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Abstract

This dissertation presents an integrated human shape modeling, detection, and body part

localization vision system. It demonstrates that the system can (1) detect pedestrians in

various shapes, sizes, postures, partial occlusion, and clothing from a moving vehicle us-

ing stereo cameras; (2) locate the joints of a person automatically and accurately without

employing any markers around the joints.

The following contributions distinguish this dissertation from previous work:

1. Dressed human modeling and dynamic model assembling: Unlike previous work that

employs a fixed human body model or global deformable template to perform human

detection, in this dissertation merged body parts are introduced to represent the defor-

mations caused by clothing, segmentation errors, or low image resolution. A dressed

human model is dynamically assembled from the model parts in the recognition step;

the shapes of the body parts and the size and spatial relationships between them (the

contextual information) are represented as invariant under translation, rotation, and

scaling. Therefore, the system can detect people in different clothes, positions, sizes,

and orientations.

2. Bayesian similarity measure: A probabilistic similarity measure is derived from the

human model that combines the local shape and global relationship constraints to

guide body part identification and human detection. Thus, the identification of a

part does not only depend on its own shape but also the contextual constraints from

other parts. In contrast with previous work, the proposed similarity measure enables
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efficient shape matching and comparison robust to articulation, partial occlusion, and

segmentation errors through coarse-to-fine human model assembling.

3. Recursive context reasoning algorithm: Contour-based human detection depends on

reliable contour extraction, but contour extraction is an under-constrained problem

without the knowledge about the objects to be detected. Unlike previous work that

assumes perfect and complete contours are available, this dissertation proposes a

recursive context reasoning (RCR) algorithm to solve the above dilemma. A contour

updating procedure is introduced to integrate the human model and the identified

body parts to predict the shapes and locations of the parts missed by the contour

detector; the refined contours are used to reevaluate the Bayesian similarity measure

and to determine if a person is present or not. Therefore, contour extraction, body

part localization, and human detection are improved iteratively.
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Chapter 1

Introduction

“The First Law of Robotics: A robot must not injure a human being or, through inaction,

allow a human being to come to harm.” — Isaac Asimov

This dissertation presents an integrated human shape modeling, detection, and body

part localization vision system. It demonstrates that the system can (1) detect pedestrians

in various shapes, sizes, postures, partial occlusion, and clothing from a moving vehicle

using stereo cameras; and (2) locate the joints of a person automatically and accurately

without employing any markers around the joints. This is achieved through TRS1-invariant

dressed human modeling and dynamic model assembling, a Bayesian similarity measure,

and a recursive context reasoning procedure, as shown in Figs. 1.1 and 1.2.

1.1 Motivation and Goal

Automatic human detection and body part localization are important and challenging prob-

lems in computer vision. The solution to these problems can be employed in a wide range

of applications such as safe robot navigation, visual surveillance, human-computer inter-

face, performance measurement for athletes and patients with disabilities, virtual reality,

1TRS is the abbreviation of translation, rotation, and scaling
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( a ) ( b )

( c ) ( d )

head 

torso 
arm 

Figure 1.1: Human detection and body part localization: (a) initial contour detection (b)

body parts identification (c) contour prediction (d) contour alignment
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Figure 1.2: Locating the body parts of multiple people



5

and figure animation. Example areas involving human detection and body part localization

include:

� mobile robot navigation: A mobile robot with the ability to detect people can work

among people more safely and accomplish more tasks, such as following a person

or giving a tour without running into people. This follows the first law of robotics

created by the popular science fiction writer Isaac Asimov as cited at the beginning

of this chapter.

� visual surveillance: A computer with the ability to sense people can monitor a secu-

rity region to check if somebody breaks through and can report this person’s actions.

� human motion capture: Body part localization is essential for human motion cap-

ture, which has applications in figure animation, virtual reality, and human-computer

interaction. It can be used to evaluate the performance of an athlete and help him/her

to correct inaccurate actions. Furthermore, a user can communicate with the com-

puter more easily by gestures.

� shape-based image retrieval: Beyond human detection, the metrics and methods

developed here have other uses. A recent survey about cognition aspects of object

retrieval shows that users are more interested in retrieval by shape than by color and

texture [14]. However, retrieval by shape is still considered one of the most difficult

aspects of content-based search. The Bayesian similarity measure proposed in this

thesis can be used to perform shape classification for database creation and image

retrieval.

The research goal of this dissertation is the design, implementation, and validation of

reliable and accurate methods for human detection and body part localization. Two goals

are addressed and achieved simultaneously under the same probabilistic framework. Be-

cause humans are a class of objects with articulated parts and deformable shapes, research

on human detection and body part localization will not only produce a wide range of ap-

plications but will also shed light on general object detection and shape analysis. The
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next section discusses the challenges of human detection and body part localization, and

presents my strategies to handle these challenges.

1.2 Challenges and Strategies

1.2.1 Why is it difficult to detect humans

Although humans can easily detect other humans and estimate their body part locations

from a single image, these problems are inherently difficult for a computer. The difficulties

stem from the number of degrees of freedom in the human body, self-occlusion, appear-

ance variation due to clothing, and the ambiguities in the projection of a 3D human shape

onto the image plane. Figures 1.3 and 1.4 show some examples that illustrate appearance

changes due to clothing and articulation. Contour features (the silhouettes of objects) are

commonly used to overcome variable texture and illumination. However, to extract perfect

and complete contours of objects from a cluttered scene is very difficult. Although many

contour extraction methods have been proposed [121, 122], they tend to have errors and

are distracted by scene clutter, as shown in Fig. 1.5. To locate the joints of a person is even

harder, because these are hidden by muscle, skin, and clothing. Segmentation or contour

extraction errors also pose a significant challenge to accurate joint localization. Although

a great number of object recognition and detection methods have been proposed (see [12]),

none of them can handle the above challenges very well.

The context for human detection is the general object detection problem. There are two

approaches to object detection. One approach is to search the whole image at multi-scales

for objects. This is a time consuming procedure and may result in multiple responses from a

single object. Another approach is to first segment foreground objects from the background,

then classify each segmented object as human or non-human. In this dissertation, I employ

the second approach to human detection. Classifying only segmented objects rather than

whole images significantly reduces computational complexity. Several methods such as

depth-based segmentation [123], background subtraction [80], or frame differencing can
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Figure 1.3: Examples of various appearances due to clothing

Figure 1.4: Examples of various appearances due to articulation

Figure 1.5: Examples of silhouette extraction using depth segmentation

be employed to separate foreground objects from the background.

This dissertation focuses on how to classify a previously segmented object as human or

non-human. This is an object classification problem. Usually an object classifier consists of
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an object representation/model and a classifier [96]. A good object model should allow the

recognition of objects independent of their positions, orientations, sizes, and articulation

for articulated objects. It should also accommodate variations among the instances of an

object class and should be insensitive to objects with partially missing parts.

Object classification by shape is difficult mainly because:

� shapes of a class can be distorted by sensor noise or digitization;

� shapes of a class can differ due to varying viewpoint;

� shapes of a class can be deformed non-rigidly. For example, an object such as a

human may have moving parts and may be flexible (see Fig. 1.4);

� some parts of a shape may not be visible. These partially occluded shapes need to be

classified correctly.

Human detection is even more difficult because of shape variation due to clothing. The

texture and shape variances among dresses make even the same person appear significantly

different when wearing different dresses (see Fig. 1.3).

1.2.2 How to handle the difficulties

There are many problems to address for an object detection method. First of all, we need

to consider what features to use for recognition. Contours (the silhouettes of objects) are

commonly used to overcome variable texture. Therefore, I employ the occluding contours

or the silhouettes of the human body parts as features to detect humans. Parts-based ap-

proaches [21, 25, 31, 58, 78, 80] can handle occlusion and articulated motion effectively.

The importance and relevance of significant parts for object recognition has been verified

by numerous psychophysical experiments [48]. My recognition scheme is thus based on the

shapes of body parts and the relationships between them. Then the questions left are how

to decompose a silhouette into parts, and how to represent the shapes and the relationships

between the parts.
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Figure 1.6: Examples of various shapes due to clothing (same as Fig. 1.3 but only contour)

Shape decomposition should result in real/intuitive parts of an object (as shown in Fig.

2.1). However, without prior knowledge of the identification of the object, this goal is hard

to achieve. Many shape decomposition approaches tend to produce over-segmented parti-

tions due to noise and local distortions of shapes. Although the multi-scale shape decompo-

sition approach [42] can reduce the effect of noise, the procedures of curve evolution tend

to be very slow. In this thesis, I develop an efficient shape decomposition method to yield a

fine-to-coarse organization of parts. The over-segmented parts are grouped into coarse level

parts. The matching based on this multi-scale shape decomposition starts from the coarse

level of the hierarchy and goes down. This enables the significant parts to be matched first,

which then constrains the match of insignificant parts. The hierarchical matching of parts

is both efficient and robust to over-segmentation of a silhouette.

Many approaches [23, 31] have been proposed to perform matching purely based on

the hierarchical structure, but they can not distinguish humans from other animals with

a similar shape hierarchy. In order to do so, geometric metrics are needed to constrain

the shapes and spatial relationships between the parts. In this dissertation I develop a

TRS2-invariant representation of the shapes of the body parts and their size and spatial

relationships. For the human model, the probability distributions are used to handle the

shape variations between different people. This results in a TRS-invariant probabilistic

2TRS is the abbreviation of translation, rotation, and scaling
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Figure 1.7: Generating merged body parts

human model.

Previous work usually does not model clothes but only the human body. However,

clothes may drastically change the shape of a person (see Fig. 1.6). One of the effects of

clothes is that they cover some body parts and merge them into a single component. This

makes it difficult to distinguish the covered parts. The second effect is that the clothes may

generate some spurious body parts along the silhouette that distract from the locations of

the real body parts. Although the global deformable templates [32, 41] can model some

shape deformations, they have difficulty dealing with large articulated motions and partial

occlusion.

To handle these effects, I first introduce merged body parts to model the merging of

multiple body parts as shown in Fig. 1.7. Using the merged body parts, various shape

configurations can be built as shown in Fig. 1.8, and the locations of the real body parts

can be inferred from the merged parts covering them. The models containing the merged

body parts are called dressed human models; they can represent the deformations caused
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Figure 1.8: Assembling the human models

by clothing, segmentation errors, or low image resolution. A dressed human model is

dynamically assembled from the model parts in the body part identification procedure.

An evaluation function is developed to select the appropriate model parts and assembling

scheme to label the decomposed contour segments. The identification of a part does not

only depend on its own shape but also on contextual constraints from other parts. Thus, the

labeling is globally optimal and the real body parts can be discriminated from the pseudo

parts generated by clothes or other objects held by the person. Multiple labelings are used

to handle situations where multiple people are segmented as a single region, as shown in

Fig. 1.2.

Second, a Bayesian similarity measure is derived from the human model that com-

bines the local shape and global relationship constraints into a single equation to evaluate

the degree of resemblance between a contour and the assembled human model. In con-

trast with previous work, the Bayesian similarity measure enables efficient shape matching

and comparison robust to articulation, partial occlusion, and segmentation errors through

coarse-to-fine human model assembling.

Third, a coarse-to-fine procedure is developed to locate the joints between body parts

accurately: (1) match the extracted ribbons with the model body parts based on the derived

similarity measure; (2) infer the locations of the missed body parts from the identified body

parts; and (3) adjust the locations of the joints to achieve consistency with the modeled size

and spatial relationships between the body parts.
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updated contours

image

detected contours

Human Model

Contour Detection

and Decomposition

Part Identification

Contour Alignment

Contour Updating

Human Detection

Figure 1.9: Flow chart of the RCR algorithm

Previous work usually assumes that the initial contour extraction and shape decompo-

sition are perfect. However, no robust contour extraction and shape decomposition exist

yet to achieve this goal. In fact contour extraction and shape decomposition are under-

constrained problems without the knowledge about the objects to be detected. In contrast

I develop a recursive context reasoning (RCR) algorithm (see Fig. 1.9) to solve the above

dilemma. Specifically, a contour updating procedure is introduced to integrate the detected

body parts and the human model using the weighted Least Squares method to predict the

contours of the missed parts. The predicted contours are aligned with edge features, and

the refined contours are used to reevaluate the likelihood of a person being present in the

image. Therefore, both contour extraction, human detection, and body part localization are

improved accordingly. A probabilistic model is developed to perform context reasoning

and to integrate the above procedures into a single framework. Experiments in cluttered

scenes demonstrate that the proposed approach is robust to occlusion and variations in peo-

ple’s appearance.
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1.3 Application Context: Driver Collision Warning Sys-

tem

While there are many areas to which human detection and body part localization can be

applied, the chosen domain for this dissertation is vehicle safety, and most of the results

are presented in the context of a driver warning system. Despite the specific nature of the

chosen application area, the underlying ideas and technologies presented in this dissertation

are readily applicable to other tasks described in Section 1.1 and to detecting other objects.

The sponsoring program is titled “Development and testing of performance specifica-

tions for a next generation side collision warning system”, sponsored by USDOT [15, 16].

The goal of the project is to warn bus drivers of potential collisions by focusing on blind

spots along the sides of a city bus. There are several parts to the project: studying acci-

dent records and determining causes of bus collisions; developing object detection sensors;

predicting bus motion; and developing the driver interface. The preliminary functional

goals first call for detecting vehicles, fixed objects, bicycles, and pedestrians. Each of

these categories of objects can be detected as a 3-D object; but each has different motion

characteristics and each should be identified separately. Next, the functional goals call for

predicting bus motion, for example incipient motion when the bus is about to pull away

from a stop, the sweeping motion of a bus turning through an intersection, or the angled

motion of a lane change. Object detection will be especially important in the region the

bus is about to traverse. Motion prediction can come directly, from rate gyros and wheel

encoders; indirectly, from a route map and positioning system; or by inference, for example

noting that the door has just been closed. Finally, the system will generate graded warnings.

At the lowest level, the system will generate non-intrusive “situation awareness” informa-

tion, similar to the driver looking in the rear-view mirrors to check for nearby objects. At

the next level, the system will generate “alerts”, a gentle notification (audio or video) of

a potentially dangerous situation. The system will then progress to one or more levels of

“warning”, an intrusive alarm designed to notify the driver of impending collision.
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Pedestrian detection is especially important for this project. While there are relatively

few collisions with pedestrians, they tend to be more serious: the number of fatalities from

bus-pedestrian collisions is about the same as the number of fatalities from bus-vehicle col-

lisions, even though there are many more bus-vehicle crashes. A fixed object will usually

stay put; pedestrians are more unpredictable. The driver will receive a higher level alarm

for a pedestrian than for a sign post in the same location.

At the same time, the state of the art of commercial side-looking systems is not very

useful for pedestrian detection. Most side-looking systems are designed to cover blind

spots on the side of a semi-trailer traveling along a limited-access highway. The systems

are designed to look for cars or trucks, and therefore the sensors are widely spaced and are

tuned to find large metal objects. The users are specifically warned that these systems are

not designed to detect pedestrians.

Thus, a successful system such as the one described in this dissertation could play a

large role in a collisions warning system. While the initial implementation will be for

city buses, pedestrian safety is also a large issue for construction equipment, agricultural

equipment, and other large moving vehicles that operate in close proximity to people.

1.4 Dissertation Overview

The remainder of the dissertation is organized as follows:

Chapter 2 illustrates the part-based shape representation and the dressed human model.

First I give the definition of natural parts and present a hierarchical algorithm to decompose

a shape. Then, I describe a TRS-invariant shape representation, and the dressed human

models that represent the shape deformations caused by clothing, segmentation errors, and

low image resolution.

Chapter 3 describes the similarity measure derived from Bayes rule, and explains how

to use this similarity measure to perform body part labeling and to determine if a shape is

a person or not.
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Chapter 4 presents a recursive context reasoning algorithm to refine the performance of

human detection, body part localization, and contour extraction.

Chapter 5 describes two applications of the techniques developed in this thesis: pedes-

trian detection and human motion capture. Experimental results on pedestrian detection

and joint localization are given to demonstrate the effectiveness of the algorithm.

Chapter 6 discusses the contributions of this thesis and suggests future work.
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Chapter 2

Dressed Human Modeling

2.1 Requirements for a Good Object Class Model

Human modeling is an essential part of model-based human detection. Although a great

number of human models have been proposed in the literature, few of them are appropriate

for human detection. Most models are developed for other purposes, such as human track-

ing [34, 36, 59, 61] or figure animation [35]. These models are either too complicated to

be practical for efficient human detection, or can just be used to detect a particular person

rather than all instances of humans. The common drawbacks with previous human models

are (1) the representations of human shapes are not invariant to similarity transforms, thus,

they can only detect people of a fixed size or orientation; (2) the models are usually specific

to a particular person, and do not model the statistical variance among individuals; (3) most

models only represent the shape of a human body, but cannot handle the shape variation

due to clothing; and (4) although some models such as deformable templates can handle

certain global shape variance, they have difficulty dealing with large articulated motion and

partial occlusion.

The human model proposed in this dissertation overcomes these drawbacks. It satisfies

all the following requirements of a good object class model for object classification:

1. It should not depend on scale, orientation, and position of objects;

17
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2. It should handle view-dependent shape variation;

3. It should be robust to shape distortions resulting from digitization noise and fore-

ground/background segmentation errors;

4. It should be robust to partial occlusions of an object;

5. It should allow for articulated moving parts;

6. It should not be influenced by the shape variations allowed within the class; and

7. It should support efficient shape recognition/classification.

The part-based human shape model proposed in this thesis satisfies requirements 1

through 7. Requirements 4 and 5 are satisfied by decomposing a contour into visual parts.

The satisfaction of requirements 1,2,3 and 6 follows from the fact that the shapes of the

parts are abstracted as ribbons, the representation of body part shapes and their relationships

is invariant under translation, rotation, and scaling, and probability distributions are used to

accommodate the shape variations among individuals as well as absorbing some variations

in shape due to viewpoint. The hierarchical organization of the body parts allows efficient

object recognition (requirement 7) in a coarse-to-fine manner.

The remainder of this chapter is organized as follows: Section 2.2 shows that there

is a substantial body of work on human modeling, although no technique currently exists

that satisfies all of requirements 1 through 7. In Section 2.3, a natural shape decomposition

method is presented to extract visual parts from a silhouette. In Section 2.4, a TRS-invariant

probabilistic human body model is developed to represent the shapes and relationships of

body parts. In Section 2.5, merged parts are introduced to handle the merging of multi-

ple real body parts, and the body parts are organized in a hierarchy to facilitate efficient

recognition.
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2.2 Previous Work on Human Modeling

There is a large collection of literature on human modeling. Most models employ part-

based representations to handle articulation. They vary widely in their level of detail. At

one extreme are methods that crudely model the body as a collection of articulated planar

patches [34]. At the other extreme are 3D models in which the limb shapes are deformable

[35, 36]. For part-based 2D models, the representation of parts varies from planar patches

[34] and 2D ribbons [79, 25] to deformable models [77]. The advantage of using 2D

models for recognition is that the matching is between 2D and 2D. The disadvantage is that

it is hard for 2D models to deal with shape variations due to viewpoint. For 3D models,

if 3D data is available we can match the model directly against the data. Gavrila and

Davis [36] proposed a complex 3D model of the body that takes into account kinematic

constraints, but their method requires searching through a high dimensional pose parameter

space for 3D pose recovery. If only 2D data is available, we need to match the 3D model

against the extracted 2D data. Assumptions about the viewing conditions vary from scaled

orthographic projection [65] to full perspective [66, 67]. To account for large variations

in depth, Hogg [58] modeled the body in terms of articulated 3D cylinders viewed under

perspective projection. More sophisticated tapered cylinders [67, 68] or superquadrics [70]

have been employed. Bowdenet al. [38] encapsulated the correlation between 2D image

data and 3D skeleton pose in a hybrid 2D-3D model trained on real life examples. The

model they used allows 3D inference from 2D data, but their method does not generalize

easily to new camera positions, because their 2D model is not invariant to viewpoint. The

common drawback with the above models is that they do not model the statistical variation

among individuals and the effects of clothes on human shape. Thus, they may be used for

human tracking or figure animation, but they are not appropriate for detecting people of

various shapes and clothing.

Marr and Nishihara [17] proposed a hierarchical 3D human model. At the highest level

of the hierarchy, the body is modeled as a large extended cylinder, which is then resolved

into small cylinders forming limbs and torso, and so on to fingers and toes. This hierarchical
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representation is stable in the presence of noise and sensitive to fine-level features, but is

impractical because it contains few actual constraints to support human detection.

Contour-based representations have been used to model the 2D human shape. Baum-

berget al. and Sullivanet al. [32, 33] employed a deformable template to handle shape

deformation, where the shape model is derived from a set of training shapes. The or-

thogonal shape parameters are estimated using Principle Component Analysis(PCA). One

drawback with this approach is that the model and the extracted contour should be aligned

first, which is not a trivial task. Another drawback is that some invalid shapes are produced

by the combination of two or more linear deformations. Gavrilaet al. [41] developed a

template hierarchy to capture the variety of human shapes, and the model contains no in-

valid shapes. The common drawback with the above approaches is that they do not model

individual parts, and so they can only handle limited shape variety due to articulation and

cannot deal with occlusion very well.

Skeleton-based representations [23] have been used to model the topological structure

of the human body, but they do not model the shapes of body parts. These approaches are

sensitive to noise and cannot distinguish two classes with the same topological structure

but different geometrical structures.

Some models incorporate other cues or features into the model. Pentland [60] intro-

duced a blob-based representation that combines skin color and contour to represent a body

part. While the color-blob representation of a person is quite useful, it is not invariant under

clothing/lighting changes and so it requires an initial model learning procedure for different

subjects and a smoothly changing image background. Papageorgiouet al. [37] developed

a wavelet-based representation to model pedestrians, but this representation is not invariant

under rotation and can not handle large part movements and occlusion very well.

In summary, previous human models only satisfy some of the requirements listed in

Section 2.1, but not all of them.



21

2.3 Shape Decomposition for Part-Based Representation

2.3.1 Definition of Natural Parts

Shape representation is a major problem in computer vision and is the basis for recogni-

tion. Here the word shape refers to the geometry of an object’s occluding contour in two

dimensions. The requirements of a good description that facilitates recognition lead to rep-

resentations that are segmented and hierarchical. Thus, shape decomposition is a key stage

in a part-based shape representation. Fig. 2.1 shows some examples of how to decompose

a silhouette into subparts. The boundaries between parts are calledcuts(shown as thick

lines in Fig. 2.1), and apart is defined as a region bounded by a portion of the outline of a

silhouette and one or more cuts.

(a) (b) (c)

Figure 2.1: Examples of shape decomposition: (a) random decomposition (b) decomposi-

tion at negative curvature minima (c) natural decomposition

A silhouette can be decomposed in many different ways as shown in Fig. 2.1, but for the

task of recognition not just any partitioning scheme will do. The decomposed parts must

satisfy certain requirements for recognition: first, they should correspond to the natural

body parts of an object; second, the decomposition should be invariant under translation,

rotation, and scaling; third, the decomposition should be computable. These requirements

suggest that to break a shape into parts we should use its intrinsic geometry. According

to the human intuition about parts, a segmentation into parts occurs atnegative curvature

minima(NCM) as shown with small circles in Fig. 2.1(b). This observation leads to Hoff-
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man and Richards’s minima rule [48]:“For any silhouette, all negative minima of curvature

of its bounding curve are boundaries between parts.” The minima rule constrains cuts to

pass through the boundary points it provides, but does not guide the selection of cuts them-

selves. For example in Fig. 2.1(b), the silhouette of a person is decomposed into parts at

NCM, but some segmented parts do not correspond to the natural body parts of a person

and one of the legs is not detected at all. This example demonstrates that not every pair of

NCM forms a natural part, and some parts such as the limbs of animals may be bounded

by a NCM and a non-NCM. Therefore, we need to introduce more constraints to achieve

unique and natural shape decomposition.

Singh et al. noted that when boundary points can be joined in more than one way

to decompose a silhouette, human vision prefers the partitioning scheme which uses the

shortest cuts. This leads to the short-cut rule [52] which requires a cut (1) be a straight line,

(2) cross an axis of local symmetry, (3) join two points on the outline of a silhouette, such

that at least one of the two points has negative curvature, (4) be the shortest one if there

are several possible competing cuts. Because only one end of a cut is required to lie on

a portion of the boundary with negative curvature, this enables us to decompose a shape

such as a leg at the right position as shown in Fig. 2.1(c). Singhet al.’s scheme restricts the

cut to cross a symmetry axis in order to avoid short but undesirable cuts. However, robust

computation of symmetry axes is difficult since from their very definitions [17, 114, 115]

most axes are extremely sensitive to noise.

In this thesis, the constraint on the salience of a part is used to replace the second

requirement in the short-cut rule in order to avoid the computation of symmetry axes. Ac-

cording to Hoffman and Singh’s study [49], there are three factors that affect the salience

of a part: the size of the part relative to the whole object, the degree to which the part

protrudes, and the strength of its boundaries. Among these three factors, the computation

of a part’s protrusion (the ratio of the perimeter of the part (excluding the cut) to the length

of the cut) is more efficient and robust to noise and partial occlusion of the object. Thus,

the protrusion of a part is employed to evaluate its salience; the salience of a part increases
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as its protrusion increases.
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Figure 2.2: Computing the cuts passing through point P

Therefore, the short-cut rule and the salience requirement are combined to constrain the

other end of a cut. For example in Fig. 2.2, letS be a silhouette,C be the boundary ofS, P

be a point onC with NCM, andPm be a point onC so thatP andPm divide the boundary

C into two curvesCl, Cr of equal arc length. Then two cuts are formed passing through

pointP : PPl, PPr such that pointsPl andPr lies onCl andCr, respectively. The endsPl

andPr of the two cuts are located as follows:

Pl = argmin
P 0

kPP 0k s.t.
k

_

PP 0k

kPP 0k
> Tp; P

0
2 Cl; PP 0 2 S (2.1)

Pr = argmin
P 0

kPP 0k s.t.
k

_

PP 0k

kPP 0k
> Tp; P

0
2 Cr; PP 0 2 S (2.2)

where
_

PP 0 is the smaller part of boundaryC betweenP andP 0, k
_

PP 0k is the arc length

of
_

PP 0, andk
_

PP 0k

kPP 0k
is the salience of the part bounded by curve

_

PPl and cutPPl.

Eq. (2.1) means that pointPl is located so that the cutPPl is the shortest one among

all cuts sharing the same endP , lying within the silhouette with the other end lying on

contourCl, and resulting in significant parts whose salience is above a thresholdTp. The

other pointPr is located in the same way using Eq. (2.2).
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(a) (b)

(c) (d)

Figure 2.3: Shape decomposition procedure: (a) the original boundary of a silhouette,

(b) smoothing the boundary and selecting the significant NCM (illustrated with small cir-

cles), (c) computing the cuts of the silhouette using Eqs. (2.1) and (2.2), (d) grouping

over-segmented parts.

2.3.2 Computing a Natural Shape Decomposition

The definitions of natural parts and cuts given in subsection 2.3.1 constrain the selection of

the best shape partition, but leave open how in practice a partition may be computed from

an image despite noise and local distortions of a silhouette. In particular, since negative

minima of curvature are obtained by local computation, their computation is not robust in

real digital images. One way to handle noise is to smooth the contour of a silhouette. Then

we need to select a natural scale to smooth it. If the scale is too small, the description will

be affected by noise, and if it is too large, important structures may be lost. Because parts

appear at many spatial scales, smaller parts nest within larger ones to form a hierarchy.

This observation of shape hierarchy leads to a multi-scale shape decomposition approach
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based on discrete curve evolution to yield robust computation and hierarchical organization

of parts.

Multi-scale shape decomposition is based on curve evolution obtained from different

operators. Latecki and Lakmper [54] proposed curve evolution by linearization. A con-

tinuous curve is first decomposed into maximal digital line segments. Then the evolution

proceeds by substituting two consecutive line segments with a single line segment joining

their endpoints. However this approach is very sensitive to the order of point substitution.

Malladi and Sethian [55] developed a level-set approach to curve evolution and decompo-

sition. Siddiqiet al. [50] proposed a theory of shape based on a reaction-diffusion equation

to produce a hierarchical decomposition of shape into parts and protrusions. The main

drawback with the multi-scale approach is that the procedure of curve evolution is very

slow. For example in [56], a convolution with the Gaussian filter is needed for each scale.

This section presents an efficient and robust shape decomposition algorithm. In con-

trast with the multi-scale approach, the proposed algorithm takes several computationally

efficient strategies to reduce the effects of noise. Fisrt, a B-spline approximation is used to

moderately smooth the boundary of a silhouette. Second, the NCM with small magnitude

of curvature are removed to avoid parts due to noise or small local deformations. However,

curvature is not scale invariant (e.g. its value doubles if the silhouette shrinks by half). One

way to transform curvature into a scale-invariant quantity is to first find the chord joining

the two closest inflections which bound the point, then multiply the curvature at the point

by the length of this chord. The resulting normalized curvature does not change with scale

— if the silhouette shrinks to half size, the curvature doubles but the chord halves, so their

product is constant.

When using Eqs. (2.1) and (2.2) to compute the cuts of a silhouette, they may result in

over-segmented parts as shown in Fig. 2.3(c). Therefore, a post processing step is needed to

merge two over-segmented parts that share a cut into a larger one if this larger part cannot

be decomposed into significant subparts using Eqs. (2.1) and (2.2). The order of grouping

is from the largest to the smallest parts so that the largest one is selected when several
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Figure 2.4: Example results of natural shape decomposition

possible competing merges exist. Fig. 2.3 illustrates the whole procedure of the shape

decomposition algorithm. The procedure stops when no part can be further decomposed

into significant parts and no two parts can be merged into a non-decomposable larger part.

Fig. 2.4 shows several example results from the shape decomposition algorithm. These

results demonstrate that the algorithm can produce natural part decompositions that are

robust to noise and local deformation. As discussed in the introduction, it is impossible to

decompose a shape into a set of perfect subparts without using higher level information.

For example, variations in the locations of subparts may occur due to self-occlusion and

flexible deformation. There are also missing parts resulting from the inherent difficulty in

finding the cut points. All of these will cause non-perfect decomposition, which will be

fixed using the model-guided, top-down verification and refinement process presented in

Chapter 4.
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2.4 Human Body Model

(a)  front view (b)  side view

Figure 2.5: Human body model

A human body can be represented directly using a 3D model or indirectly using a col-

lection of 2D models corresponding to different views. Since the goal of this thesis is to

detect people in an image, 2D models are preferred to a 3D model because a 2D model

can be compared directly with a 2D shape without projecting the 3D model onto the im-

age plane by searching a continuous viewpoint/pose space. The question of how many

and which viewpoints to use is an open question and also depends on the application. In

the case of pedestrian detection, we found two 2D human body models were sufficient

— the front-view and the side-view models as shown in Fig. 2.5. The two models share

the same body parts. The main differences are the spatial relationships between the parts

and the shape of the torso. The views not modeled by these two models are partially ab-

sorbed by the probability distributions of the spatial relationships among the body parts

encoded in the human model. For the purpose of human detection and model learning, a

TRS-invariant representation of the shapes of parts and the relationships between them is

developed. For the purpose of modeling the shape variations between individuals and due

to viewpoint changes, probability distributions are employed to encode the variations of

the model parameters. The resulting model is calledthe TRS-invariant probabilistic model.

The following subsections describes the human body model in detail.
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Figure 2.6: (a) Body part model (b) “connect-to” hierarchy

2.4.1 TRS-Invariant Body Model

Each human body model consists of six main body parts (the head, the torso, two arms

and two legs) and twelve subparts of the four limbs. The body parts are constrained to

connect to each other at the joints. The body parts are modeled with ribbons1 [114, 115]

as shown in Fig. 2.6(a). The width(w) of a ribbon is defined as the average width along

the ribbon, and its length(l) and major axis come from the ribbon spine. The aspect ratio

a = w=l is invariant under similarity transforms, and it captures the global shape of a

ribbon while ignoring small local shape deformations. Thus the aspect ratio is appropriate

for the purpose of recognition.

However, the aspect ratio is too ambiguous to be used alone to distinguish different

parts. For example, the head and the torso have similar aspect ratios. Therefore, besides the

aspect ratios of the body parts, the geometric relationships between them are also modeled.

To do so a local coordinate frame is associated to each body part. The origin of each part

frame is located at the joint connecting the part to its parent in the “connect-to” hierarchy

as shown in Fig. 2.6(b), except that the torso frame origin is located at its geometric center.

The advantage of locating the origin at the joint instead of the geometric center of a body

1Following Rosenfeld’s definition [114], a “ribbon-like” planar shape is defined by specifying an arc,

called the spine or axis, and a geometric figure such as a disk or line segment, called the generator, that

“sweeps out” the shape by moving along the spine, changing size as it moves.
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part is that the location of the origin becomes invariant to the body part’s orientation. In

summary, a body part is parameterized with a vector(a; l; x; y; �), wherea = w=l is the

aspect ratio that captures the general shape of a ribbon,(x; y) are the coordinates of the

origin in the coordinate frame of the parent part, and� is the intersection angle between the

major axes of this part and its parent part.

Assuming that the human body model consists of m body parts that are parameterized

with vectorsf1; f2; :::; fm, wherefi = (ai; li; xi; yi; �i). Then the human body model is

parameterized with four model matrices: the aspect ratio vectorA = fa1; :::; amg, the

length ratio matrixS = fsijg; i; j = 1; :::; m, wheresij = li=lj, the relative position

vectorX = (x1; y1; :::; xm; ym), and the orientation or posture vector� = f�1; :::; �mg.

Obviously,A andS are TRS-invariant.

The coordinates(xi; yi) of a subpartfi (for example the lower arm) in the coordinate

frame of its parentfj (the upper arm) is simply:

(xi; yi) = (0; lj): (2.3)

Because the lengths of the body parts are constrained by the length ratio matrixS, only the

relative positions of the six main body parts needs to be modeled. LetX = (x1; y1; :::; x6; y6).

To make this vector TRS-invariant, the coordinates of the joints are represented in a nor-

malized torso coordinate system with the length of the torso normalized to be 1. Then the

TRS-invariant relative positions of the six main body parts areU = (0; 0; u2; v2; :::; u6; v6),

where(ui; vi) = ((xi; yi) � (x1; y1))=l1, (x1; y1) are the coordinates of the torso’s center,

andl1 is the length of the torso.

Currently, the human model is parameterized with three TRS-invariant matrices:A; S; U ,

which constrain the aspect ratios, the relative sizes and positions of the body parts, respec-

tively. In the future, the orientation constraints� will be incorporated to form stronger

constraints on the appearance of a person.
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2.4.2 TRS-Invariant Probabilistic Model

No two people are exactly alike due to difference in age, sex, racial membership, and the

great range of diversity among individuals poses a problem for vision-based human detec-

tion. In this thesis, probability distributions are employed to accommodate shape variation

among people and they can also absorb some of the shape variation due to changes of view-

point. For simplicity, the variations of the model parameters are assumed to be subject to

the Gaussian distributions. To simplify the calculation of the joint Gaussian distributions,

and the variations of the aspect ratios, the length ratios, and the relative positions of the

main body parts in the normalized torso coordinate system are assumed to be statistically

independent of each other. Based on the above assumptions, the probability distributions

of the three model matricesA; S; U can be estimated separately:

A � N ( �A;�A) (2.4)

S � N ( �S;�S) (2.5)

U � N ( �U;�U): (2.6)

Assuming that the variations of the aspect ratios of the body parts are statistically inde-

pendent2, then

N( �A;�A) =
Y
i

N(�ai; �
2

ai
) (2.7)

Assuming that the variations of the ratios of the lengths between the body parts and a

reference body partfi are independent3, then

N( �Si;�Si) =
Y
j 6=i

N(�sji; �
2

sji
) (2.8)

2Based on the statistical data provided by Tilley [116], the aspect ratios of the body parts are not neces-

sarily correlated. For instance, a small woman may have a round or thin face and a large or small hip, and so

on.
3This assumption does not mean that the length of a body part is independent of the lengths of other

body parts. In fact, the length ratio matrixS constrains the lengths of the body parts to be proportional. For

instance, the mean ratio between the lengths of the left arm and the right arm is 1, and this constrains the

lengths of the left arm and the right arm to be equal.
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Figure 2.7: Generating merged body parts

whereSi = fsjig, sji = lj=li, j = 1; :::; m, j 6= i. Thus,Si is used to constrain the relative

lengths of the body parts with respect to the lengthli of a reference partfi.

The above probability distributions provide metrics to evaluate the shape, size rela-

tionship, and configuration similarities between the detected contour and the human body

model. Their parameters (means and covariances) are estimated from the measurements

provided by Tilley[116] (See Appendix).

2.5 Dressed Human Modeling

In contrast with a model of a particular object, a model of an object class should repre-

sent the generic shapes of the objects belonging to the class well and emphasize shape

differences between classes, while the shape variations allowed within classes should not

influence the description. Modeling human shapes is a challenging problem considering
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Figure 2.8: Assembling the human models

the high degree of shape variation as illustrated in Chapter 1 due to articulation, occlusion,

and clothing. Articulation and occlusion can be handled by part-based representation very

effectively, however, shape variation from clothing is much more difficult to deal with.

As shown in Fig. 1.3 clothes may drastically change the appearance of a person. One

of the effects of clothes is that they cover some body parts and merge them into a single

component. This makes it difficult to identify the covered parts and as a result we cannot

recognize a dressed person. To handle this effect, merged body parts are introduced to

model the merging of multiple body parts covered by clothes as shown in Fig. 2.7. The

merged body parts are generated in a hierarchical manner as shown in Fig. 2.7 by com-

puting the union of its subparts ( the subparts are assembled based on the “connect-to”

hierarchy shown in Fig. 2.6(b)). This hierarchy provides a compact representation of the

coarse-to-fine modeling of human shapes (see some examples given in Fig. 2.8), and the

generated models are called the dressed human models. The hierarchical organization of

parts resembles the one proposed by Marr and Nishihara [17], but it includes more levels

between the whole body and the major body parts to include the merged body parts. Thus,

this hierarchy has more shape modeling power as demonstrated in Fig. 2.8 (it not only

models the real body parts, but also the parts generated due to clothing and resolution de-

generation), while sharing the same advantage as a normal hierarchical representation —

stability and sensitivity (see section 2.2 for explanation).

The merged parts are also modeled with ribbons connected with each other at joints,
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trunk

calf

Figure 2.9: Adjustable length of the trunk

and the TRS-invariant probabilistic representation explained in subsection 2.4 is used to

encode the shapes of the merged parts and their relationships. The coordinates of the origin

of each part are represented in the local coordinate systems of both the upper part in the

“connect-to” hierarchy (see Fig. 2.6(b)) and the parent part in Fig. 2.7. There are two kinds

of relationships between the parts: one is “connect-to”; another is “part-of”. Therefore, the

location of a part can be inferred from two sources: either from the connected parts or from

the merged parts covering it.

One special merged body part called thetrunk (see Fig. 2.9) is introduced to cover the

torso and some of the other body parts, and it occupies the same position as the torso in

Fig. 2.7. The length and the width of the trunk is adjustable so that it can handle different

self occlusion situations and dresses of various lengths (as shown in Fig. 1.3). Thus, the

length constraint is not on the length of the trunk but on the sum of the lengths of the trunk

and the attached legs. For example in Fig. 2.9, the sum of the lengths of the trunk and the

calf should equal the difference between the lengths of the whole body and the head.

The deformations of the merged parts are represented by normal distributions. The

parameters of the distributions (means and covariances) are learned from a set of training

data collected from some web-sites and catalogs. The training data are first decomposed

using the approach presented in subsection 2.3. The decomposed subparts are labeled

manually and transformed into the TRS-invariant representations. Parts with the same



34

label are grouped into the same subset to estimate the parameters of the corresponding

model part (see Appendix).

In summary, this chapter presents a TRS-invariant dressed human model that can be

used to detect people in an image independent of their sizes, poses, articulation, and cloth-

ing. Part-based representation is used to model the occluding contour of a person; merged

parts are introduced to represent the merging of multiple real body parts. Furthermore,

all parts are organized in a hierarchy to facilitate coarse-to-fine shape decomposition and

classification. The next chapter will explain how to assemble a dressed human model dy-

namically to match an extracted contour and how to evaluate the resemblance between the

assembled model and the contour to guide body part identification and human detection.



Chapter 3

Bayesian Similarity Measure

3.1 Requirements for a Good Shape Similarity Measure

A shape similarity measure designed for shape classification is useful in many applica-

tions such as object detection, image retrieval at the class level, and hierarchical database

construction. Here an object’s shape refers to its silhouette. Although a large number of

shape similarity measures have been proposed, most of them are for the purpose of im-

age retrieval and object recognition at the individual object level. This chapter focuses

on designing a shape similarity measure for deformable shape classification, especially for

articulated objects such as humans. A good shape similarity measure should satisfy the

following requirements:

1. It should give large similarity measurements within the class while giving small ones

between classes.

2. It should not depend on the position, size, and orientation of an object.

3. It should support articulation and partial occlusion.

4. It should be robust to noise, deformation, and blur resulting from image digitization

and poor segmentation.

35
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5. It should be efficient to compute.

This chapter presents a Bayesian similarity measure that satisfies all the above require-

ments. This similarity measure involves accumulation of the similarity between matched

primitives. Because the comparison is between a shape and a shape class, the probability

distributions described in Chapter 2 are used to represent the variations allowed within the

class, and a Bayesian similarity measure is derived from the human model to satisfy the

first requirement. Second, body parts are employed as primitives for shape representation

and comparison. Part-based shape comparison contributes in a significant way to the fact

that the similarity measure satisfies requirements 3 and 5. According to Siddiqiet al. [51],

part-based representations allow for robust object recognition and play an important role

in the theories of object categorization and classification. There is also strong evidence for

part-based representations in human vision [51]. Furthermore, there are many fewer natural

parts in a shape than there are other primitives such as points, line segments, convex arcs,

etc. So a part-based representation enables fast shape matching. Third, the TRS-invariant

shape representation described in Section 2.4 facilitates requirement 2. Fourth, the body

parts are organized in a coarse-to-fine hierarchy and body part matching is performed in a

coarse-to-fine manner to reduce the effects of noise and contour over-segmentation and to

enhance fast shape matching.

The organization of the rest of the chapter is as follows: Section 3.2 discusses the related

work on shape similarity measure. Section 3.3 presents the definition of the Bayesian

similarity measure and illustrates how to calculate it based on the best match between the

parts of a contour and a human model guided by coarse-to-fine model assembling and

a goodness function. Section 3.4 demonstrates that the Bayesian similarity measure can

be used to distinguish humans from other objects and therefore can be used for human

detection. A discussion of the decision rule for human detection is given in Section 3.5.
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3.2 Related Work on Shape Similarity Measure

The problem of determining the similarity of two shapes has been well-studied in several

fields. The design of a similarity measure depends on how a shape is represented. Many

global shape descriptors (see reviews in [96, 97]) such as Fourier Transform, moments,

and eigen shapes have been used to compare two shapes, but they cannot handle occlusion

and local deformation such as articulations very well. Therefore, this section does not

discuss the similarity measures based on global shape but concentrates instead on those

that use local shape primitives, such as points, key points, lines, arcs, axes, or parts. Broad

overviews of shape similarity measures can be found in [98, 99, 101].

A point-based similarity measure such as the Hausdorff distance is commonly used to

compare two shapes, but it is very sensitive to noise and occlusion. A similar measure that

is not as sensitive is the partial Hausdorff distance [100]. This measure can deal with occlu-

sion and clutter very effectively; the measure itself is used to guide the search for an align-

ment transform in the discrete space. Technically speaking, different transformations such

as similarity, affine, or non-rigid transforms can be used for shape alignment. However,

the dimension of a non-rigid transformation space is too high to be searched efficiently. A

match-based method has been proposed to avoid the search for the transformation in a high

dimensional space. An alignment transform is calculated from the matched points, then

the similarity measure is calculated as the sum of the residual distances between the corre-

sponding primitives. The common drawback with the above measures is that they have to

transform one shape to another before shape comparison because the distance metric is not

invariant under similarity transform.

Various cost functions have been proposed to evaluate the dissimilarity between two

contours without aligning them. A cost function weights the similarity of the matched

points on the basis of their local properties, such as the difference in the tangent or curva-

ture of the contours at those points. The cost function itself is used to guide the search for

the best match. Basriet al. [101] defined the cost function as “elastic energy” needed to

deform (stretch or bend) one curve to another. However, the computation of elastic energy
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(which is defined in terms of curvature) is very sensitive to noise. Other alternatives also

exist such as turning functions [104], arch height functions [102], size functions [103], or

functions combining multiple local properties [105, 106]. Given a choice of cost functions,

several methods such as dynamic programming, gradient descent, or the shortest path algo-

rithm have been employed to find the correspondence between contours that minimize the

cost. The main drawback of these methods is their high computational complexity due to

searching for correspondences at the point level. Furthermore, none of these cost functions

is invariant under scaling and/or rotation of the point data.

Other features such as key points and lines have been used to reduce the computational

cost because a digital contour usually consists of much fewer features than of points. Pope

and Lowe [109] modeled an object with a graph whose nodes represent the feature values

and whose edges represent the spatial arrangement (symmetric, parallel) of the features.

Objects are considered similar if their graphs are isomorphic; a similarity metric based on

a probability density estimator is used to identify if a shape is an instance of a modeled ob-

ject. To handle occlusion, partial matching is allowed and the largest mutually compatible

matches are found by constructing an association graph to search for the maximal clique

[110]. The main drawback of these methods is that they cannot handle articulated motion

because the spatial relationships between features are assumed to be fixed. Moreover, it is

difficult to find a coherent set of features that is shared by all possible shapes in a class and

that can be extracted reliably.

Part-based representations have been proven to handle articulation and occlusion ef-

fectively. They have several advantages over other representations such as points, lines,

and arcs. First, articulation usually happens at part boundaries, thus, a part-based repre-

sentation is a more natural and coherent description of articulated shapes. Second, a shape

contains fewer aggregate parts than other features. Third, part-based methods find strong

support from human vision [51]. The main concerns of a part-based similarity measure

are how to decompose a shape into stable parts and how to set up correspondence among

them. Parts generally are defined to be convex or nearly convex shapes separated from the
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rest of the object at concavity extrema [49], or at inflections [42]. One type of approach

is to represent shapes as skeletons or graphs and then to use graph matching or qualitative

properties such as topology to compare shapes. The main drawback of these approaches to

part-based shape analysis is that the shape decomposition is not stable. Since only qualita-

tive properties are used for shape classification, they cannot distinguish two shapes with the

same body part structure but different body part shapes and geometric relationships. Zhu

and Yuille [23] developed a similarity measure to compare silhouettes based on both the

local shapes of parts and the topology but the method can not handle shape degeneration or

resolution changes very well. Several curve evolution approaches [50, 54, 55] have been

proposed to model shapes of an object at different scales, but the related similarity measure

is sensitive to occlusion and is not invariant under scaling.

Leunget al. [27, 28, 29] have proposed a method which combines the intensity pattern

and the spatial relationships between the facial features to detect faces from the cluttered

environment. However, they do not use the spatial relationship to help detect face features,

and no size relationship and recursive procedure is involved in face detection. The main

reason is that the facial features have very distinctive patterns and can be detected based

on their intensity patterns. In human detection, we rely heavily on the spatial and size

relationships to identify the human body parts, because the body parts such as arms and

legs do not present very distinctive texture patterns.

In summary, none of the above similarity measures satisfies all the requirements listed

in Section 3.1. Point-based approaches are time consuming, while feature-based approaches

are not stable and can not handle articulation appropriately. In contrast, the part-based

approach is a more promising direction, however, current methods can not handle shape

decomposition errors and shape degeneration very effectively. Above all, the above shape

similarity measures can not deal with large shape variations within a class. They are not

appropriate for the purpose of classifying shapes such as those of humans.
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3.3 Bayesian Similarity Measure and Body Part Identifi-

cation

A part-based similarity measure evaluates the resemblance between a contour and a model

based on the best match between their body parts. This section presents the definition of

a Bayesian Similarity Measure derived from the probabilistic human model, and illustrates

how to use this measure to guide the matching between a set of decomposed ribbons and a

set of model body parts through coarse-to-fine model assembling.

3.3.1 Problem Formulation

The body part identification problem is to match a set of ribbons decomposed from a con-

tour against a set of model body parts described in Chapter 2. This problem is formulated

as an optimal hypothesis selection problem. Assume thatn ribbons are extracted from a

contourC = fc1; c2; :::; cng, and that the human model consists ofm model body parts:

F = ff1; f2; :::; fmg. LetH = (h1; h2; :::; hm; view) represent a match hypothesis, where

view 2 ffront=back; sideg and

hi =
n j; if cj corresponds tofi

0; if no ribbon corresponds tofi

This is not a one to one mapping; it allows some body parts to be occluded and also

allows some ribbons to not correspond to any body parts. The maximuma posteriori

(MAP) hypothesisH� is selected from the hypothesis spaceH such that, given a person is

present in the image,

H� = argmax
H

P (H;Cjperson):

According to Bayes’ rule,

H� = argmax
H

P (CjH; person)P (Hjperson) (3.1)

= argmax
H

P (CjH; person)P (personjH)
P (H)

P (person)
: (3.2)
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Assume that all hypotheses have the same prior, thenP (H)=P (person) is a constant

and can be dropped from (3.2). Thus, the best hypothesis can be selected as

H� = argmax
H

P (CjH; person)P (personjH): (3.3)

Accordingly, thegoodness functionthat rates the hypothesis is defined as follows:

G(H)
�
= P (CjH; person)P (personjH) (3.4)

P (CjH; person) evaluates the degree of resemblance between the matched pairs, while

P (personjH) is proportional to the number of identified body parts — the more body parts

being identified, the more likely the extracted contour is a person. Thus, the MAP hypoth-

esisH� selected using (3.3) maximizes the resemblance between the matched pairs and the

number of identified body parts. Consequently, the similarity measure that evaluates the

resemblance between the contourC and the human model is defined as

BSM(C)
�
= G(H�); (3.5)

whereH� is the best hypothesis selected using (3.3).

3.3.2 Estimation of the Goodness Function

In order to calculate the goodness functionG(H), two terms need to be estimated: the

likelihoodP (CjH; person) and the posterior probabilityP (personjH).

Let Â0; Ŝ 0
i; Û

0 be the aspect ratios, relative sizes, and relative positions of the identified

body parts, respectively. They are estimated with the parameters of the corresponding

ribbons, wherêS 0
i = ŝji; j 6= i. The reference body partfi is selected so that its aspect

ratio has the highest probability:N(âi; �ai; �
2

ai
) > N(âj; �aj; �

2

aj
); 8j 6= i. Let ( �A0;�0

A),

( �S 0
i;�S0

i
), ( �U 0;�0

U) be the expectations and covariances of the model parameter matrices

assembled from the identified model parts. Because the matricesA0; S 0; U 0 are assumed to

be mutually statistically independent, the likelihoodP (CjH; person) can be estimated as

P (CjH; person) = N(Â0j �A0;�0
A)N(Ŝ 0

ij
�S 0
i;�S0

i
)N(Û j �U;�U) (3.6)
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.55 .75 .84 .92 1

Figure 3.1: Examples of the calculatedP (personjH) given the degeneration factor� = :9

and the contour parts matching the model parts exactly

The likelihoodP (CjH; person) derived above constrains the best match between the

set of decomposed ribbons and the model body parts to be of similar relative sizes and

positions as well as similar aspect ratios. Note that the model parameter matrices( �A0;�0
A),

( �S 0
i;�S0

i
), ( �U 0;�0

U) are not fixed but are dynamically assembled based on the match hy-

pothesis. This means that the matching procedure selects not only the best match pairs but

also the best human model to describe the extracted contourC.

The conditional probabilityP (personjH) is estimated based on the number and types

of the identified body parts. The more body parts being identified, the more likely the

extracted contour is a person. And the presence of a fine level body part indicates a higher

likelihood of the presence of a person than that of a coarse level body part does. According

to the above observation, the following formula is designed to estimateP (personjH):

P (personjH) =
X

diwi (3.7)

wheredi = 0, if hi = 0 (the model body partfi is not identified), anddi = 1, if

hi 6= 0. wi is a weight used to evaluate the contribution of the identification of the

body partfi to the presence of a person, and it is estimated aswi = ni=n; wheren =
P

nj; 8fj that has no subpart, andni = 1 if fi does not have subparts (see Fig. 2.7), except

for the head and the torso. Although the head and the torso do not have subparts, their ap-

pearance imply a high likelihood of the presence of a person than the appearance of other

body parts such as two arms. Therefore,ni is set so thatP (personjH) > 0:5 whendi 6= 0
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andfi is a head or a torso. For the body parts who have subparts,ni is defined recursively:

ni = �
X

nj; 8fj being the subpart offi; (3.8)

where� < 1 is a degeneration factorused to punish the ambiguity with the coarse level

body parts so that a contour that only matches a low resolution model well does not get a

high similarity measure (see Fig. 3.1). Thus, the degeneration factor helps to reduce the

false alarms caused by the generality of the human model.

In summary, the following function is designed to evaluate the goodness of a hypothesis

H:

G(H) = N(Â0j �A0;�A0)N(Ŝ 0
ij
�S 0
i;�S0

i
)N(Û 0j �U 0;�U 0)P (personjH) (3.9)

Unlike previous work [23, 58] that identifies each body part independently, the good-

ness function proposed in this thesis couples the local and global constraints to guarantee

the best match between the extracted ribbons and the human body parts to be of consistent

global spatial and size relationships as well as having consistent local shapes.

3.3.3 Selecting the Optimal Hypothesis through Dynamic Model As-

sembling

Most previous methods [78, 79, 86] detect body parts sequentially without backtracking.

The disadvantage is that if one of the body parts is located incorrectly, the locations of

the rest of the body parts would be wrong. In contrast, in this thesis work every extracted

ribbon is considered as a candidate for every body part. The exhaustive search for the best

hypothesisH� is to check every possible hypothesis and find the best one based on the

goodness functionG(H) given in Eq. (3.9). However, the hypothesis space is generally

very large due to combinatorial explosion. For example, if there arem model body parts

andn extracted ribbons, then the number of match hypotheses would be:
�
m

k

��
n

k

�
k! +

�
m

k�1

��
n

k�1

�
(k � 1)! + :::+

�
m

1

��
n

1

�
, wherek = min(m;n).

This section presents a coarse-to-fine search procedure to identify and locate the body

parts. First, derive a coarse-level decomposition of the contourC (as shown in Fig. 3.2(b))
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(a) (b)

(c) (d)

head

torso

leg

leg

arm
head

arm arm

torso

leg

foot

calffoot thigh

arm

Figure 3.2: Body part identification: (a) fine-level contour decomposition (b) coarse-level

contour decomposition (c) coarse-level part identification (d) fine-level part identification

be grouping the ribbons whose major axes sharing an endpoint and their widths are similar

(their width ratio is within the range [.5, 1.5]). Second, identify the coarse-level body parts

based on the goodness function (as shown in Fig. 3.2(c)). Third, if a part at a coarse-level

is decomposed into subparts, identify its subparts (as shown in Fig. 3.2(d)). Fourth, derive

the locations of the subparts of the parts not decomposed by the contour decompostion

procedure. This step will be explained in the body part updating procedure in Section 4.3.

Because there are fewer body parts at a coarse-level than at a fine-level, the hypothesis

space is significantly reduced. To guarantee that the procedure converges to the global

optimal solution, a coarse level hypothesis will result in a lower posteriorP (personjH)

than a fine-level hypothesis will, because of the degeneration factor (�) used in Eq. (3.8).

Therefore, by combining the constraints on the aspect ratios, relative sizes and positions,

and the posteriorP (personjH), the goodness function proposed in this thesis selects the
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body

outlier

outlier

head

calf calf

head

G(H1)=0.5 G(H2)=0.8 G(H3)=0.7

arm trunk

outlier

arm

leg
leg

outlieroutlier

outlieroutlier

torso

Figure 3.3: Coarse-to-fine hypothesis selection and dynamic model assembling ( hypothe-

sisH2 gets the highest score and is selected as the best hypothesis to match the decomposed

parts against the model body parts.)

human model and model parts at the right resolution to label the decomposed contour

segments as shown in Fig. 3.3.

The efficiency of the search procedure can be further improved by selecting the can-

didates of each model body part through gating on the aspect ratios of the decomposed

ribbons:

Di = fcjj cj 2 C;N(âj; �ai; �
2

i ) > �g (3.10)

whereDi is the set of candidates for the model body partfi, cj is a ribbon decomposed

fromC, aj is the aspect ratio ofcj, �ai and�i are the mean and the standard deviation of the

aspect ratio of the model partfi, and� is the threshold which should not be set too high to

achieve a global optimal hypothesis.
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(a) (b) (c)

(e) (f)(d)

Figure 3.4: Identify the main body parts indicated by ooo (head) — (torso) +++ (arm) ***

(leg)

3.3.4 Experimental Results

Figs. 3.4 and 3.5 show some results of the main and extended body part identification, re-

spectively. Here the contour is first decomposed into natural body parts using the algorithm

described in Section 3.3. Then the decomposed parts are matched against the model body

parts through the coarse-to-fine optimal hypothesis selection procedure described in sub-

section 3.3.3. The results demonstrate that the proposed algorithm can identify the human

body parts at different resolution levels correctly. Even if some parts are occluded, it does

not affect the identification of other parts. The algorithm can also detect the outliers simul-

taneously. The outliers may be due to the objects carried by a person, clothes, shadows or

the background. Thus, through the body part identification procedure described in Section

3.3.3, certain contour extraction errors can be corrected. In Fig. 3.4(c), the arm is incor-
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foot
calf
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Figure 3.5: Identify the merged body parts

rectly labeled as an outlier, but as you will see in Chapter 4, through the recursive context

reasoning algorithm the missed arm can be located correctly (as shown in Fig. 4.3(3)).
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3.3.5 Multiple Hypotheses for Analyzing Multiple People

(a)

(c)

(b)

(d)

head

arm

torso

leg

outlier

thigh

calf

foot

arm

head

armtorso

calf

thigh

leg

arm

Figure 3.6: Locating the body parts of multiple people: (a) raw image (b) contour decom-

position (c) the identified body parts of the first person (d) the identified body parts of the

second person

When the extracted contour corresponds to a single person, the best hypothesis can

be selected based on the goodness function given in Eq. (3.9) to label the decomposed

ribbons. However, if the contour corresponds to multiple people as shown in Fig. 3.6(a),

then multiple hypotheses need to be selected. Unlike previous work that depends on motion

information [62] or upright-standing constraint [80] to separate overlapping people, this

thesis proposes an iterative procedure to extract people one by one from the silhouette.

First, select the best hypothesis to identify the body parts of a person contained in the

contour. Second, remove the identified body parts from the contour. Third, go to the first

step to analyze the remaining silhouette until no contour segment is left. In this procedure,

it is possible simultaneously to label the contour and to separate people as shown in Fig.

3.6. Shadows can cause serious problem for people detection methods based on background
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subtraction [80]. However, using the goodness function proposed in this thesis, the shadow

can be correctly identified as an outlier as shown in Fig. 3.6(c). This is because the shadow

does not form a valid human body part.
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3.4 Bayesian Similarity Measure for Human Detection

3.4.1 Decision Rule

The human detection problem is: given a detected contourC, determine whether this con-

tour represents the silhouette of a person or not.

A simple decision rule to perform human detection is: the contourC corresponds to a

person if

P (personjC) > threshold: (3.11)

Otherwise,C is not a person. The threshold controls the receiver operating characteristics

(ROC) of the detector. According to Bayes’ rule,

P (personjC) =
P (Cjperson)P (person)

P (C)
: (3.12)

Assume that all contours have the same prior, thenP (person)=P (C) can be considered as

a constant, and the decision rule becomes: the contourC corresponds to a person if

P (Cjperson) > threshold: (3.13)

The likelihoodP (Cjperson) can be calculated by conditioning on the hypotheses for

body part identification:

P (Cjperson) =
X
H2H

P (CjH; person)P (Hjperson); (3.14)

whereH is the hypotheses space.

Because it is not efficient to explore all hypotheses inH, a winner-take-all strategy is

employed to approximateP (Cjperson):

P (Cjperson) � P (CjH�; person)P (H�
jperson) (3.15)

whereH� is the optimal hypothesis selected in the part identification procedure described

in subsection 3.3.3. This approximation works well in the situation of low noise and un-

ambiguous data. Because the recursive context reasoning algorithm explained in Chapter



51

4 will improve the accuracy of contour extraction iteratively, the above approximation will

get more accurate accordingly.

By applying Bayes’s rule, Eq. (3.15) becomes

P (Cjperson) � P (CjH�; person)P (personjH�)
P (H�)

P (person)
(3.16)

According to the assumption made in section 3.3.1,P (H�)=P (person) is a constant. Thus,

the decision rule can be further simplified as: the contourC corresponds to a person if

P (CjH�; person)P (personjH�) > threshold (3.17)

where the left hand side of Eq. (3.17) is just the similarity measure defined in Eq. (3.5).

This means that the similarity measure proposed in this thesis can be used to perform

human detection: the contourC corresponds to a person if

BSM(C) > threshold: (3.18)

Note that the thresholds in (3.11), (3.13), (3.18) are different.

3.4.2 Experimental Results

Figs. 3.8 and 3.9 give some examples of the estimated degrees of similarity between the

extracted contours and the human model using Eq. (3.5). The results demonstrate that

the probabilistic similarity measure proposed in this thesis generates a higher similarity

between the humans’ silhouette and the human model than between the animals’ silhouettes

and the model, although the silhouettes are in different resolutions, clothes and postures,

and many animals have configurations similar to that of a human. This demonstrates that

the proposed similarity measure can be used to distinguish humans from other objects.

3.5 Discussion

In summary, this chapter presents a probabilistic similarity measure that satisfies require-

ments 1 through 6. This is demonstrated by theoretical considerations and experimental
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(a) (b)

Figure 3.7: An ambiguous contour: the right figure is the same as the left one except for

the different orientation

results. The estimation of the similarity measure is based on a coarse-to-fine body part

identification procedure. Therefore, the proposed similarity measure can be employed to

detect humans in various sizes, positions, orientations, clothes, postures, and partially oc-

cluded situations. Because the detected contours are not always complete and perfect,

there are situations when the information provided by the detected contours is not enough

to make the final decision. Fig. 3.7 gives an example of an ambiguous contour: the con-

tour in Fig. 3.7(a) looks like a partially occluded person, but if rotated90o, it looks like a

finger as shown in Fig. 3.7(b). To avoid false alarms, the decision is made only when the

similarity measurement is sufficiently high or sufficiently low. Otherwise if the similar-

ity measure falls within a defined uncertainty region, then go to find a more distinguished

contour which will be described in the next chapter. Thus, the new decision rule becomes:
8>>>>><
>>>>>:

C is a person; if BSM(C) > �2

no decision; if BSM(C) 2 [�1; �2]

C is not a person; if BSM(C) < �1

(3.19)

There are cognitive experiments [51] to prove that we humans do not immediately recog-

nize those objects for which the figure/image provides an insufficient amount of informa-

tion. The geometrical descriptions must exceed minimum level of richness or we will fail

to recognize the object. The next chapter will show a recursive context reasoning algo-
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rithm that searches for more information in an image to support reliable human detection

and body part localization.
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SM=0.93 SM=0.82 SM=0.81

SM=0.80 SM=0.80 SM=0.80

Figure 3.8: Similarity measures between the shapes and the human model
SM=0.51 SM=0.52 SM=0.42

SM=0.50 SM=0.40 SM=0.30

Figure 3.9: Similarity measures between other animals and the human model



Chapter 4

Recursive Context Reasoning

4.1 Why Do We Need Contextual Information ?

High performance object detection depends on reliable contour extraction, but contour ex-

traction is an under-constrained problem without knowledge about the objects to be de-

tected. The experimental results given in Chapters 2 and 3 also illustrate that higher level

knowledge is needed to guide the search for more details of the objects in the image to

resolve ambiguity with the initial extracted contour.

This thesis proposes a recursive context reasoning (RCR) algorithm to solve the above

dilemma. A TRS-invariant probabilistic model is designed to encode the shapes of the

body parts and the context information — the size and spatial relationships between body

parts. A Bayesian framework is developed to perform human detection and part identifi-

cation under partial occlusion. A contour updating procedure is introduced to integrate the

human model and the identified body parts to predict the shapes and locations of the parts

missed by the contour detector; the refined contours are used to reevaluate the Bayesian

similarity measure and determine if the detected contour is a person or not. Therefore, con-

tour extraction, body part localization, and human detection are improved by combining

the context constraints from the identified body parts and the human model.

The combination of top-down and bottom-up paradigms to improve the performance of
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the vision system has been demonstrated in previous work. The ACRONYM system [1]

developed by Brooks is an influential and very general framework for object recognition.

Brooks used a general symbolic constraint solver to calculate bounds on the view point

and model parameters from image measurements. The bounds were then used to check the

consistency of all potential matches of ribbons to object components. However, the actual

calculation of bounds for such general constraints was mathematically difficult and approx-

imations had to be used that did not lead to exact solutions for viewpoints. The alignment

method [6] proposed by Huttenlocher and Ullman utilized minimal sets of features which

suffice to establish a unique transformation between a model and its hypothesized instance

in the image. For each match a corresponding transformation is computed, and the set of

model edges is transformed to the image to verify the candidate transformation. The time

complexity of the approach is high, because an exhaustive enumeration is applied over all

the possible pairings of minimal sets of model and image features. Lowe [2] used the initial

matches between some model and image features to constrain the locations of other fea-

tures of the model and thereby generate new matches that can be used to confirm or reject

the initial match and to refine the pose estimate. But Lowe’s approach cannot efficiently

handle objects with a large number of variable parameters or articulated parts, because it

requires an exact description of the object’s geometry.

The context reasoning approach proposed in this thesis overcomes the limitations of the

above work. The following sections will describe the algorithm in detail.

4.2 Outline of the RCR Algorithm

The outline of the RCR algorithm is as follows.

Step 1: Contour extraction: the algorithm is independent of how the initial contours are

extracted from the image. Methods such as depth segmentation or background subtraction

can be used for this purpose.

For each extracted contour, run Steps 2 to 7:
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Step 2: Contour decomposition (described in Section 2.2): decompose the contourC

into natural parts.

Step 3: Body part identification (described in Section 3.3): generate a hypothesisH�

to match the decomposed parts against the model body parts, s.t.

H� = argmax
H

G(H); (4.1)

whereG(H) is the goodness function calculated using Eq. (3.9).

Step 4: Human detection (described in Section 3.4): calculate the similarity measure

BSM(C) = G(H�) (4.2)

to determine if the contourC is a person or not based on the decision rule given in (3.19). If

BSM(C) 2 [�1; �2], then go to Step 3 to search for more body parts to verify the hypoth-

esis; ifBSM(C) > �2, then declare that the contourC is not a person; ifBSM(C) < �1,

then declare that the contourC is not a person.

Step 5: Update the locations and outlines of the body parts from the identified body

parts and the human model.

Step 6: Align the predicted outlines of the missed body parts to the edge features in the

image.

Step 7: Recalculate the similarity measure and determine if a person is present or not.

Note that the RCR algorithm is different from the EM algorithm [111], a widely used

approach to learning in the presence of unobserved variables. In the EM algorithm, if some

variable is sometimes observable and sometimes not, then we can use the cases for which

it has been observed to learn to predict its values when it is not. However, in the RCR

algorithm we use the detected body parts and the geometrical relationships between the

detected parts and undetected parts to predict the parameters of undetected parts.

Steps 2 to 4 have been described in Chapters 2 and 3, respectively. Thus, the rest of the

chapter elaborates Steps 5 and 6, then gives some example runs of the RCR algorithm.
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4.3 Update the Shapes and Locations of the Body Parts

The goal here is to demonstrate that the identified human body parts and the human model

can be combined to refine the shapes and locations of the identified body parts and to

predict the shapes and locations of the missed body parts.

4.3.1 Update the Parameters of the Identified Parts

The first step is to integrate the identified body parts and the human model to refine the

locations of the identified body parts. This is performed using the weighted Least Squares

method (LSM) [113]. Similar schemes have been employed by Hel-Oret al. [85, 86]

to locate the articulated parts sequentially. This thesis extends the perfect object model

employed in [85] to a probabilistic model and extends the work to update the shapes and

sizes besides the positions of the body parts of an articulated object.

A body part is parameterized with a vector(a; l; x; y; �) as described in Chapter 2 to rep-

resent the aspect ratio, length, position, and orientation of the body part. The Least Squares

method provides a simple and efficient way to integrate the parameters estimated from the

labeled contour segments and from the corresponding model body parts. Assume that the

estimates for a parameterx arez1; z2; :::; zk, and the uncertainties with these estimates are

v1; v2; :::; vk, respectively. Thenzi = x+ v andZ = Hx+ V , whereZ = (z1; z2; :::; zk)
T ,

V = (v1; v2; :::; vk)
T , andH = (1; 1; :::; 1)Tk�1. The weighted least squares estimate ofx is

x̂ = [HT��1
v H]�1HT��1

v Z; (4.3)

where�v is the covariance of the random vectorV .

Take updating the location of the joint between the left arm and the torso as an example.

The joint is initially located at the middle pointP1 : (x̂1; ŷ1) of the cut between the arm

and the torso (see Fig. 4.1(a)). The second estimateP2 : (x̂2; ŷ2) (see Fig. 4.1(b)) is derived

from the locations of the head(x̂h; ŷh) and torso(x̂t; ŷt). Let the coordinates of the head

and the left arm in the model coordinate frame (the normalized torso coordinate frame)

be(�uh; �vh), (�ula; �vla), respectively. Assuming similarity transformation between the model
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(a) (b) (c) (d)

P1 

P2 

P3 P4 

Figure 4.1: Updating the location of the joint between the arm and the torso: (a) the initial

estimate based on body part identification, (b) the estimate based on the locations of the

torso and head, (c) the estimate based on the major axis of the arm, and (d) the weighted

least squares estimate integrating estimatesP1, P2, andP3.

and the image coordinate frames, then

(x̂2; ŷ2)
T = sR(�ula; �vla)

T + (x̂t; ŷt)
T ; (4.4)

wheres = k(x̂h; ŷh)� (x̂t; ŷt)k, R =
�

cos� sin�
�sin� cos�

�
, and� = arctan2(x̂h � x̂t; ŷh � ŷt).

The third estimateP3 : (x̂3; ŷ3) (see Fig. 4.1(c)) is derived from the major axis of the

left arm, the hand location(x̂hn; ŷhn) and the expected length of the arml̂a = l̂h�r, wherel̂h

is the length of the head, and�r is the expected ratio of the lengths of the arm and the head.

Assume that the orientation of the major axis of the left arm is�. Then

(x̂3; ŷ3) = (x̂hn; ŷhn)� l̂a(cos�; sin�): (4.5)

Then the least squares estimate of the joint location (see Fig. 4.1(d)) can be calculated

using Eq. (4.3). The aspect ratio and the length of the body part can be updated accordingly.

The remaining question is how to estimate the uncertainties associated with the mea-

surements from the identified body parts. This is a nontrivial task. For example, the

measurement of the location of a body part is contaminated by the errors with contour

detection, contour decomposition, partial occlusion, and clothing (thus, it is reasonable to

assume Gaussian noise, considering the numerous sources of noise). Among these fac-

tors, contour decomposition error is the main cause of the error in joint localization. If
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the boundaries between the body parts are not located accurately, then the joints cannot be

located correctly. On the other hand, the aspect ratio of a body part is a good indication

of the reliability of the joint location. Therefore, (1) when both ends of a cut are negative

curvature minima, the error with contour decomposition is small, and the uncertainty of the

joint location is assumed to be half of the contour extraction error; (2) when only one end

of the cut is a negative curvature minimum, the uncertainty along the major axis of the body

is assumed significantly larger than that along the minor axis, and the standard deviation

along the major axis is estimated asjl0 � lj, wherel0 = w=�a is the expected length. The

uncertainty along the minor axis is assumed to be the same as the contour extraction error.

As demonstrated in Figs. 4.2(c) and 4.3(a), the integrated estimation improves the ac-

curacy of the locations and shapes of the body parts.

4.3.2 Predict the Parameters of the Missed Parts

The second step is to predict the outlines of the unidentified body parts from the human

model and the identified body parts. This is done by estimating a body part’s parameter

vector(âj; l̂j; x̂j; ŷj). Assume that the aspect ratios of the body parts are independent of

each other, i.e.,̂ajjâi = âj, the MAP estimation ofaj is simply its mean valuêaj = �aj and

its variance is�âj = ��aj .

The length of a body part̂lj can be estimated from any of the identified body parts:

l̂jjl̂i = �sjil̂i, �l̂j jl̂i
� �s2ji�l̂i

+ l̂2i��sji , where�sji = �lj=�li. If more than one part have been

identified, then the MAP estimate ofl̂j is the weighted summation:

l̂j = �l̂j

X
i2I

1

�l̂j jl̂i

�sjil̂i (4.6)

�
l̂j

=
1P

i2I(1=�l̂j jl̂i
)

(4.7)

whereI is the set of index of the identified parts. For efficiency, the lengthl̂j is approxi-

mated using the length of the body part with the least uncertainty (the smallest variance).

The location of the main body partfj is estimated from the locations of the other main

body parts. If more than two main body parts have been identified, then the transformation
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(a) (c)(b)

(1)

(3)

(2) SM=0.82

SM=0.81

SM = 0.75

Figure 4.2: The first iteration: (a) contour partition (b) main body part identification indi-

cated by ooo (head) — (torso) +++ (arm) *** (leg) (c) the updated locations of the identified

body parts.

T that transforms the coordinates from the human model coordinate system to the image

coordinate system can be estimated by the Least Squares Method. LetX̂I = (p1; p2; :::; pi)

be the coordinates of the identified parts in the image coordinate system, and let�UI =

(q1; q2; :::; qi) be the coordinates of the identified parts in the model coordinate system,

wherepi = (x̂i; ŷi; 1)
T , qi = (�ui; �vi; 1)

T . Then

X̂I = T �UI (4.8)

T̂ = X̂I
�UT
I (

�UI
�UT
I )

�1 (4.9)

And the position of the unidentified body partfj is estimated as

(x̂j; ŷj; 1)
T = T̂ (�uj; �vj; 1)

T : (4.10)
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Let t = (tx; ty; �; s) � N(�t;�t) be the translation, rotation angle, and the scaling

involved in the transformationT . Assume thatX̂j = (x̂j; ŷj; 1)
T can be approximated by

a first-order Taylor series expansion about the mean oft, then the uncertainty witĥXj can

be approximated as

�X̂j
� Jt�tJ

T
t + T̂ �UjT̂

T (4.11)

where�Uj = (�uj; �vj; 1)
T , Jt is the Jacobian of the transformation evaluated at�t.

The location of a subpart in the image coordinate frame(x̂j; ŷj) can be inferred from

that of a partfi directly connected to it using Eq. (4.12) or from that of the extended body

partfk that covers it using Eq. (4.13). Here a scaled orthographic camera model is assumed.

(x̂j; ŷj) = (x̂i; ŷi) + l̂i(cos�̂i; sin�̂i) (4.12)

(x̂j; ŷj) = Rl0[(�uj; �vj)� (�uk; �vk)] + (x̂k; ŷk); (4.13)

whereR =
�

cos�k sin�k
�sin�k cos�k

�
andl0 = l̂k=�lk.

Figs. 4.2(c) and 4.3(a) show the locations of the subparts derived from the main and

extended body parts, respectively.

4.3.3 Contour Alignment

The orientations of the missed body parts cannot be predicted from the model and the iden-

tified parts, because the orientation relationships between the body parts are not encoded in

the human model. This is solved in the second iteration of the RCR algorithm by aligning

the predicted body part outlines with the detected edge features (as shown in Fig. 4.3). The

procedure of the alignment is as follows. For each model body partfi, run Steps 1 to 3:

Step 1: render the outline of body partfi based on its parameters estimated in Sections

4.3.1 and 4.3.2. If body partfi is not identified, then its orientation is initialized as the

orientation of the torso.

Step 2: align the rendered outline with the edge features such that

�̂i = argmax
�

N(B� \ E);
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(1)

(2)

(3)

(b)(a) (c)

SM=0.83

SM=0.94

SM=0.92

Figure 4.3: The second iteration: (a) the updated outlines of the body parts (b) the edge

images (c) the aligned body parts

whereB� is the rendered boundary offi at orientation�, E is the set of edge pixels, and

N(s) is the number of points in the point sets.

Step 3: if N(B�̂i
\ E) > threshold, then body partfi is detected, and the points in

B
�̂i
\ E are removed from the edge imageE. Otherwise, body partfi is not detected.

Because of cluttered backgrounds, the alignment may be distracted by other objects.

To avoid such situations, other cues such as stereo, motion, and the intensity pattern can be

used to constrain the search of the body parts to be within the region of similar attributes.

For example in Fig. 4.3(1), the search for the arms is constrained to be within a region

having similar disparity as the torso region.
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4.4 Example Runs of the RCR Algorithm

( a ) ( b )

( c ) ( d )

head 

torso 
arm 

Figure 4.4: Human detection and body part localization: (a) initially detected contour (b)

identified body parts (c) updated/predicted outlines of the body parts (d) aligned body parts

This section presents some example runs of the RCR algorithm. Fig. 4.4(a) shows an

indoor scene with a cluttered background. The initial contour in Fig. 4.4(a) was extracted

from stereo segmentation [123] and the ICP [84] algorithm. However, the outlines of the

arms are not complete, and the legs are missed due to partial occlusion and the similar

intensities between the clothes and the background. From this incomplete contour, three

body parts are identified as indicated in Fig. 4.4(b), and the similarity between the extracted

contour and the human model is 0.75 based on the Bayesian Similarity measure defined

in Eq. (3.5). The updated/predicted outlines of the body parts are shown in Fig. 4.4(c).

The orientations of the missed parts are set to be the same as that of the torso; their actual

orientations are obtained by aligning the predicted contours with the edge features as shown

in Fig. 4.4(d). In the second iteration, the estimated similarity between the set of extracted

contours and the human model is 0.83. Because more body parts are detected from the
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image, the Bayesian similarity measure can be estimated more accurately as demonstrated

by other examples given in Figs. 4.2 and 4.3.

Figure 4.5: Stereo-based segmentation (a) the left image from the stereo cameras (b) the

disparity map (c) the segmentation result

(a) (b) (c)

(1)

(2)

(3)

SM=0.67

SM=0.60

SM=0.33

Figure 4.6: The first iteration of the RCR algorithm

Fig. 4.5(a) shows a street scene. In the first iteration, the initial outlines of the fore-

ground objects were extracted from the cluttered background based on depth segmentation

[123] (see Fig.4.5(c)). The contours of the objects are not complete and some body parts

are missed due to partial occlusion or due to being out of the field of view of the camera.
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(a) (b) (c) (d)

(1)

(2)

SM=0.87

SM=0.76

Figure 4.7: The second iteration of the RCR algorithm

From the incomplete contours, the human body parts are identified as shown in Fig. 4.6(c).

According to the decision rule given in (3.19) (here�1 = 0:4, �2 = 0:6), the car is cor-

rectly identified as not a person, because the degree of similarity between it and the human

model is 0.33 which is less than the lower threshold 0.4. No decision can be made on the

two people in the scene in the first iteration because the degrees of similarity between their

outlines and the human model (0.60 and 0.67, respectively) fall in the uncertainty interval

[0:4; 0:6]. However, in the second iteration, the two people are correctly identified as hu-

mans as more body parts are found in the image and the degrees of similarity between them

and the human model increase to 0.87 and 0.76, respectively. Usually, only two iterations

are enough to achieve the correct decision.

The above examples demonstrate that despite the poor performance of the contour de-

tector, people in an image can still be detected by exploiting the relationships between the

body parts, and the RCR algorithm helps to locate the missed parts. More experimental

results will be given in Chapter 5.



Chapter 5

Applications

5.1 Application I: Pedestrian Detection

Pedestrian detection is essential to avoid dangerous traffic situations; a driver assistance

system can warn the driver of potential collision with nearby objects — especially pedes-

trians. However, detecting pedestrians from the cameras mounted on a moving vehicle is

a challenging task because (1) the observer is moving or the background is changing, (2)

when a pedestrian is close to the camera, some of his/her body parts will be out of the field

of view, and (3) there is no control over what pedestrians wear. The following subsection

presents related work. Subsection 5.5.2 describes the pedestrian detection system based on

the RCR algorithm; the experimental results are given in subsection 5.5.3.

5.1.1 Related Work

Most human tracking and motion analysis systems [58, 59] employ a simple segmentation

procedure such as background subtraction or temporal differencing to detect pedestrians. A

serious problem with these approaches is the dynamic background caused by illumination

changes or background (or camera) motion. Some techniques such as Pfinder [60],W 4

[80], and path clustering [62], have been developed to compensate for small, or gradual

changes in the scene or the lighting. However, they cannot deal with large, sudden changes

67
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in the background. Although optical flow can be used to detect independently moving

targets in the presence of camera motion, it is not feasible for non-rigid object extraction

since the movements of the body parts are each different. Above all, a common drawback

with the above approaches is the assumption that all detected objects are pedestrians; this

limits the generalization and application of these schemes.

More sophisticated pedestrian detection systems include a recognition step to discrim-

inate humans from other objects. These techniques can be classified into motion-based,

shape-based, and multi-cue-based methods. Most motion-based approaches [64, 72, 73, 74]

use cyclic features or motion patterns unique to human beings for human detection. How-

ever, there are several limitations with these schemes. First, the human’s feet or legs should

be visible in order to extract cyclic features. Second, the recognition procedure requires a

sequence of images, which delays the identification until several frames later and increases

the processing time. Third, the procedure cannot detect stationary humans and humans per-

forming unconstrained and complex movement such as wandering around, turning, jump-

ing, etc.

On the other hand, the shape-based approach relies on shape features to recognize hu-

mans. Thus, this approach can detect both moving and stationary people. The primary

difficulty in this approach is accommodating the wide range of variations in human appear-

ance due to pose, non-rigid motion, lighting, clothing, occlusion, etc. Hogg [58] and Rohr

[59] used hand-crafted human models to detect humans. An advantage of these methods is

that they can analyze the motion of each body part; the disadvantage is that the models only

encode the shape of the human body and cannot be used to analyze people wearing loose

clothes. Lipton [71] depends on a dispersedness defined as the ratioperimeter2=area to

classify human and vehicle. This classification metric is easy to calculate, but fails to dis-

tinguish humans from other objects with similar dispersedness and tends to misclassify hu-

mans walking together as a vehicle. Papageorgious and Poggio [37] present a more robust

human detection system based on wavelet analysis and the support vector machine (SVM)

technique. However, the system has to search the whole image at multi-scales for humans.
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This would be an extremely computationally expensive procedure, and it may cause multi-

ple responses from a single human. More recently, Gavrila and Philomin [69] developed a

real-time human detection algorithm based on Distance Transforms. The method includes

an offline generation of the template hierarchy, and an online coarse-to-fine matching be-

tween the templates and the image. The algorithm is further sped up by hardware-specific

means (i.e. SIMD instructions). Although the template hierarchy can capture the variety of

object shapes, it can not handle large shape variations and partial occlusion appropriately

when pedestrians are very close to the camera.

To increase reliability, some systems [63, 78] integrate multiple cues such as stereo,

color, face, and shape to detect humans. However, skin color is very sensitive to illumina-

tion changes [63]; face detection can only identify people facing the camera. Felzenszwalb

and Huttenlocher’s method [87] can only detect people of fixed size and wearing special

colored clothes, while Forsythet al.’s approach [25, 26] combines skin color and a part-

based method to detect naked people. These systems prove that stereo and shape are more

reliable and helpful cues than color and face detection in general situations.

5.1.2 Pedestrian Detection System

The pedestrian detection system developed in this thesis includes two steps: first, separate

foreground objects from the background; second, distinguish pedestrians from other ob-

jects in order to protect pedestrians in danger. The first task is a segmentation procedure.

In much of this thesis, stereo-based depth segmentation is used to extract foreground ob-

jects. Using stereo to guide pedestrian detection carries with it some distinct advantages

over conventional techniques. First, it allows explicit occlusion analysis and is robust to

illumination changes. Second, the real size of an object derived from the disparity map pro-

vides a more accurate classification metric than the image size of the object. Third, using

stereo cameras can detect both stationary and moving objects. Fourth, depth information

helps to reduce the foreshortening problem facing 2D modeling of 3D articulated objects.

Fifth, computation time is significantly reduced by performing recognition where objects
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are detected; it is less likely to detect the background area as a pedestrian since detection is

biased toward areas where objects are detected. The algorithm proceeds in several stages

of processing as explained below. In a collision warning system, we are only concerned

about the objects within a close distance from our vehicle. Thus, the objects that are far

away from the vehicle are first eliminated from the disparity image by range thresholding.

Then a morphological closing operator is employed to remove the noise and to smooth

the foreground regions. Then, a connected-component grouping operator is applied to find

the foreground regions with smoothly varying range. Finally, small regions are eliminated

through size thresholding. The size range of an average person is obtained from the statis-

tical data given in [116]. Fig. 5.3 presents the segmentation results of some street scenes.

The results demonstrate that the overlapping objects can be successfully separated if they

are at different distances from the cameras.

The second task is a recognition procedure which is achieved through the recursive

context reasoning algorithm proposed in this thesis. A sample run of the RCR algorithm is

given in Figs. 4.5-4.7. The decision if an object is a person or not is based on the decision

rule described in (3.19). The thresholds�1; �2 determine the trade off between the rate of

pedestrian detection and the rate of false alarm; they are selected by evaluating thereceiver

operating characteristics(ROC) curve illustrated in Fig. 5.1 generated by testing the RCR

algorithm on 20 sequences (100 frames/sequences) of urban street scenes. By setting the

thresholds�1 = 0:4; �2 = 0:6 in the decision rule, the system achieves a pedestrian detec-

tion rate of 86.3% and a false alarm rate of 2.1% ( the false alarm rate is estimated as the

ratio between the false positives and the number of non-human object segmented from an

image).

5.1.3 Experimental Results

The system has been implemented on a Pentium III 500 Mhz system under Microsoft Win-

dows 98. It has been tested on the videos of urban areas obtained from a stereo system

mounted on the top of a minivan. The stereo system which is developed by the Point Grey
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Figure 5.1: The ROC curve for threshold selection

Research Inc. consists of three cameras as shown in Fig. 5.2. The processing speed of the

stereo system is 9 frames/second at 320x240 image resolution and 48 disparity range.

Figure 5.2: The Digiclops stereo system

The pedestrian detection system can detect and classify objects at a frame rate ranging

from 1 frames/second to 6 frames/second, depending on the number of objects presented

in the field of view of the cameras.

Fig. 5.3 illustrates some sample results of detecting pedestrians in urban areas. The
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Figure 5.3: Sample results of pedestrian detection ( the unidentified objects are circled by

dotted lines)

results demonstrate that the developed pedestrian detection system can detect pedestrians

in different sizes, clothing, and occlusion status. The reason of the uncertainty with an
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object’s identification is that the object (such as a tree) resembles a human at a coarse level

but not at a fine level. The main reasons for the failure of detecting a pedestrian are that (1)

the pedestrian is not segmented from the background correctly because his/her clothes lack

texture or have the similar color as the background, (2) the pedestrians walk in a group, or

(3) the vehicle moves fast and the images are blurred. The false alarms are mainly due to

the human-like shape faked from the cluttered scene.

Table 5.1: Comparing the performance of the CMU systems and MIT systems.

Detection False Frame

rate alarms rate

RCR 86.3 % 7 1-6f/s

(PC 500MHz)

ANN 85.4% 18 3-8f/s

(PC 500MHz)

MIT I 50% 100 10f/s (SUN)

MIT II 81.6% 14 1f/h (SGI)

It is worthwhile to compare this RCR-based pedestrian detection system with the pre-

vious work on Neural network-based pedestrian detection [123] and MIT’s wavelet-based

system [37]. To allow a fair comparison, let all methods work on the same set of test im-

ages. The test set includes 617 people candidates generated from 100 images through the

range segmentation procedure. Among these candidates, there are 254 pedestrians and 363

non-pedestrians. Table 5.1 presents the results of comparing the performance of the above

pedestrian detection systems. MIT I is a fast version which only uses intensity information,

while MIT II employs color information for pedestrian detection. The results demonstrate

that the RCR algorithm achieves the similar human detection rate and the lowest false

alarm rate. This is because the RCR algorithm employs the context information to perform

and improve both contour extraction and human detection iteratively. Thus, our pedestrian



74

detection system is faster and more accurate than MIT’s system. The advantage of the NN-

based and wavelet-based methods is that no contours are required to extract from the image

first. The disadvantage of the NN-based method is that it may generate many false alarms

because the separation space is not closure [118]. For example, a parking meter can often

be identified as a pedestrian using NN-based method, but it is labeled as non-pedestrian

correctly as shown in Fig. 5.3 using the RCR algorithm. The disadvantage of the wavelet-

based method is that it has to search for pedestrians in different scales in the whole image,

so it is very slow. Another limitation with these two approaches is that they are global

shape based and cannot deal with partial occlusion very well. However, for the application

of pedestrian detection, it is more important to detect the pedestrians near the vehicle to

avoid potential accident; when a pedestrian is close to the camera, some of his/her body

parts tend to be out of the field of view of the camera.
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5.2 Application II: Human Motion Capture

Human motion capture plays an important role in a wide spectrum of applications such as

visual surveillance, performance measurement for atheletes and patients with disabilities,

human-computer interfaces, figure animation, and video conference (see Aggarwalet al

[57] for a general review). Many human motion capture devices need to employ special

markers or magnetic sensor attachements around the joints of a subject. Thus, they impose

physical restrictions on the subject. Vision-based body part localization is a way to enable

mark-free human motion capture. However, locating the body parts especially the joints in

an image is a difficult problem, because the joints are hidden by muscle, skin, and clothing.

Many semi-automatic body part tracking systems [65, 88, 89] and 3D pose recovery sys-

tems [91, 83] require a user to locate the body parts/joints manually in the image, which is

a time consuming and tedious task for the user. The RCR algorithm proposed in this thesis

can be used as the automatic initialization of these systems. The following sections first

discuss the related work, then present the experimental results of human motion capture.

5.2.1 Related Work

The earliest computer vision attempt to recognize human movements was reported by

O’Rourke and Badler [19] working on synthetic images using a 3D structure of rigid seg-

ments, joints, and constraints between them. Previous approaches to automatic body part

localization in real images can be classified into two categories. One is labeling or feature-

to-feature matching [25, 60, 78, 79, 81, 90]. A set of body part candidates is first extracted

from the image, then the candidates are matched against the modeled body parts. The

advantage with this approach is that the search space is discrete and small, and the com-

parison is at the feature level. The main challenge faced by this approach is that not all

body part candidates can be detected reliably and located accurately. The problem is how

to perform matching in the absence of some body parts and/or presence of extra parts (such

as the attached objects or clothes). Some systems [25, 60] employ skin color and shape
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configuration to extract body parts not covered by the clothes or other objects; some sys-

tems employ certain heuristic methods, such as the special order along the silhouette [78], a

motionless support part [79], or hierarchical order [17, 24] to locate the body parts sequen-

tially; some require an initial calibration [81, 60]. More recently Rosales and Sclaroff [90]

employ a learned mapping function to do matching. However, these approaches are very

sensitive to occlusion and shape deformation caused by clothes or segmentation errors, and

they just provide coarse locations of the body parts.

Another approach is the alignment method [86, 87] or the feature-to-image matching.

The matching is conducted by projecting the body part features into the image and com-

paring directly. The goal is to find the best pose that aligns the mapped body parts with the

image. The advantage of this approach is that no figure/background segmentation and fea-

ture extraction are required. One of the disadvantages is that the search space is continuous

and large, and the comparison is at the pixel intensity level. Both Cham and Rehg[86] and

Felzenszwalb and Huttenlocher [87] have proposed efficient algorithms to perform align-

ment, but they need different color/template models for different people.

In contrast, the RCR algorithm proposed in this thesis is a combination of the labeling

and alignment methods. The algorithm achieves both efficient and accurate body part local-

ization by making use of the advantages of the above two approaches and overcoming their

disadvantages. The combined approach has been used in [109] for 2D-2D feature matching

and 2D-3D matching in [85]. The common feature is that the uncertainty information has

been used for feature matching and for determining transformation uncertainty with which

to predict the positions of adjacent features. The main differences of the RCR algorithm

from other related work are: (1) the match is performed at object parts level instead of

features (such as lines, arcs) level. The number of object parts is significantly smaller than

that of low-level features; this enables a more efficient matching procedure. Parts are a

more natural and stable representation of articulated objects than other features; this rep-

resentation has found strong support from human vision [51]. (2) previous work uses a

single model to perform matching while in the RCR algorithm, the model is dynamically
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assembled from the model parts according to the match hypothesis. (3) previous work usu-

ally assumes independent feature matching and conducts search in a depth-first manner. In

contrast, in the RCR algorithm, the search of the matching of the same level body parts is

conducted in a breadth-first manner to guarantee global optimal match and to avoid back-

tracking. (4) The propagation of position prediction is not only from connected parts but

also from the extended body parts. This enables more robust joint localization against con-

tour extraction and decomposition errors. The matching is conducted in a coarse-to-fine

manner to further facilitate fast body part localization.

5.2.2 Experimental Results

The body parts of a person are located in a coarse-to-fine manner using the RCR algorithm.

First, the person is segmented from the background (shown in Fig. 5.4(b)). This is done

through background subtraction [71]. Second, the segmented region is decomposed into

ribbons and these ribbons are matched with the modeled body parts including the extended

parts (shown in Fig. 5.4(c)). The joints are initially located in the middle of a cut segment.

Third, the locations of the joints are adjusted to achieve consistency with the modeled

spatial and size relationships between the body parts. The locations and the sizes of the

missed body parts are inferred from the extended body parts and the detected body parts

(shown in Fig. 5.4(d)). Fourth, the predicted outlines of the body parts are aligned with the

edge features in Fig. 5.4(e). The final results are shown in Fig. 5.4(f). Fig. 5.4 presents

some examples of locating the body parts of a person walking in a parking lot. Because the

human model proposed in this thesis is two dimensional, it cannot be used to distinguish

front-view from the side-view very well as shown in Section 5.5. In this experiment, the

view point is assumed to be the side-view. When the arms are overlapped with the torso, it

is very hard to locate them, and they may be aligned with the outline of the torso by mistake.

Another problem is that the left and right limbs tend to be confused in a side-view. Motion

information obtained from previous frames can be used to predict the orientations of the

limbs and to solve the ambiguity. Fig. 5.6 presents a full cycle of a walking person. In
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Figure 5.4: Body part localization: (a) images (b) foreground object detected from back-

ground subtraction (c) identified body parts (d) updated/predicted locations and outlines of

the body parts (e) edge images (f) aligned body parts.

the first half cycle, no motion information is used to resolve the ambiguity with limbs’

orientations, while in the second half of the cycle, the prediction from previous frames

(constant angular velocity is assumed) is used to get better results of body part localization.

Fig. 5.5 illustrates how the left knee angle changes with time. The motion information is

not used from frames 1 to 30, but is from frames 31 to 190. Therefore, the left and right legs

are switched sometimes during the first part. From frames 31 to 190, an obvious pattern of

walking cycle can be observed.

To demonstrate that the RCR algorithm can also be used to analyze other motions be-

sides walking, it is tested on the images of figure skating. This is a challenge task, be-
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Figure 5.5: The change of angle at the knee with time

cause skaters may perform very complicate actions, wear loose clothes, and appear to-

gether (pairs). In the experiments, the silhouettes of skaters are first segmented from the

background through intensity thresholding. Then the ribbons are extracted from the silhou-

ette using a fine-to-coarse shape decomposition method described in Chapter 2. Then the

body parts are identified based on the Bayesian similarity measure illustrated in Chapter

3; the locations of the joints are updated using the RCR algorithm described in Chapter

4. The results shown in Fig. 5.7 demonstrate that even if the skaters are in various pos-

tures and wear skirts flying in the air, the covered body parts can still be located accurately

using the dynamically assembled human model, the Bayesian similarity measure, and the

coarse-to-fine localization approach. The algorithm can also distinguish a pair of skaters

skating together as shown in Fig. 5.7. To illustrate the accuracy of the joint locations, the

3D pose of the skaters are recovered with the approach proposed by Taylor [91]. Because

only the 2D model and 2D image are used to perform joint localization, some joints cannot

be located correctly. The next chapter will discuss the future work directions to overcome

these limitations.
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Figure 5.6: Markless human motion capture
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Figure 5.7: Joint localization of figure skaters
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Chapter 6

Conclusion

This thesis has addressed several computer vision problems: how to represent a class of

deformable shapes, how to match a contour with a model and evaluate their similarity, and

how to improve contour extraction and object detection by combining bottom-up and top-

down procedures. Section 6.1 summarizes the contributions of this thesis in response to

those questions. Section 6.2 discusses the limitations with this work and suggests future

directions to improve and generalize this work.

6.1 Contributions

This thesis presents an integrated human shape modeling, detection, and body part local-

ization vision system. It demonstrates that the system can (1) detect pedestrians in various

shapes, sizes, postures, partial occlusion, and clothing from a moving vehicle using stereo

cameras; (2) locate the visible joints automatically and accurately without employing any

markers around the joints of a subject.

The following contributions distinguish this thesis from previous work:

1. Dressed human modeling and dynamic model assembling: Unlike previous work that

employs a fixed human body model or global deformable template to perform human

detection, in this thesis merged body parts are introduced to represent the deforma-

83
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tions caused by clothing, segmentation errors, or low image resolution. A dressed

human model is dynamically assembled from the model parts in the recognition step;

the shapes of the body parts and the size and spatial relationships between them (the

contextual information) are represented as invariant under translation, rotation, and

scaling. Therefore, the system can detect people in different clothes, positions, sizes,

and orientations.

2. Bayesian similarity measure: A probabilistic similarity measure is derived from the

human model that combines the local shape and global relationship constraints into

a single equation to guide body part identification and human detection. Thus, the

identification of a part does not only depend on its own shape but also the contextual

constraints from other parts. In contrast with previous work, the Bayesian similar-

ity measure enables efficient shape matching and comparison robust to articulation,

partial occlusion, and segmentation errors through coarse-to-fine human model as-

sembling.

3. Recursive context reasoning algorithm: Contour-based human detection depends on

reliable contour extraction, but contour extraction is an under-constrained problem

without the knowledge about the objects to be detected. Unlike previous work that

assumes perfect and complete contours are available, this thesis proposes a recursive

context reasoning (RCR) algorithm to solve the above dilemma. A contour updat-

ing procedure is introduced to integrate the human model and the identified body

parts to predict the shapes and locations of the parts missed by the contour detec-

tor; the refined contours are used to reevaluate the Bayesian similarity measure and

to determine if a person is present or not. Therefore, contour extraction, body part

localization, and human detection are improved iteratively.

While there are many areas to which human detection and body part localization can be

applied, the chosen domain for this thesis is vehicle safety. Despite the specific nature of

the chosen application area, the underlying ideas and technologies presented in this thesis
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are readily applicable to other tasks and to detecting other objects. First, the TRS-invariant

probabilistic representation can be used to model other object categories as well. Second,

the Bayesian similarity measure can be used to classify other objects and to perform shape

retrieval. Third, the RCR algorithm is useful for vision tasks such as object tracking as well

by incorporating motion information into the model.

6.2 Limitations and Future Work

The experimental results demonstrate the effectiveness of the proposed techniques, but also

reveal their limitations.

First, the shapes of body parts are represented with their aspect ratios. This representa-

tion reduces the number of parameters used in the model, but it is too general to distinguish

body parts of different objects. Although size and spatial relationships between body parts

help to identify body parts, it is difficult to distinguish two animals with similar spatial

arrangement and size proportions. Therefore, a more accurate representation of the shape

of a body part such as a deformable template is required when there is ambiguity with a

coarse-level representation.

Second, the current human model does not incorporate the orientation relationships

among body parts. As a result, the identification of a limb being at the left or the right

side of the body may be wrong due to the absence of posture constraints. In the future,

the posture constraints will be incorporated into the human model and into the Bayesian

similarity measure to correct this kind of errors.

Third, the human model has only two dimensions, so it has difficulty to analyze view-

point changes and foreshortening. The future work may extend the human model to three

dimensional and incorporate the three dimensional data to handle the above difficulties.

Because shape matching is at the parts-level instead of the point-level, 3D shape recon-

struction and object recognition would be more robust and efficient.

Fourth, the body part identification procedure does not handle the situation when mul-
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tiple ribbons correspond to the same body part. As a result, those ribbons will be identified

as outliers. Although the RCR algorithm can correct some of these errors, a more reliable

solution would be to allow the union of multiple ribbons to be matched with a single body

part, or to incorporate a grouping operator to group those ribbons into a single body part.

Fifth, only the contour cue is used for body part localization and human detection.

However, there is inherent ambiguity with some contours such as the one illustrated in Fig.

6.1. The contour looks like a left-facing duck as well as a right-facing rabbit. Therefore,

it is necessary to keep multiple hypotheses instead of just the best one to overcome the

ambiguous and noisy data. The future work may combine other cues such as motion and

color to resolve the inherent uncertainty with contour and contour detection errors. The

combination of the color and spatial information has been successfully used to segment

people in a group [76].

Figure 6.1: Duck-Rabbit example of the uncertainty with contour

Sixth, the RCR algorithm requires an initial contour extraction which is not available

in some cases such as photo analysis. One way to overcome this limitation is to use a face

detection system to locate the faces of people in the image, then use the approach proposed

in this thesis to check the presence of the remaining body parts to verify if the detected face

is a human’s face.

Seventh, current pedestrian detection system is slow (1-6 frame/second) because it re-

lies on a stereo vision system (9 frames/second) to perform initial contour extraction. One

way to improve the speed of the system is to use face detection first as mentioned in the

previous paragraph. Another way is to use the thermal Infrared image instead to perform
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initial contour extraction.

It is an open question whether there is a uniform approach to general object detection or

not. Previous efforts toward general object recognition and detection do not work very well

at the category/functional level. For example at the category/functional level, the represen-

tations/models of trees, clouds, rivers are significantly different from that of chairs [47].

Therefore, it is more effective to develop different methods to analyze different classes of

objects.

The techniques developed in this thesis are useful for objects for which the decompo-

sition into natural parts is well-defined such as animals. Figs. 3.8 and 3.9 demonstrate

that the designed Bayesian similarity measure can be used to distinguish different animals.

Thus, this work has potential to be applied to detect other articulated objects by building

a corresponding object model and using the appropriate feature detectors. For example, in

order to detect horses in an image, a horse model similar as the human model can be built

to encode the shapes of horse body parts and their geometrical relationships; a Bayesian

similarity measure based on the horse model can be designed to identify the body parts of

the horse and to determine if the assembly of the parts corresponds to a horse. Furthermore,

the RCR algorithm can be used to improve horse detection iteratively.

The work can be extended to include a relational database of object models. Then

context reasoning can be performed both within an object and among objects. For example,

if a school bus is detected, then it is highly possible to see children around. The work

can also be extended to object tracking by incorporating dynamic object models into the

system [124]. The above extensions and improvements will lead us to a more reliable object

detection and tracking system.



88



Appendix: Parameters of the Human

Model

The parameters of the human body model are estimated based on a large quantity of data

accumulated over more than 40 years by Henry Dreyfurs, Associates and published by

Tilley [116]. Tilley provides both the body measurements of people at different ages and

the clothing corrections. According to NASA [117], human variability falls into three

categories:

1. Intra-individual: size change during adult life;

2. Inter-individual: there are big difference due to sex and ethnic and racial member-

ship;

3. Secular variability: changes occur from generation to generation for various reasons.

Since the pace of these changes is relatively slow, they have a limited effect on the

human body model.

The parameters of the dressed human model are learned from the 500 training data collected

from many web-sites and catalogs (Fig. 6.2 shows some examples). The following tables

list the parameters used in this thesis (Symbols used in the tables: ts: torso, hd: head, am:

arm, lg: leg, hn: hand, ft: foot, ut: upper trunk, lt: lower trunk, bd: body, la: left arm, ll:

left leg, rl: right leg, ra: right arm).
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Figure 6.2: Examples of the training data for human model learning

Table 6.1: The means and the standard deviations of the aspect ratios

ts hd am lg hn ft ut lt bd

front �a .61 .78 .25 .25 .70 .42 .92 .43 .30

view �a .10 .09 .12 .08 .20 .13 .08 .10 .08

side �a .45 .78 .25 .25 .70 .42 .73 .22 .26

view �a .11 .09 .12 .08 .20 .13 .09 .11 .09
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Table 6.2: The means of the length ratios

ts hd la ll rl ra ut lt bd

ts 1.0 .52 .95 1.47 1.47 .95 1.0 1.47 3.0

hd 1.92 1.0 1.83 2.84 2.84 1.83 1.92 2.84 5.76

la 1.05 .55 1.0 1.55 1.55 1.0 1.05 1.55 3.16

ll .68 .36 .66 1.0 1.0 .66 .68 1.0 2.04

rl .68 .36 .66 1.0 1.0 .66 .68 1.0 2.04

ra 1.05 .55 1.0 1.55 1.55 1.0 1.05 1.55 3.16

ut 1.0 .52 .95 1.47 1.47 .95 1.0 1.47 3.0

lt .68 .36 .66 1.0 1.0 .66 .68 1.0 2.04

bd .33 .18 .32 .49 .49 .32 .33 .49 1.0

Table 6.3: The standard deviations of the length ratios

ts hd la ll rl ra ut lt bd

ts 0 .05 .05 .09 .09 .05 .01 .09 .08

hd .18 0 .21 .36 .36 .21 .18 .36 .53

la .05 .07 0 .04 .04 .01 .05 .04 .10

ll .04 .06 .02 0 .01 .02 .04 .01 .10

rl .04 .06 .02 .01 0 .02 .04 .01 .10

ra .05 .07 .01 .04 .04 0 .05 .04 .10

ut .01 .05 .05 .09 .09 .05 0 .09 .08

lt .04 .06 .02 .01 .01 .02 .04 0 .10

bd .01 .02 .01 .02 .02 .01 .01 .02 0
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Table 6.4: The means of the coordinates of the body parts in the normalized torso coordi-

nate system

ts hd la ll rl ra ut lt

front �x 0 0 -.31 -.163 .163 .31 0 0

view �y 0 .5 .353 -.472 -.472 .353 0 -.5

side �x 0 0 0 0 0 0 0 0

view �y 0 .5 .353 -.472 -.472 .353 0 -.5

Table 6.5: The covariance of the coordinates of the body parts in the normalized torso

coordinate system (front view)

�10�2

xhd 0.34 0.11 0.08 0.03 0.04 0.13 -0.06 0.15 -0.09 0.04

yhd 0.11 0.92 0.09 0.56 0.13 0.91 -0.15 0.92 -0.10 0.55

xla 0.08 0.09 0.30 0.07 0.16 0.19 -0.17 0.14 -0.33 0.06

yla 0.03 0.56 0.07 0.95 0.05 1.13 -0.03 1.01 -0.07 0.91

xll 0.04 0.13 0.16 0.05 0.39 0.23 -0.35 0.27 -0.16 0.05

yll 0.13 0.91 0.19 1.13 0.23 1.82 -0.27 1.89 -0.19 1.13

xrl -0.06 -0.15 -0.17 -0.03 -0.35 -0.27 0.41 -0.32 0.17 -0.06

yrl 0.15 0.92 0.14 1.01 0.27 1.89 -0.32 1.27 -0.20 1.23

xra -0.09 -0.10 -0.33 -0.07 -0.16 -0.19 0.17 -0.20 0.35 -0.08

yra 0.04 0.55 0.06 0.91 0.05 1.13 -0.06 1.23 -0.08 0.90
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Table 6.6: The covariance of the coordinates of the body parts in the normalized torso

coordinate system (side view)

�10�2

xhd 0.18 0.10 0.06 0.02 0.02 0.09 -0.08 0.13 -0.07 0.02

yhd 0.10 0.85 0.07 0.45 0.11 0.87 -0.13 0.88 -0.19 0.50

xla 0.06 0.07 0.13 0.08 0.14 0.15 -0.11 0.17 -0.25 0.07

yla 0.02 0.45 0.08 0.91 0.06 1.11 -0.04 1.06 -0.04 0.83

xll 0.02 0.11 0.14 0.06 0.20 0.13 -0.30 0.25 -0.13 0.06

yll 0.09 0.87 0.15 1.11 0.13 1.67 -0.25 1.71 -0.12 1.02

xrl -0.08 -0.13 -0.11 -0.04 -0.30 -0.25 0.22 -0.21 0.15 -0.05

yrl 0.13 0.88 0.17 1.06 0.25 1.71 -0.21 1.18 -0.21 1.14

xra -0.07 -0.19 -0.25 -0.04 -0.13 -0.12 0.15 -0.21 0.16 -0.07

yra 0.02 0.50 0.07 0.83 0.06 1.02 -0.05 1.14 -0.07 0.92
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