false
match between P and T is less than or
equal to π(mn)/π(I).
R: the set of position in T, P does not
begin.
Consider
There are at most π(mn) prime divisors
p is randomly chosen from I.

(| () () |) 2mn
ss R

H P H T
∈

− ≤∏

48

Algorithm

Choose a positive integer I.
Randomly pick a prime number less than or
equal to I, and compute Hp(P).
For each position r in T, compute Hp(Tr) and
test if it equals Hp(P).
When I = nm2,the probability of a false match
is at most 2.53/m.

25

49

p

t t

o

t
e

i

h o o l

e
n

c

e

r
r

y
y

a
t

o
s

e c

P = {potato, pottery, poetry, school, science}

v

L(v) = pota

50

Motivating Suffix Tree

26

51

Exact String Matching

Input: P and T.
Output: All occurrences of P in T.
Time: O(|P| + |T|)
Technique: Z values of PT.

Z(i + |P|) ≥ |P| iff P = T[i…i + |P| – 1].

P

i+|P| i+|P|+d-1

T

52

Question 1

Solving the Exact String Matching problem in
O(|P|) time under the assumption that T is
known and already pre-processed?

E.g., T is a dictionary whose content does not
change frequently.

Answer:

27

53

Question 2

Solving the Exact String Matching problem in
O(|T|) time under the assumption that P is
known and already pre-processed?

E.g., P is one of your private collection of DNA
sequence.

Answer:

54

A Less Ambitious Version

The Substring Problem
Input: P and T.
Output: an occurrence of P in T.

28

55

Question 2

Solving the Substring problem in O(|T|) time
under the assumption that P is known and
already pre-processed?
Answer:

56

Question 1

Solving the Substring problem in O(|P|) time
under the assumption that T is known and
already pre-processed?
Answer:

29

57

To P or not to P

Preprocessing P
Gusfield
Boyer-Moore
Knuth-Morris-Pratt

Preprocessing T
Suffix tree

58

From Suffix Trie to Suffix
Tree

30

59

Notation Change

Input: P and S.
Output: an occurrence of P in S.

For example,
S = b b a b b a a b

P = b a a

60

Suffixes of S

S = b b a b b a a b

S[1…8]= b b a b b a a b

S[2…8]= b a b b a a b

S[3…8]= a b b a a b

S[4…8]= b b a a b

S[5…8]= b a a b

S[6…8]= a a b

S[7…8]= a b

S[8…8]= b

1st suffix

2nd suffix

3rd suffix

4th suffix

5th suffix

6th suffix

7th suffix

8th suffix

31

61

KEY: P occurs in S iff P is a prefix of
a suffix of S.
S = b b a b b a a b

S[1…8]= b b a b b a a b

S[2…8]= b a b b a a b

S[3…8]= a b b a a b

S[4…8]= b b a a b

S[5…8]= b a a b

S[6…8]= a a b

S[7…8]= a b

S[8…8]= b

1st suffix

2nd suffix

3rd suffix

4th suffix

5th suffix

6th suffix

7th suffix

8th suffix

62

T = Suffix Trie of S

b b a b b a a b
b a b b a a b

a b b a a b
b b a a b

b a a b
a a b

a b
b

32

63

Why suffix trie?

The following statements are equivalent.
P occurrs in S.
P is a prefix of a suffix of S.
P corresponds to a path of T starting from the root
of T.

64

P = b a b b a

b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

P occurs in S!

33

65

P = b b a a b a

b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

P doesn’t occur in S!

66

P = a b b b a a

b b a b b a a b
b a b b a a b

a b b a a b
b b a a b

b a a b
a a b

a b
b

P doesn’t occur in S!

34

67

Q: Where does P occur in S?

68

P = a b b a a

8

4

4

4

4 1

1

1

1

1

5

5

5 2

2

2

2

2

6

7

6 3

3

3

7

3

1 2 3 4 5 6 7 8
b b a b b a a b

b a b b a a b
a b b a a b

b b a a b
b a a b

a a b
a b

b

Output: 3

35

69

Question

Time complexity for constructing the
suffix trie T of S?

Θ(|S|)

Θ(|S| log |S|)

Θ(|S|2)

Θ(|S|3)

70

Time = O(|S|2)

8

4

4

4

4 1

1

1

1

1

5

5

5 2

2

2

2

2

6

7

6 3

3

3

7

3

1 2 3 4 5 6 7 8
b b a b b a a b

b a b b a a b
a b b a a b

b b a a b
b a a b

a a b
a b

b

36

71

time = Ω(|S|2)

How to establish a lower bound?
Answer:

72

S = a a a a b b b b

37

73

Summary

Suffix trie is good in solving Substring
Problem, but may require Ω(|S|2) time and
space.
Question: is there a compact representation
of suffix trie that needs only O(|S|) time and
space?

74

Suffix Tree

A compact representation of suffix trie

38

75

Observations on Trie T of S

T has at most |S|
leaves.

Why?

T has at most |S|
branching nodes.

Why?

76

Keeping leaves and
branching nodes only.

compact
representation of edge
labels

S = a a a a b b b b

[5,8]

[5,8]

[5,8]

[5,8]

[4,8]

[1,1]

[2,2]

[3,3]

39

77

S = a a a a b b b b

[5,8]

[5,8]

[5,8]

[5,8][4,8]

[1,1]

[2,2]

[3,3]

78

S = b b a b b a a b

40

79

S = b b a b b a a b

[1,1]

[2,3]

[4,8]

[7,8]

[4,8]

[7,8]

[4,8]

[7,8]

[3,3]

[3,3]
[3,3] [1,1]

[3,3] [2,3]

[7,8] [4,8][7,8] [4,8]

[7,8] [4,8]

80

S = b b a b b a a b

[3,3] [1,1]

[3,3] [2,3]

[7,8] [4,8][7,8] [4,8]

[7,8] [4,8]

41

81

Question

The space complexity of suffix tree
O(|S|)
O(|S| log |S|)
O(|S|2)
O(|S|3)

Why?
Number of nodes =
Number of edges =
Space required by each edge =

82

The challenge

Constructing Suffix Tree in Linear Time

42

83

History of Suffix Tree Algorithms

[Weiner, IEEE FOCS 1973]
Linear time but expensive in space.
D. E. Knuth: “the algorithm of 1973”.

[McCreight, J. ACM 1976]
Linear time and quadratic space.

[Ukkonen, Algorithmica 1995]
Linear time and linear space.
Much better readability.

84

Academy Professor ,
Department of Computer
Science , University of
Helsinki, Finland

http://www.cs.helsinki.fi/u/ukkonen/

Esko Ukkonen: On-line construction of
suffix-trees. Algorithmica 14 (1995), 249-
260

43

85

Ukkonen’s approach
on Suffix Trie

b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

Case 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

86

Growing Suffix Trie

Three cases while growing trie
Case 1: growing an edge at a leaf.
Case 2: growing a new branch of leaf.
Case 3: does not change the tree structure.

44

87

Three Phase Theorem

Those k steps in the k-th iteration have the
following pattern:

some (at least one) Case-1 steps,
followed by some (could be zero) Case-2 steps,
followed by some (could be zero) Case-3 steps.

88

Thinking in Suffix Tree
1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
bCase 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

[1,1]
[1,2]

[1,3]
[2,3]

[3,3]

[3,3]

[2,4][3,4]

[3,4]

[2,5]
[3,5]

[3,5]

[2,6]
[3,6]

[3,6]

[2,7]

[3,7]

[3,7]
[7,7]

[4,7]

[7,7] [4,7]

[7,7] [4,7]

[4,8]

[4,8]

[4,8]

[7,8]

[7,8]

[7,8]

45

89

Saving a lot of efforts

We can simply ignore
all Case-1 steps.
Recall that the number
of Case-2 steps is at
most |S|.
Q: Is this good enough?

Case 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

90

How does Ukkonen overcome the
problem of too many Case-3 steps?

Completely ignore them……
Do nothing when nothing happen……

46

91

Saving even more efforts

Case 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

92

Rough idea

Just keep one current growing point
throughout the execution.
Deriving the new position of the current
growing point from its previous position (with
the help of suffix links)

47

93

Only one growing point

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

The challenges: How do
we derive the position
of the current growing
point?

Vertically (case 2)
Horizontally (case 3)

Q: Which one is easier?

94

Horizontally, …

Moving from iteration
k – 1 to iteration k.
The growing point does
not move!
This is the easier case.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

48

95

Vertically, …

Moving from Step i to
Step i+1 in the same
iteration.
The growing point
moves dramatically.
This is the tougher
case.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

96

Suffix link

Keep records of what have been done --
- (Dynamic Programming)

49

97

Recording What’s Done

Whenever a vertical movement reaching the
destination, keep a record of the movement
by using a link.
Later on, we might what to follow these
recorded linkages.
These links are thus called the suffix links.

98

Why called “Suffix Links”?

Note that the
destination of the link is
the (-1)-suffix of the
starting.
That is, a suffix link
links a length n+1 suffix
to a length n suffix.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

50

99

Property of Suffix Links (1)

The starting point of a
suffix is an internal
node,

Not a leaf
No the middle part of
some suffix tree edge.

Why?

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

100

Every internal node
must be a starting point
of a suffix link.
Why?

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

Property of Suffix Links (2)

51

101

Using suffix links

S = b b a b b a a b

[1,-]

[2,-]

[3,-]

[3,-]

[3,3]

[7,-]
[4,-]

[3,3]

[7,-] [4,-]

[2,3]

[7,-] [4,-]

1

[1,1]

1
2

1

1

1

102

Traversal with the help of suffix links:
phase (1)

Going up to a closest
internal node (whose
suffix link must be
available). Suppose
this upward traversal
passes through t
characters.
Following the suffix link
that starts from this
internal node.

t

[i, j]

52

103

Traversal with the help of suffix links:
phase (2)

Going down by matching
the t-character substring
S[i, i + t – 1] of S.

t

[i, j]

104

Running Time?

Naïvely: O(t).
Cleverly: O(1+ d),
where d is the number
of internal nodes being
went through during
phase (2).

t

[i, j]

53

105

Overall Time = O(|S|)

Suppose di is the d in
the i-th Case-2-step
traversal.
It suffices to show
d1+d2+…+d|S| =O(|S|).

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

106

Φ = the “slack” of the growing point

The slack means the
distance between a
position P and the
closest internal node
above P.

t

[i, j]

54

107

case-3 traversal

Each case-3 traversal
(i.e., horizontal
movement) can only
increase the value of Φ
by at most one.
(It can even decrease
the value of Φ.)

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

108

case-2 traversal

The i-th case-2
traversal (i.e., vertical
movement) decreases
the value of Φ by at
least di.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

55

109

d1+d2+…+d|S| = O(|S|)

Initial Φ = O(1).
Φ can be increased by one for at most |S|
times (because there are at most |S|
horizontal movements (i.e., case-3 traversals).
Since Φ is always non-negative, the above
bound is proved.

110

Using suffix links

S = b b a b b a a b

[1,-]

[2,-]

[3,-]

[3,-]

[3,3]

[7,-]
[4,-]

[3,3]

[7,-] [4,-]

[2,3]

[7,-] [4,-]

1

[1,1]

1
2

1

1

1

56

111

Applications of Suffix Tree in
Bioinformatics

112

Rapid global alignment

Genomic regions of interest contain ordered
islands of similarity

E.g. genes
1. Find local alignments
2. Chain an optimal subset of them

57

113

Suffix Trees

Suffix trees are a method to find all maximal
matches between two strings (and much
more)

Example:
x = dabdac

d a b d a c

ca

b
d

a
cc

cc
a

d
b

1

4

2
5

6
3

114

Application: Find all Matches Between x
and y

1. Build suffix tree for x, mark nodes with x

2. Insert y in suffix tree, mark all nodes y
“passes from” with y

The path label of every node marked both 0 and
1, is a common substring

58

115

Example of Suffix Tree Construction for x, yExample of Suffix Tree Construction for x, y

1

x = d a b d a $
y = a b a d a $

d a b d a $
1. Construct tree for x

a

b
d

a
$
2

$
a

d
b

3

$

4

$

5

$
6

x
x

x

6. Insert a $

5

6

7. Insert $

4. Insert a d a $

d
a
$
3

5. Insert d a $

y

4

2. Insert a b a d a $

a
y

d
a
$
1

y

y
x

3. Insert b a d a $ a
dy

2

a
$

x

116

Application: Online Search of Strings
on a Database
Say a database D = { s1, s2, …sn }

(eg. proteins)
Question: given new string x, find all matches

of x to database

1. Build suffix tree for {s1,…, sn}
2. All new queries x take O(|x|) time

(somewhat like BLAST)

59

117

Longest Common Substring

Given two strings S and T.
Find the longest common substring.
S = carport, T = airports

Longest common substring = rport
Longest common subsequence = arport

Longest common subsequence may be found
in O(|S|*|T|) time using dynamic programming.
Longest common substring? How much time
is needed ?

118

Donald E. Knuth
conjectured in 1970 that …
it is impossible to solve this longest
common substring problem in
O(|A|+|B|) time.

60

119

Application: Longest Common
Substrings

Say we want to find the longest common substring
of s1, s2, …sn

1. Build suffix tree for s1,…, sn

2. All nodes labeled {si1, …, sik} represent a match
between si1, …, sik

3. Keep the substring length informations on these
{si1, …, sik} match; find the largest values.

120

Acknowledgement:
Adopted form Dr. Yaw-Ling Lin’s slides

The End

