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Problem 

Given a string P called the pattern and longer 
string T called the text, the exact matching
problem is to find all occurrences, if any, of 
pattern P in text.  
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Notations

T: Text       m: length = |T|
P: Pattern n: length = |P|
S: String   s1 s2 s3 …….sn

Example: S=“AGCTTGA” |S| = 7
Substring: Si,j=SiS i+1…Sj

Example: S2,4=“GCT”
Subsequence of S: deleting zero or more characters from S

“ACT” and “GCTT” are subsquences.
Prefix of S: S1,k

“AGCT” is a prefix of S.
Suffix of S: Sh,|S|

“CTTGA” is a suffix of S.
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Z

Given a string S, and position i > 1, let Zi(S) 
be the length of the longest substring of S 
that starts at i and matches a prefix of S.  

12345678901

S= aabcaabxaaz

Z5(S) = 3 (aabc…aabx)

Z6(S) = 1 (aa…ab)

Z7(S) = Z8(S) = 0
Z9(S) = 2     (aab…aaz)
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For any position i > 1 where Zi is greater than zero, 
the Z-box at i is defined as the substring starting 
at i and ending at position i + Zi -1

i
Zi

αα
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For every i > 1, ri is the right-most endpoint 
of the Z-boxes that begin at or before 
position i and li is the left end of the Z-box.

12345678901234567

S = aabaabcaxaabaabcy

Z10 = 7, r15=16, l15 =10

8

Z calculation (Linear)

Ref: Gusfield’s book Section 1.4 
Given Zi for all 1 < i ≤ k-1 and the current 
values r and l, Zk and updated r and l are 
computed as follows:

1. k > r.  Find Zk by comparing the characters 
starting at position1 of S. 
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2. k < r.

S

k’ Zl l rk

α α
β β

S

k’ Zl l rk

α αβ βγγγ

k’+Zk’-1

Zk’

k+Zk-1

S

k’ Zl l rk

α α
β ββ ?

k’+Zk’-1

Zk’ < | β |

Zk’ ≥ | β |
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First string matching algorithm

Consider  string P$T, where P is the pattern, 
T is the text and $ is special alphabet. 
The algorithm is to calculate the Z value of 
the string P$T.  For all i such that Zi = |P|,  P
matches the subsrting T[i..i+|P|-1].
The calculation time is linear.
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Classical Comparison-Based Methods

Boyer-Moore Algorithm
Knuth-Morris-Pratt Algorithm
Apostolico-Giancarlo Algorithm
Aho-Corasick Algorithm
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Boyer-Morris Algorithm

Right-to-left scan

12345678901234567890

T:  xpbctbzabpqxctbpq

P:    tpabxab
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Bad character rule
For each character x in the alphabet, let 
R(x) be the position of right-most 
occurrence of character x in P.  R(x) is 
defined to be zero if x does not occur in P.

12345678901234567890

T:  xpbctbxabpqxctbpq

P:    tpabxab R(t)= 1
tpabxab R(q)= 0

tpabxab
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Extended bad character rule

12345678901234567890

T:  xpbcabxabpqxctbpq

P:    aptbxab R(a)= 6
aptbxab R(q)= 0

aptbxab

When a mismatch occurs at position i of P and the mismatched character
in T is x, then shift P to the right so that the closest x to the left of position i

in P is below the mismatched x in T



8

15

Strong good suffix rule

α

α

αα

α

x

y

z

z

T

P before shift

P after shift

16

0        1    
123456789012345678

T: prstabstubabvqxrst
*

P:   qcabdabdab
1234567890

qcabdabdab weak rule
qcabdabdab strong rule
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For each i, L(i) is the largest position less 
than n such that string P[i..n] matches a 
suffix of P[1..L(i)].  If no, L(i) = 0.
So is L’(i) with the characters to the left of 
the suffix are different.  

P
i

αα
nL(i)

i
αα

n
P

L’(i)
xy

x≠y

18

Nj(P) is the length of the longest suffix of 
the substring P[1..j] that is also a 
suffix of the full string P.

Zi(P) is the length of the longest prefix of 
P[i..n] that is also a prefix of the full 
string P. 

So, Nj(P) = Zn-j+1(Pr) 

P
j-Nj(P)+1

αα
nj
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P
j-Nj(P)+1

αα
nj

123456789

P cabdabdab L(8) = 6, L’(8) = 3

abdab

abdab N3(P)=2, N6(P)=5

i

αα

i+Zi-11
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Calculation of L(i)

L(i) is the largest index j less than n such that 
Nj(P) ≥|P[i..n]|.  
L’(i) is the largest index j less than n such that 
Nj(P) = |P[i..n]|.  
Algorithm

For i := 1 to n-1 do L’(i) := 0;

For j := 1 to n-1 do
Begin i := n-Nj(P) +1;   L’(i) := j  End
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Let l’(i) denote the length of the largest 
suffix of |P[i..n]| that is also a prefix of P, if 
one exists.  If none exists, then let l’(i) = 0.
l’(i) equals the largest j < |P[i..n]| such that 
Nj(P) = j. 

22

Knuth-Morris-Pratt Algorithm

For each position i in pattern P, defines spi(P) 
(resp. spi’(P) )to be the length of the longest 
proper suffix of P[1..i] that matches a prefix 
of P and (resp. P(i+1) ≠ P(sp’i(P)+1)).

i

αα

spi(P)1
P

x y
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k-1

P before shift

P after shift

Missed occurrence of P

T
α β

αβ is a prefix of P.
Up to position k-1, P matches T,
Thus, αβ is also a suffix of P[1..k-1].

Shift rule of Knuth-Morris-Pratt algorithm

24

spi(P) calculation

For any i >1, spi(P) = Zj = i-j+1, where j> 1 is 
the smallest position that maps to i.   

i

αα

spi’(P)1
P

x y

i- spi’(P)+1

Z i- spi’(P)+1= spi’(P)
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123456789012345678

xyabcxabcxadcdqfeg

abcxabcde

123456789

abcxabcde

abcxabcde

sp2=0, sp3=0, sp4=0, sp5=1, sp6=2, 
sp7=3, sp8=0, sp9=0.
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Theorem

After a mismatch at postion i+1 of P and a 
shift of i-spi’ places to the right, the left-most 
i-spi’ characters of P are gurranteed to match 
their counterparts in T.
For any alignment of P with T, if character 1
through i of P match the opposing characters 
of T but character i+1 mismatches T(k), then 
P can be shifted by i-spi’ places to the right 
without passing any occurrence of P in T.
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Classical Comparison-Based Methods

Boyer-Moore Algorithm
Knuth-Morris-Pratt Algorithm
Apostolico-Giancarlo Algorithm
Aho-Corasick Algorithm

A Demonstration

28

Exact matching with a set of patterns

Exact set matching problem is to find all the 
occurrences in a text T of a set of patterns P
= {P1, …, Pz}. 

Dictionary problem: Given a text T, ask if T is a 
pattern in P. 
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Keyword Tree

Keyword tree K for P
each edge is labeled with exactly one character
any two edges out of the same node have distinct 
labels
every pattern Pi in P maps to some node v of K
such that the characters on the path from the root 
of K to v exactly spell out Pi, and every leaf of K is 
mapped to by some pattern in P.

30

Assumption: No pattern in P is a proper substring 
of any other pattern in P.

L(v) = the labels from root to the node v.
lp(v) = the length of the longest proper suffix of 

string of L(v) that is a prefix of some pattern in P. 
Lemma: Let α be the lp(v)-length suffix of string 

L(v). Then there is a unique node in the keyword 
tree that is labeled by string α.

The unique node is denoted by nv.
When lp(v) =0, nv is the root. 
nv for all v can be constructed in linear time.
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P = {potato, tattoo, theater, other}  L(v) = pota
lp(v) = 2

p

o

t

a

t

o

1

t

t

t

t

o

o

o

t
h

e
r

h
e

e

aa

r

2

3

4
v

nv

T = xxpotattooxx
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nv is computed in linear time.
Consider, for each pattern, two pointers, one points the current
processing position and the other points to left end of the match 
suffix.  
We will see that each operation causes the pointers move 
forward, but they only move 2n times.  

34
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Aho-Corasick Algorithm

Without assumption.
P = {acatt, ca}, T= acatx
Suppose in a keyword tree K there is a direct 
path of failure links from a node v to a node 
that numbered with pattern i.  Then pattern Pi
must occur in T ending at position c
whenever node v is reached during the 
search of Aho-Corasick algorithm.

36

Suppose a node v has been reached 
during the algorithm.  Then the pattern Pi
occurs in T ending at position c only if v is 
numbered i or there is a directed path of 
failure links from links from v to the node 
numbered i.
The output link at v points to that 
numbered node other than v that is 
reachable from v by the fewest failure links.
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P = {abcdefg, de, bcde, defg}
T = xabcdefxcdefgx

a

b
b

c c

d d

d

e

e

e

g

f

f
g
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Matching against DNA Library

Sequence-tagged-sites(STS)
A DNA string of 200-300 bps whose right and left 
ends, of length 20 – 30 bps each, occur only once 
in the entire genome.  

Expressed sequence tags (EST)
A STS that comes from genes rather than parts of 
inter-gene DNA.  (Obtained from mRNA or cDNA)
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The set of patterns: all known STSs or 
ESTs
Text: a newly sequenced genome
Goal: To identify STSs or ESTs occur in 
the newly sequences genome

40

Seminumerical String Matching

Shift-And Method
Let M be an n by m+1 binary matrix. M(i,j) = 1 if 
and only if the first i characters of P exact match 
the i characters of T ending at character j.
M(n,j) = 1 if and only if an occurrence of P ends at 
position j of T.   
Bit-Shift(j-1) : shift column j-1 down by one 
position and set the first to 1.    
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T= xabxabaaxa

P= abaac

C(8)T=(1 0 1 0 0)
Bit-Shift C(8)T= (1 1 0 1 0)
T(9)= a,   Ua

T= (1 0 1 1 0)
C(9)T = C(8)T AND Ua

T = (1 0 0 1 0)
M(i, j) = 1 if and only if 

M(i-1, j-1) =1 and UT(j) (i) =1

42

Advantage of Shift-And
Very efficient if n is less than the size of single 
computer word.
Only two columns are needed in each 
computation time.

Agrep: The Shift-And method with errors.
Mk(i,j) is 1 if and only if at least i-k of the first i 
characters of P match the i characters up 
through character j of T. 

In Agrep, the user chooses a value of k
and then the arrays M, M1, …, Mk are 
computed.
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Ml(j) = Ml-1(j) 
OR [Bit-Shift(Ml(j-1)) AND U(T(j))] 
OR Ml-1(j-1)

Computation time = O(kmn)
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Karp-Rabin fingerprint method

Tr
n denote the n-length substring of T starting 

character r.  

1

( ) 2 ( )
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n i
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H P P i−
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( ) 2 ( 1)
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n i
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H T T r i−

=

= − −∑



23

45

There is an occurrence of P starting at 
position r if  and only if H(P) = H(Tr).
Hp(P) = H(P) mod p and Hp(Tr) = H(Tr) 
mod p are called fingerprint of P and Tr .
Hp(P) = Hp(Tr) may introduce false match.
π(u) = the number of primes that are less 

than or equal to u. 

( ) 1.26
ln( ) ln( )

u uπ u
u u

≤ ≤

46

If u ≥ 29, then the product of all the primes 
that are less than or equal to u is greater 
than 2u.
If u ≥ 29 and x is any number less than or 
equal to 2u, than x has fewer than π(u) 
(distinct) prime divisors.
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Let P and T be any strings such that nm > 
29.  Let I be any positive integer.  If p is a 
randomly chosen prime number less than  
or equal to I, then the probability of a false 
match between P and T is less than or 
equal to π(mn)/π(I).
R: the set of position in T, P does not 
begin.
Consider 
There are at most π(mn) prime divisors
p is randomly chosen from I.

(| ( ) ( ) |) 2mn
ss R

H P H T
∈

− ≤∏

48

Algorithm

Choose a positive integer I.
Randomly pick a prime number less than or 
equal to I, and compute Hp(P).  
For each position r in T, compute Hp(Tr) and 
test if it equals Hp(P).  
When I = nm2,the probability of a false match 
is at most 2.53/m.
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P = {potato, pottery, poetry, school, science}  

v

L(v) = pota

50

Motivating Suffix Tree
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Exact String Matching

Input: P and T.
Output: All occurrences of P in T.
Time: O(|P| + |T|)
Technique: Z values of PT.

Z(i + |P|) ≥ |P| iff P = T[i…i + |P| – 1]. 

P

i+|P| i+|P|+d-1

T

52

Question 1

Solving the Exact String Matching problem in 
O(|P|) time under the assumption that T is 
known and already pre-processed?

E.g., T is a dictionary whose content does not 
change frequently.

Answer:
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Question 2

Solving the Exact String Matching problem in 
O(|T|) time under the assumption that P is 
known and already pre-processed?

E.g., P is one of your private collection of DNA 
sequence.

Answer:

54

A Less Ambitious Version

The Substring Problem
Input: P and T.
Output: an occurrence of P in T.
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Question 2

Solving the Substring problem in O(|T|) time 
under the assumption that P is known and 
already pre-processed?
Answer:

56

Question 1

Solving the Substring problem in O(|P|) time 
under the assumption that T is known and 
already pre-processed?
Answer:
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To P or not to P .........

Preprocessing P
Gusfield
Boyer-Moore
Knuth-Morris-Pratt

Preprocessing T
Suffix tree

58

From Suffix Trie to Suffix 
Tree
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Notation Change

Input: P and S.
Output: an occurrence of P in S.

For example, 
S = b b a b b a a b

P = b a a

60

Suffixes of S

S     = b b a b b a a b

S[1…8]= b b a b b a a b

S[2…8]=   b a b b a a b

S[3…8]=     a b b a a b

S[4…8]=       b b a a b

S[5…8]=         b a a b

S[6…8]=           a a b

S[7…8]=             a b

S[8…8]=               b 

1st suffix

2nd suffix

3rd suffix

4th suffix

5th suffix

6th suffix

7th suffix

8th suffix
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KEY: P occurs in S iff P is a prefix of 
a suffix of S.
S     = b b a b b a a b

S[1…8]= b b a b b a a b

S[2…8]=   b a b b a a b

S[3…8]=     a b b a a b

S[4…8]=       b b a a b

S[5…8]=         b a a b

S[6…8]=           a a b

S[7…8]=             a b

S[8…8]=               b 

1st suffix

2nd suffix

3rd suffix

4th suffix

5th suffix

6th suffix

7th suffix

8th suffix

62

T = Suffix Trie of S

b b a b b a a b
b a b b a a b

a b b a a b
b b a a b

b a a b
a a b

a b
b
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Why suffix trie?

The following statements are equivalent.
P occurrs in S.
P is a prefix of a suffix of S.
P corresponds to a path of T starting from the root 
of T.

64

P = b a b b a 

b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

P occurs in S!
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P = b b a a b a 

b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

P doesn’t occur in S!

66

P = a b b b a a 

b b a b b a a b
b a b b a a b

a b b a a b
b b a a b

b a a b
a a b

a b
b

P doesn’t occur in S!
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Q: Where does P occur in S?

68

P = a b b a a

8

4

4

4

4 1

1

1

1

1

5

5

5 2

2

2

2

2

6

7

6 3

3

3

7

3

1 2 3 4 5 6 7 8
b b a b b a a b

b a b b a a b
a b b a a b

b b a a b
b a a b

a a b
a b

b

Output: 3
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Question

Time complexity for constructing the 
suffix trie T of S?

Θ(|S|)

Θ(|S| log |S|)

Θ(|S|2)

Θ(|S|3)

70

Time = O(|S|2)

8

4

4

4

4 1

1

1

1

1

5

5

5 2

2

2

2

2

6

7

6 3

3

3

7

3

1 2 3 4 5 6 7 8
b b a b b a a b

b a b b a a b
a b b a a b

b b a a b
b a a b

a a b
a b

b
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time = Ω(|S|2)

How to establish a lower bound?
Answer: 

72

S = a a a a b b b b
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Summary

Suffix trie is good in solving Substring 
Problem, but may require Ω(|S|2) time and 
space.
Question: is there a compact representation
of suffix trie that needs only O(|S|) time and 
space?

74

Suffix Tree

A compact representation of suffix trie
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Observations on Trie T of S

T has at most |S| 
leaves.

Why?

T has at most |S| 
branching nodes.

Why?

76

Keeping leaves and 
branching nodes only.

compact 
representation of edge 
labels

S = a a a a b b b b

[5,8]

[5,8]

[5,8]

[5,8]

[4,8]

[1,1]

[2,2]

[3,3]
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S = a a a a b b b b

[5,8]

[5,8]

[5,8]

[5,8][4,8]

[1,1]

[2,2]

[3,3]

78

S = b b a b b a a b
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S = b b a b b a a b

[1,1]

[2,3]

[4,8]

[7,8]

[4,8]

[7,8]

[4,8]

[7,8]

[3,3]

[3,3]
[3,3] [1,1]

[3,3] [2,3]

[7,8] [4,8][7,8] [4,8]

[7,8] [4,8]

80

S = b b a b b a a b

[3,3] [1,1]

[3,3] [2,3]

[7,8] [4,8][7,8] [4,8]

[7,8] [4,8]
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Question

The space complexity of suffix tree
O(|S|)
O(|S| log |S|)
O(|S|2)
O(|S|3)

Why?
Number of nodes = 
Number of edges =
Space required by each edge = 

82

The challenge 

Constructing Suffix Tree in Linear Time
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History of Suffix Tree Algorithms

[Weiner, IEEE FOCS 1973]
Linear time but expensive in space.
D. E. Knuth: “the algorithm of 1973”.

[McCreight, J. ACM 1976]
Linear time and quadratic space.

[Ukkonen, Algorithmica 1995]
Linear time and linear space.
Much better readability.

84

Academy Professor ,
Department of Computer 
Science , University of 
Helsinki, Finland 

http://www.cs.helsinki.fi/u/ukkonen/

Esko Ukkonen: On-line construction of 
suffix-trees. Algorithmica 14 (1995), 249-
260 
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Ukkonen’s approach 
on Suffix Trie

b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

Case 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

86

Growing Suffix Trie

Three cases while growing trie
Case 1: growing an edge at a leaf.
Case 2: growing a new branch of leaf.
Case 3: does not change the tree structure.
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Three Phase Theorem

Those k steps in the k-th iteration have the 
following pattern:

some (at least one) Case-1 steps, 
followed by some (could be zero) Case-2 steps, 
followed by some (could be zero) Case-3 steps.

88

Thinking in Suffix Tree
1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
bCase 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

[1,1]
[1,2]

[1,3]
[2,3]

[3,3]

[3,3]

[2,4][3,4]

[3,4]

[2,5]
[3,5]

[3,5]

[2,6]
[3,6]

[3,6]

[2,7]

[3,7]

[3,7]
[7,7]

[4,7]

[7,7] [4,7]

[7,7] [4,7]

[4,8]

[4,8]

[4,8]

[7,8]

[7,8]

[7,8]
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Saving a lot of efforts

We can simply ignore 
all Case-1 steps.
Recall that the number 
of Case-2 steps is at 
most |S|.
Q: Is this good enough?

Case 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

90

How does Ukkonen overcome the 
problem of too many Case-3 steps?

Completely ignore them……
Do nothing when nothing happen……
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Saving even more efforts

Case 1: Leaf Extension

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

92

Rough idea

Just keep one current growing point
throughout the execution.
Deriving the new position of the current 
growing point from its previous position (with 
the help of  suffix links )
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Only one growing point

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b 

The challenges: How do 
we derive the position 
of the current growing 
point?

Vertically (case 2)
Horizontally (case 3)

Q: Which one is easier?

94

Horizontally, …

Moving from iteration 
k – 1 to iteration k.
The growing point does 
not move!
This is the easier case.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b
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Vertically, …

Moving from Step i to 
Step i+1 in the same 
iteration.
The growing point 
moves dramatically.
This is the tougher 
case.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

96

Suffix link

Keep records of what have been done --
- (Dynamic Programming)
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Recording What’s Done

Whenever a vertical movement reaching the 
destination, keep a record of the movement 
by using a link.
Later on, we might what to follow these 
recorded linkages. 
These links are thus called the suffix links. 

98

Why called “Suffix Links”?

Note that the 
destination of the link is 
the (-1)-suffix of the 
starting.
That is, a suffix link 
links a length n+1 suffix 
to a length n suffix.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b
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Property of Suffix Links (1)

The starting point of a 
suffix is an internal 
node, 

Not a leaf
No the middle part of 
some suffix tree edge.

Why?

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

100

Every internal node 
must be a starting point 
of a suffix link.
Why?

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

Property of Suffix Links (2)
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Using suffix links

S = b b a b b a a b

[1,-]

[2,-]

[3,-]

[3,-]

[3,3]

[7,-]
[4,-]

[3,3]

[7,-] [4,-]

[2,3]

[7,-] [4,-]

1

[1,1]

1
2

1

1

1

102

Traversal with the help of suffix links: 
phase (1)

Going up to a closest 
internal node (whose 
suffix link must be 
available). Suppose 
this upward traversal 
passes through t
characters.
Following the suffix link 
that starts from this 
internal node.

t

[i, j]
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Traversal with the help of suffix links: 
phase (2)

Going down by matching 
the t-character substring  
S[i, i + t – 1] of S.

t

[i, j]

104

Running Time?

Naïvely: O(t).
Cleverly: O(1+ d),
where d is the number 
of internal nodes being 
went through during 
phase (2).

t

[i, j]
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Overall Time = O(|S|)

Suppose di is the d in 
the i-th Case-2-step 
traversal. 
It suffices to show 
d1+d2+…+d|S| =O(|S|).

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

106

Φ = the “slack” of the growing point

The slack means the 
distance between a 
position P and the 
closest internal node 
above P.

t

[i, j]
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case-3 traversal

Each case-3 traversal 
(i.e., horizontal 
movement) can only 
increase the value of Φ
by at most one. 
(It can even decrease 
the value of Φ.)

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b

108

case-2 traversal

The i-th case-2  
traversal (i.e., vertical 
movement) decreases 
the value of Φ by at 
least di.

Case 2: New Leaf

Case 3: Do Nothing

1 2 3 4 5 6 7 8
b b a b b a a b
b a b b a a b
a b b a a b
b b a a b
b a a b
a a b
a b
b
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d1+d2+…+d|S| = O(|S|)

Initial Φ = O(1).
Φ can be increased by one for at most |S| 
times (because there are at most |S| 
horizontal movements (i.e., case-3 traversals).
Since Φ is always non-negative, the above 
bound is proved.

110

Using suffix links

S = b b a b b a a b

[1,-]

[2,-]

[3,-]

[3,-]

[3,3]

[7,-]
[4,-]

[3,3]

[7,-] [4,-]

[2,3]

[7,-] [4,-]

1

[1,1]

1
2

1

1

1
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Applications of Suffix Tree in 
Bioinformatics 

112

Rapid global alignment

Genomic regions of interest contain ordered 
islands of similarity

E.g. genes 
1. Find local alignments
2. Chain an optimal subset of them
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Suffix Trees

Suffix trees are a method to find all maximal 
matches between two strings (and much 
more)

Example: 
x = dabdac

d   a b   d   a   c

ca

b
d

a
cc

cc
a

d
b

1

4

2
5

6
3

114

Application: Find all Matches Between x 
and y

1. Build suffix tree for x, mark nodes with x

2. Insert y in suffix tree, mark all nodes y 
“passes from” with y

The path label of every node marked both 0 and 
1, is a common substring
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Example of Suffix Tree Construction for x, yExample of Suffix Tree Construction for x, y

1

x = d a b d a $
y = a b a d a $

d   a b   d   a   $
1. Construct tree for x

a

b
d

a
$
2

$
a

d
b

3

$

4

$

5

$
6

x
x

x

6. Insert    a $

5

6

7. Insert    $

4. Insert    a d a $

d
a
$
3

5. Insert    d a $

y

4

2. Insert    a b a d a $

a
y

d
a
$
1

y

y
x

3. Insert    b a d a $ a
dy

2

a
$

x

116

Application: Online Search of Strings 
on a Database
Say a database D = { s1, s2, …sn }

(eg. proteins)
Question: given new string x, find all matches 

of x to database

1. Build suffix tree for {s1,…, sn}
2. All new queries x take O( |x| ) time

(somewhat like BLAST)



59

117

Longest Common Substring

Given two strings S and T.
Find the longest common substring.
S = carport, T = airports

Longest common substring = rport
Longest common subsequence = arport

Longest common subsequence may be found 
in O(|S|*|T|) time using dynamic programming.
Longest common substring? How much time 
is needed ?

118

Donald E. Knuth
conjectured in 1970 that …
it is impossible to solve this longest 
common substring problem in 
O(|A|+|B|) time.
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Application: Longest Common 
Substrings

Say we want to find the longest common substring 
of s1, s2, …sn

1. Build suffix tree for s1,…, sn

2. All nodes labeled {si1, …, sik} represent a match 
between si1, …, sik

3. Keep the substring length informations on these 
{si1, …, sik} match; find the largest values.

120

Acknowledgement:
Adopted form Dr. Yaw-Ling Lin’s slides

The End


