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Identifying Motifs

Every gene contains a regulatory region (RR) 
typically stretching 100-1000 bp upstream of the 
transcriptional start site

Genes are turned on or off by regulatory proteins

• These proteins bind to upstream regulatory 
regions of genes to either attract or block an 
RNA polymerase

• Regulatory protein  transcription factor (TF) 
binds to a short DNA sequence called a motif or 
(TFBS: transcription factor binding site)

• So finding the same motif in multiple genes‟ 
regulatory regions suggests a regulatory 
relationship amongst those genes



Identifying Motifs: Complications

• We do not know the motif sequence

• We do not know where it is located relative 
to the genes start 

• Motifs can differ slightly from one gene to 
the next

• How to discern it from “random” motifs?



Transcription Factor Binding Sites 

(TFBS)

• A TFBS can be located anywhere within 

the Regulatory Region.

• TFBS may vary slightly across different 

regulatory regions since non-essential 

bases could mutate



Transcription for E.Coli

The transcription process in reality even for a simple E.Coli is much more 

complex than what we have described. The process is divided into three 

phases: initiation, elongation and termination.

Initiation: The RNA polymerase initiates the operation and it must 

transcribe not any arbitrary part of DNA but only the gene. For this the 

polymerase first „bind‟ to a location upstream of the gene. This site is 

called a promoter sequence. The promoter is a short DNA sequence 

which can be bind to the polymerase. In E.Coli, the promoter sequence 

consists of two distinct sequences at a distance -10 and -35 upstream 

from the position at which transcription starts. The actual sequences may 

vary from gene to gene but they are related to the following two 

consensus  sequences  both located in the non-template strand:

-35 box  5’-TTGACA-3’

-10 box  5’-TATAAT-3’
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Steps of RNA Transcription

The sigma subunit within the polymerase recognizes the promoter sequence  

and a closed promoter complex is formed. The enzyme covers about 60 

bp of the double helix. In the next phase, the  double helix starts „melting‟ at -

10 box unwinding the DNA into single strands in the region under the core 

enzyme. The -10 box consistsof entirely AT pairs which have only two 

hydrogen bonds for each bp. This makes it makes it easier to melting to take 

place compared to the situation with CG base pairs which have 3 hydrogen 

bonds. This configuration is called open promoter complex, the sigma 

subunit  ejects out of the holoenzyme converting it to a core enzyme. At the 

same time, the first two ribonucleotides are sealed in the template strand at 

positions +1 and +2 with a phosphodiester bond. 

In the next elongation step, the polymerase moves downstream with 

relative ease, unzipping the DNA molecule and attaching new 

ribonucleotides to the 3‟ end of the growing RNA. At the same time, the DNA 

behind it rebounds back to its double helix structure. The open promoter is



like a bubble that propagate to 3‟ direction always maintaining its size 

between 12 to 17 DNA. Also, the rate of propagation is not constant, it may 

slow down, pause, reaccelerate or even go backwards destroying the 

ribonucleotides. The RNA itself is synthesized in the 5‟-3‟ direction. The 

length of the actual transcript is longer than the length of the gene because 

the +1 position is about 20 to 600 nucleotide upstream from the beginning of 

the gene. This part of the RNA transcript is called a leader segment. 

Similarly, the transcription extends beyond the gene creating a similar trailer 

segment. 

The termination of RNA transcription is signalled by the presence of a 

complementary palindrome. ( A palindrome reads the same sequence in 

both forward and backward direction viz  ATAGCGATA )



Transcription in Eukaroytes

The transcription in Eukaryotes is similar to that in E.Coli but is much

more complex. The RNA polymerase has an attachment site rather

than a promoter sequence plus other promoter sequences distributed 

over several hundred base pairs all upstream from the genes. These 

promoters regulate the gene expression by turning on or off the

transcription process. Understanding these regulatory processes is 

by itself a whole new research field. 

The attachment site is referred to as -25 TATA box (5‟-TATAAAT-3‟) 

and the RNA polymerase called  RNA Polymerase II. The attachment 

is helped by a set of proteins called transcription factors (TF II A, 

TF II B , D, E and F)  which ultimately makes the transcription 

complex ready to start the synthesis process of RNA. The next slide 

gives a schematic representation.

The exact details of the termination of the transcription process is not 

very well understood. The termination trail seem to be longer ( about

1000 to 2000 bp  downstream the gene. The exact termination point 

is still a matter of research.
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Motifs and Transcriptional Start Sites

geneATCCCG

geneTTCCGG

geneATCCCG

geneATGCCG

geneATGCCC



Motif Logo

• Motifs can mutate on 

non important bases 

• The five motifs in five 

different genes have 

mutations in position 3 

and 5

• Representations called 

motif logos illustrate the 

conserved and variable 

regions of a motif

TGGGGGA

TGAGAGA

TGGGGGA

TGAGAGA

TGAGGGA



Random Sample
atgaccgggatactgataccgtatttggcctaggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatactgggcataaggtaca

tgagtatccctgggatgacttttgggaacactatagtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgaccttgtaagtgttttccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatggcccacttagtccacttatag

gtcaatcatgttcttgtgaatggatttttaactgagggcatagaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtactgatggaaactttcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttggtttcgaaaatgctctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatttcaacgtatgccgaaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca



Implanting Motif AAAAAAAGGGGGGG

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa

tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag

gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa



Where is the Implanted Motif? 

atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaaggggggga

tgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttatag

gtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga



Implanting Motif AAAAAAGGGGGGG 

with Four Mutations

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa

tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag

gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa



Where is the Motif??? 

atgaccgggatactgatagaagaaaggttgggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacaataaaacggcggga

tgagtatccctgggatgacttaaaataatggagtggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgcaaaaaaagggattgtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatataataaaggaagggcttatag

gtcaatcatgttcttgtgaatggatttaacaataagggctgggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtataaacaaggagggccaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttaaaaaatagggagccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatactaaaaaggagcggaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttactaaaaaggagcgga



Challenge Problem

– Find a motif in a sample of 

- 20 “random” sequences (e.g. 600 nt long)

- each sequence containing an implanted 

pattern of length 15, 

- each pattern appearing with 4 mismatches 

as  (15,4)-motif.



Why Finding (15,4) Motif is Difficult?

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa

tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag

gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa

AgAAgAAAGGttGGG

cAAtAAAAcGGcGGG
..|..|||.|..|||



Combinatorial Gene Regulation

• A microarray experiment showed that 

when gene X is knocked out, 20 other 

genes are not expressed

– How can one gene have such drastic 

effects?



The Motif Finding Problem

• Given a random sample of DNA sequences:

cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc

• Find the pattern that is implanted in each of the individual sequences, namely, the motif



The Motif Finding Problem (cont‟d)

• Additional information:

– The hidden sequence is of length 8

– The pattern is not exactly the same in each 

array because random point mutations 

may occur in the sequences



The Motif Finding Problem (cont‟d)

• The patterns revealed with no mutations:

cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc

acgtacgt

Consensus String



The Motif Finding Problem (cont‟d)

• The patterns with 2 point mutations:

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc



The Motif Finding Problem (cont‟d)

• The patterns with 2 point mutations:

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

Can we still find the motif, now that we have 2 mutations?



Defining Motifs 

• To define a motif, lets say we know where the 
motif starts in the sequence

• The motif start positions in their sequences can 
be represented as s = (s1,s2,s3,…,st)



Motifs: Profiles and Consensus

a G g t a c T t
C c A t a c g t

Alignment a c g t T A g t
a c g t C c A t
C c g t a c g G

_________________

A 3 0 1 0 3 1 1 0
Profile C 2 4 0 0 1 4 0 0

G 0 1 4 0 0 0 3 1
T 0 0 0 5 1 0 1 4

_________________

Consensus    A C G T A C G T

• Line up the patterns by 
their start indexes 

s = (s1, s2, …, st)

• Construct matrix profile 
with frequencies of each 
nucleotide in columns

• Consensus nucleotide in 
each position has the 
highest score in column



Consensus

• Think of consensus as an “ancestor” 

motif, from which mutated motifs emerged

• The distance between a real motif and the 

consensus sequence is generally less 

than that for two real motifs



Consensus (cont‟d)



Parameters

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

l = 8

t=5

s1 = 26 s2 = 21 s3= 3      s4 = 56 s5 = 60s

DNA

n = 69



1

2

3

t-1

t
st

s1

s2

s3

st-1

A  T C  C A G C T

G G G C A  A C T

A T G  G A T C T

A  A G  C A A C C

T  T G  G A A C T

A  T G  C C A T T

A  T G  G C A C T

A    5  1  0  0  5  5 0 0

T    1  5  0  0  0  1 1 6

G   1   1  6  3 0  1  0 0

C   0   0  1  4 2  0  6 1

A   T G C A  A  C T

Alignment Matrix

Profile matrix P(s)

Consensus Sequence

(“most popular”)

Given a group of t DNA sequences,

each of length n. Find most frequently

occurrng  l-mers (which are close  but differ

slightly due to mutations.)

Let s=(s1,s2,s3,…si,..st ) be the start positions in 

t sequences, 1 <= si <= n-l+1. There are

(n-l+1)t such starting positions.

Highly conservedNot conserved

Definition:

The score of the alignment

for a specific set of positions

s in the t DNA sequences,

denoted as Score(s,DNA),

is the sum of maximum 

numbers corresponding to

the consensus sequence. For

this example this sum is

5+5+6+4+5+5+6+6=42



The Motif Finding Problem: Brute Force Solution I

(data driven approach)

The maximum possible Score(s,DNA)= lt if each 
column has the same nucleotide and the 
minimum score is (lt/4) when each column has 
t/4 A,C,G and T.

– Compute the scores for each possible 
combination of starting positions s

– The best score will determine the best profile 
and the consensus pattern in DNA

– The goal is to maximize Score(s,DNA) by 
varying the starting positions si



Evaluating Motifs

• We have a guess about the consensus 

sequence, but how “good” is this 

consensus?

• Need to introduce a scoring function to 

compare different guesses and choose the 

“best” one. 



Defining Some Terms

• t - number of sample DNA sequences

• n - length of each DNA sequence

• DNA - sample of DNA sequences (t xn 

array)

• l - length of the motif (l-mer)

• si - starting position of an l-mer in 

sequence i

• s=(s1, s2,… st) - array of motif‟s starting 

positions



Scoring Motifs

• Given s = (s1, … st) and DNA:

Score(s,DNA) =

a G g t a c T t

C c A t a c g t

a c g t T A g t

a c g t C c A t

C c g t a c g G

_________________

A 3 0 1 0 3 1 1 0

C 2 4 0 0 1 4 0 0

G 0 1 4 0 0 0 3 1

T 0 0 0 5 1 0 1 4

_________________

Consensus  a c g t a c g t

Score 3+4+4+5+3+4+3+4=30

l

t


 

l

i GCTAk

ikcount
1 },,,{

),(max



The Motif Finding Problem

• If starting positions s=(s1, s2,… st) are 

given, finding consensus is easy even with 

mutations in the sequences because we 

can simply construct the profile to find the 

motif (consensus) 

• But… the starting positions  are usually 

not given. How can we find the “best” 

profile matrix?



The Motif Finding Problem: Formulation

• Goal: Given a set of DNA sequences, find a set 
of l-mers, one from each sequence, that 
maximizes the consensus score

• Input: A t x n matrix of DNA, and l the length of 
the pattern to find

• Output: An array of t starting positions 
s = (s1, s2, … st) maximizing Score(s,DNA)



BruteForceMotifSearch

1. BruteForceMotifSearch(DNA, t, n, l)

2. bestScore  0

3. for each s=(s1,s2 , . . ., st) from (1,1 . . . 1) 
to (n-l+1, . . ., n-l+1)

4. if (Score(s,DNA) > bestScore)

5. bestScore  score(s, DNA)

6. bestMotif  (s1,s2 , . . . , st) 

7. return bestMotif

Line 3 above enumerates all possible (n-l+1)t t-tuples of 

position indices in t DNA  sequences. A systematic method to 

generate these position indices will be

discussed later. 



Running Time of BruteForceMotifSearch

• Varying (n - l + 1) positions in each of t
sequences, we‟re looking at (n - l + 1)t sets of 
starting positions

• For each set of starting positions, the scoring 
function makes l operations, so complexity is 
l (n – l + 1)t = O(l nt)

• That means that for t = 8, n = 1000, l = 10 we 
must perform approximately 1020 computations 
– it will take billions years



The Median String Problem

• Given a set of t DNA sequences find a 

pattern that appears in all t sequences 

with the minimum number of mutations 

• This pattern will be the motif

Another  alternative view onto this problem

is to reframe the motif finding problem as the

Problem of finding  a median string.



Hamming Distance

• Hamming distance:

– dH(v,w) is the number of nucleotide pairs 

that do not match when v and w are 

aligned. For example:

dH(AAAAAA,ACAAAC) = 2



Total Distance: Example

• Given v = “acgtacgt” and s

acgtacgt

cctgatagacgctatctggctatccacgtacAtaggtcctctgtgcgaatctatgcgtttccaaccat

acgtacgt

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

acgtacgt

aaaAgtCcgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

acgtacgt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

acgtacgt

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtaGgtc

v is the sequence in red, x is the sequence in blue

• TotalDistance(v,DNA) = 1+0+2+0+1 = 4

dH(v, x) = 2

dH(v, x) = 1

dH(v, x) = 0

dH(v, x) = 0

dH(v, x) = 1



Total Distance: Definition

– Given a l -mer v , for each DNA sequence i, 
compute all dH(v, x), where x is an l-mer with 
starting position si  

(1 < si < n – l + 1)

– Find minimum of dH(v, x) among all l-mers in 
sequence i

– TotalDistance (v, DNA) is the sum of the minimum 
Hamming distances for each DNA sequence i

– TotalDistance (v, DNA) = mins dH(v, s), where s is 
the set of starting positions s1, s2,… st

mins dH(v, s)= min sum of Hamming distances for all 
choices of l -mers (there are 4l such l -mers ( min of 
all choices of positions s= s1, s2,… st))



The Median String Problem: Formulation

• Goal: Given a set of DNA sequences, find 

a median string

• Input: A t x n matrix DNA, and l, the length 

of the pattern to find

• Output: A string v of l nucleotides that 

minimizes TotalDistance(v,DNA) over all 

strings of that length



Median String Search Algorithm

1. BF_MedianStringSearch (DNA, t, n, l)

2. bestWord AAA…A

3. bestDistance ∞( or a  large number) 

4. for each l-mer word from AAA…A to 

TTT…T if TotalDistance(word,DNA) < 

bestDistance

bestDistanceTotalDistance(word,DNA)

1. bestWord word

2. return bestWord



Line 4 dominates the computational complexity: we

need to enumerate 4l DNA sequences and for each

such sequence ,compute the Hamming distance n-l+1

times taking l comparison operation: l(n-l+1)4l  

which again is exponential.

Given the „word‟ , we can find  

The TotalDistance(word , DNA) in a single pass over

DNA, that is in time O(nt), rather than considering all

possible combinations of start positions. Thus, BF 

median search much less time compared to BF takes

O(4lnt) time motif search. Typical  value of l=8 to 15 

and length of upstream motif area is about 500 to 

1000 nucleotides.



Motif Finding Problem == Median String Problem

• The Motif Finding is a maximization problem while 

Median String is a minimization problem 

• However, the Motif Finding problem and Median 

String problem are computationally equivalent

• Need to show that minimizing 

TotalDistance is equivalent to maximizing 

Score



We are looking for the same thing

a G g t a c T t

C c A t a c g t

Alignment a c g t T A g t

a c g t C c A t

C c g t a c g G

_________________

A  3 0 1 0 3 1 1 0

Profile    C  2 4 0 0 1 4 0 0

G  0 1 4 0 0 0 3 1 

T 0 0 0 5 1 0 1 4

_________________

Consensus     a c g t a c g t

Score 3+4+4+5+3+4+3+4

TotalDistance 2+1+1+0+2+1+2+1

Sum           5 5 5 5 5 5 5 5

• At any column i
Scorei + TotalDistancei = t

• Because there are l columns

Score + TotalDistance = l * t

• Rearranging:
Score = l * t - TotalDistance 

• l * t is constant. The 
minimization of the right side is 
equivalent to the maximization 
of the left side

l

t



Motif Finding Problem vs. 

Median String Problem

• Why bother reformulating the Motif Finding 

problem into the Median String problem?

– The Motif Finding Problem needs to 

examine all the combinations for s. That is 
(n - l + 1)t combinations!!! 

– The Median String Problem needs to 

examine all 4l combinations for v. This 

number is relatively smaller



Motif Finding: Improving the Running Time

Recall the BruteForceMotifSearch:

1. BruteForceMotifSearch(DNA, t, n, l)

2. bestScore  0

3. for each s=(s1,s2 , . . ., st) from (1,1 . . . 1) to (n-l+1, . . ., n-l+1)

4. if (Score(s,DNA) > bestScore)

5. bestScore  Score(s, DNA)

6. bestMotif  (s1,s2 , . . . , st) 

7. return bestMotif



Structuring the Search

• How can we perform the line

for each s=(s1,s2 , . . ., st) from (1,1 . . . 1) to (n-l+1, . . ., n-l+1) ?

• We need a method for efficiently structuring 

and navigating the many possible motifs 

• This is not very different than exploring all t-

digit numbers



Median String: Improving the Running Time

1. MedianStringSearch (DNA, t, n, l)

2. bestWord AAA…A

3. bestDistance  ∞

4. for each l-mer s from AAA…A to TTT…T

if TotalDistance(v,DNA) < bestDistance

5. bestDistanceTotalDistance(s,DNA)

6. bestWord v

7. return bestWord

While computing TotalDistance(v,DNA) , it implicitly determines the 

start  positions in the linear scan taking  O(nt) time



Structuring the Search

– For BruteForce method, we need to sear all 
possible (n - l + 1)t start locations.

– For the Median String Problem we need to 
consider all 4l possible l-mers:

aa… aa

aa… ac

aa… ag

aa… at

.

.

tt… tt

How to organize this search?



Alternative Representation of the Search Space

• Let A = 1, C = 2, G = 3, T = 4

• Then the sequences from AA…A to TT…T become:

11…11

11…12

11…13

11…14

.

.

44…44

• Notice that the sequences above simply list all numbers 
as if we were counting on base 4 without using 0 as a 
digit.

l



Linked List

aa  ac  ag  at  ca  cc  cg  ct  ga  gc  gg  gt  ta  tc  tg  tt

• Need to visit all the predecessors of a sequence 

before visiting the sequence. It does not allow a 
subset of the l –mers to be searched based on 

some special criteria (viz. Branch and Bound 

Algorithm). A more efficient data structure is a 

tree. 

Start

Suppose l = 2



Linked List (cont‟d)

• Linked list is not the most efficient data structure for motif 

finding 

• Let‟s try grouping the sequences by their prefixes

aa  ac  ag  at  ca  cc  cg  ct  ga  gc  gg  gt  ta  tc  tg  tt



A  Search Tree with and k=4  showing  all 2-

mers with alphabet (a,c,t,g). The number of 
levels equals l +1 

a- c- g- t-

aa  ac  ag  at  ca  cc  cg  ct  ga  gc  gg  gt  ta  tc  tg  tt

--

root

Level 0

Level 1

Level 2

The nodes at level  j  (0<=j<=j-1)

represent  prefixes of the leaf nodes

of length j+1. 



1111     1112   1121    1122   1211   1212     1221  1222      2111  2112   2121    2122    2211    2212   2221   2222

111- 112- 121- 122- 211- 212- 221- 222-

11-- 12-- 21-- 22--

1--- 2---

- - - -

1 2

1 1

11

1

11

1 1 1 1 1 1 1

2 2

2222

2 2 2 2 2 2 2 2

All 4-mers (l =4) with two letter alphabet (1,2) are represented by the leaves of the tree.

An internal node represents all the 4-mers in the leaf nodes of the subtree. The node
at level v (0 <= v <=4) is designated by v-letter prefix of its children. There are 2 l +1

nodes in the tree.

Level=0

Level=1

Level=2

Level=3

Level=4



Analyzing Search Trees

• Characteristics of the search trees:

– The sequences are contained in its leaves

– The parent of a node is the prefix of its 

children

– To represent all start positions in the Motif 

Finding problem , we can construct a tree 

with l +1=t +1 levels and each node having 

k=n- l +1 children for each vertex.

– For Median String Problem we have all l –

mers but k=4

• How can we move through the tree?



1111     1112   1121    1122   1211   1212     1221  1222      2111  2112   2121    2122    2211    2212   2221   2222

111- 112- 121- 122- 211- 212- 221- 222-

11-- 12-- 21-- 22--

1--- 2---

- - - -

1 2

1 1

11

1

11

1 1 1 1 1 1 1

2 2

2222

2 2 2 2 2 2 2 2

All 4-mers (l =4) with two letter alphabet (1,2) are represented by the leaves of the tree.

An internal node represents all the 4-mers in the leaf nodes of the subtree.  A node
at level v (0 <= v <=3) is designated by v-letter prefix of its children. There are 2 l +1

nodes in the tree.

Level=0

Level=1

Level=2

Level=3

Level=4



Moving through the Search Trees

• Four common moves in a search tree that 
we are about to explore:

– Move to the next leaf

– Visit all the leaves

– Visit the next node

– Bypass the children of a node

– In general, we want to consider all k l

l -mers. For motif finding problem

k= n - l + 1. For median string problem k=4. 



Moving through the Search Trees

• Four common moves in a search tree that 
we are about to explore:

– Move to the next leaf

– Visit all the leaves

– Visit the next node

– Bypass the children of a node

– In general, we want to consider all kL 

L-mers. For motif finding problem

k= n - l + 1. For median string problem k=4. 



Visit the Next Leaf

NextLeaf (a=((a1,a2,…aL), L, k)
// a :the array of digits. L: length of the array (it same as l ).  k : 

max 
digit value//

1. a  a+ 1    // radix k addition//
2.  if a=(1,1,….,1) exit  // no next leaf //

else return a

(1,1, …,1,1)         (4,4, …,3,3)      (4,4, …,4,3) 
(1,1, …,1,2)         (4,4, …,3,3)      (4,4, …,4,4) 
(1,1, …,1,3)         (4,4, …,3,4)      (1,1, …,1,1)  // no next leaf// 
(1,1, …,1,4)         (4,4, …,4,1)                           //reset to 1111 //
(1,1, …,2,1)
……………..          …………….

Given a current leaf a , we need to compute the “next” leaf:



Visit the Next Leaf

1. NextLeaf( a,L, k )        // a :the array of digits
2. for i  L to 1              // L: length of the array
3. if ai < k // k : max digit value
4. ai  ai + 1
5. return a
6. ai  1
7. return a

This slide is same as the previous slide but it shows
the actual computations performed. If L were 10, it 
Would be like counting decimal numbers except it 

uses digits 1 to 10 rather than 0 to 9

Given a current leaf a , we need to compute the “next” leaf:



NextLeaf (cont‟d)

• The algorithm is addition in radix k

• Increment the least significant digit

• “Carry the one” to the next digit position 
when the digit is at maximal value



NextLeaf: Example

• Moving to the next leaf:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

--Current Location



NextLeaf: Example (cont‟d)

• Moving to the next leaf:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

--Next Location



Visit All Leaves

• Printing all permutations in ascending 

order:

1. AllLeaves(L,k) // L: length of the sequence

2. a  (1,...,1)       // k : max digit value

3. while forever     // a : array of digits

4. output a

5. a  NextLeaf(a,L,k)

6. if a = (1,...,1)

7. return



Visit All Leaves: Example

• Moving through all the leaves in order:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

1     2     3    4    5    6    7     8    9    10    11    12   13   14   15

--

Order of steps



Depth First Search

• So we can search leaves

• How about searching all vertices of the 
tree?

• We can do this with a depth first search.

• Depth First Search (DFS) is a pre-order 
traversal of a tree. (other traversals are 
Inorder , Postorder)

• Preorder (v) // v is a node of the tree//
• Output v

• If v has children

• Preorder (left child of v)

• Preorder (right child of v)



1111     1112   1121    1122   1211   1212     1221  1222      2111  2112   2121    2122    2211    2212   2221   2222

111- 112- 121- 122- 211- 212- 221- 222-

11-- 12-- 21-- 22--

1--- 2---

1

2

4

2

3

Level=0

Level=1

Level=2

Level=3

Level=4
5 6

7

8 9

10

11

12 13

14

15 16

17

19

18

20 21 23 24

25

27

26

28

29

30 31

Preorder (v) // v is a node of the tree//
Output v
If v has children

Preorder (left child of v)
Preorder (right child of v)

22



Visit the Next Vertex

1. NextVertex(a,i,L,k)
// a : (a1,a2,.., ai …aL) - the array of digits. If i<L, it is 

an internal vertex.

1. if i < L                    // i : prefix length
2. a i+1  1               // L: max length
3. return ( a,i+1)       // k : max digit value
4. else
5. for j L to 1
6. if aj < k                 
7. aj  aj +1
8. return( a,j )
9. return(a,0)



Explanation

When i <L , NextVertex moves down to next  the

lower level and explores that subtree of a . The 

example in two slides earlier show how the 

vertices are traversed if the initial vertex specified 

is 12– (the blue path)

If i=L, NextVertex either moves along the lowest

level until the L-th symbol becomes k and then 

jumps back to the right child of the initial vertex if 

it exists or its right sibling node. It returns to the 

root (a,0) after it reaches the vertex (k,k,…,k).



Example

• Moving to the next vertex:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

--
Current Location



Example

• Moving to the next vertices:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

--

Location after 5 

next vertex moves



Branch-and-Bound Search 

This approach will allow us to skip any children

or grandchildren or great grandchildren etc if 

these descendants cannot provide a better 

score than the best leaf that has already been

explored.

At each vertex we calculate the most optimistic 

bound or score of any leaf in the subtree

rooted at that vertex and then decide whether 

to branch further or not. This is the reason why

this approach is called Branch-and-Bound .



Branch and Bound Algorithm for Motif Search

• Since each level of the 

tree goes deeper into 

search, discarding a prefix 

discards all following 

branchesThis saves us 
from looking at (n – l + 1)t-i

or 2L-i leaves.

• NextVertex() is not up to the 

task.

– use ByPass() to navigate the 

tree



Bypass Move

• Given a prefix (internal vertex), find next vertex after 

skipping all its children. If we skip a vertex at level i of 

the tree, we can just increment ai   (unless all vertices at 

level i has been traversed and we return to the root 

vertex).  The algorithm looks very similar to NextLeaf 

but differ in a subtle way.

1. Bypass(a,i,L,k) // a: array of digits

2. for j  i to 1     // i : prefix length

3. if aj < k // L: maximum length

4. aj  aj +1 // k : max digit value

5. return(a, j )

6. return(a,0)



Bypass Move: Example

• Bypassing the descendants of “2-”:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

--
Current Location



Example

• Bypassing the descendants of “2-”:

1- 2- 3- 4-

11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44

--
Next Location



Revisiting Search Tree

--

Score: 24   15      3     10   15    5      11    7      18   14    22    17    30   25   8     16 

24 15 22 30

30

If the scores of the leaf nodes are as given below then it does not make

Any sense to explore any subtree whose score is less than 24 (the red nodes)



Brute Force Search Again
1. BruteForceMotifSearchAgain(DNA, t, n, l)

2. s  (1,1,…, 1)

3. bestScore  Score(s,DNA)

4. while forever

5. s  NextLeaf (s, t, n- l +1)  
[Enumeration of (1,1,..,1) to (n-l+1,…,n-l+1)]

6. if (Score(s,DNA) > bestScore)

7. bestScore  Score(s, DNA)

8. bestMotif  (s1,s2 , . . . , st) 

9. if s=(1,1,…,1)

10. return bestMotif

As we discussed earlier, we have to explore (n-l +1)t  positions. For each position vector

s= s1,s2,…,st, the algorithm calculates Score(s,DNA) which takes O(l )operations. Thus,

the overall complexity of the algorithm  is O(l   nt).



Can We Do Better?
• A set of start locations  s=(s1, s2, …,st) may have a weak profile for 

the first i positions (s1, s2, …,si). Then, it is not necessary to consider 
ant starting positions beginning si-1,si+1, …,st

• Define partial consensus score, Score(s,i,DNA) to be the consensus 
score of the ixl alignment matrix involving the first i rows of DNA 
corresponding to starting positions (s1, s2, …,si -,-..-).

• Every row of alignment may add at most l to Score.  All subsequent  
(t-i) positions (si+1, …st) could add in the most optimistic situation

(t – i ) * l to Score(s,i,DNA)

• If Score(s,i,DNA) + (t – i ) * l < BestScore, it makes no sense to 
explore the remaining (t-i) positions in this choice of positions (s1, s2, 
…,si -,-..-). 

• Using ByPass() , we could save looking at (n-l +1)t –i  leaves



Pseudocode for Branch and Bound Motif Search

1. BranchAndBoundMotifSearch(DNA,t,n,l  )

2. s (1,…,1)

3. bestScore 0

4. i 1

5. while i > 0

6. if i < t

7. optimisticScore Score(s, i, DNA) +(t – i ) * l

8. if optimisticScore < bestScore

9. (s, i)  Bypass(s, i,  t,  n-l +1) //parameters (a, i, L, k) //

10. else 

11. (s, i)  NextVertex(s, i,  t,  n-l +1) //parameters (a, i, L, k) 

12. else 

13. if Score(s,DNA) > bestScore

14. bestScore Score(s, DNA)

15. bestMotif (s1, s2, s3, …, st)

16. (s, i)  NextVertex(s, i, t, n-l + 1) //parameters (a, i, L, k) 

17. return bestMotif



Median String Search Improvements

• Recall the computational differences between motif 

search and median string search

– The Motif Finding Problem needs to examine 
all (n-l +1)t combinations for s. 

– The Median String Problem needs to examine 

4l combinations of v. This number is relatively 

small

• We want to use median string algorithm with the 

Branch and Bound trick!



Branch and Bound Applied to Median 

String Search

• Note that if the total distance for a prefix is 

greater than that for the best word so far:

TotalDistance (prefix, DNA) > BestDistance

there is no use exploring the remaining 

part of the word

• We can eliminate that branch and 

BYPASS exploring that branch further. 



Level=0

Level=1

Level=2

Level=3

Level=4

A--- T--- C--- G---

AA--

AT-- AG--

AG-- GA--

GT-- GC--

GG--

AAA- AAG-

AAAA

GGA- GGG-

GGGG

Not all nodes are marked, not all child nodes are drawn

A vertex at level i in this tree represents a nucleotide string of length i which

Can be viewed as the i-long prefix of every leaf below that vertex. The 

SIMPLE_MEDIAN_SEARCH pseudocode given in next page maps A,C,G,T to 

numerals  1,2,3,4 respectively.



Pseudocode for Branch and Bound Median Search
SIMPLE_MEDIAN_SEARCH(DNA, t, n, l  )

1. s (1,…,1)

2. bestDistance a very large number

3. i 1

4. while i > 0

5. if i < l 

6. (s, i)  NextVertex(s, i, l ,4)           //parameters (a, i, L, k)

7. else

8. word nucleotide string corresponding to (s1,s2,…,s l )

9. if TotalDistance(word,DNA)< bestDiatance

10. bestDistance TotalDistance(word,DNA)

11. bestWord word

12. (s, i)  NextVertex(s, i, l ,4)           //parameters (a, i, L, k)

13. return bestWord

We find bound for TotalDistance(word,DNA) at each vertex. If the total 

distance between the i-prefix of the word and DNA is larger than the smallest 
seen so far for one of the leaves (nucleotide  strings of length l ), then there is 

no point investigating subtrees of the vertex corresponding to that i-prefix of 
the word ; all extensions of this prefix into an l –mer will have at least the 

same or probably more total distance. Of course, there could be some 

extensions to the prefix that matches every string in the sample which will 

make the value of total distance to be 0.



Bounded Median String Search
1. BranchAndBoundMedianStringSearch(DNA,t,n,l )
2. s  (1,…,1)
3. bestDistance  ∞
4. i  1
5. while i > 0
6. if i < l
7. prefix  string corresponding to the first i nucleotides of s
8. optimisticDistance  TotalDistance(prefix,DNA)
9. if optimisticDistance > bestDistance
10. (s, i )  Bypass(s,i, l, 4)
11. else
12. (s, i )  NextVertex(s, i, l, 4)
13. else 
14. word  nucleotide string corresponding to s
15. if  TotalDistance(s,DNA) < bestDistance
16. bestDistance TotalDistance(word, DNA)
17. bestWord  word
18. (s,i )  NextVertex(s,i,l, 4)
19. return bestWord



Improving the Bounds

• Given an l-mer w, divided into two parts at point i

– u : prefix w1, …, wi, 

– v : suffix wi+1, ..., wl

• Find minimum distance for u in a sequence  

• No instances of u in the sequence have distance 
less than the minimum distance

• Note this doesn‟t tell us anything about whether u is 
part of any motif.  We only get a minimum distance 
for prefix u



Improving the Bounds (cont‟d)

• Repeating the process for the suffix v

gives us a minimum distance for v

• Since u and v are two substrings of w,  

and included in motif w, we can assume 

that the minimum distance of u plus 

minimum distance of v can only be less 

than the minimum distance for w



Better Bounds



Better Bounds (cont‟d)

• If d(prefix) + d(suffix) > bestDistance:

– Motif w (prefix.suffix) cannot give a better 

(lower) score than d(prefix) + d(suffix) 

– In this case, we can ByPass()



Better Bounded Median String Search
1. ImprovedBranchAndBoundMedianString(DNA,t,n,l)

2. s = (1, 1, …, 1)

3. bestdistance = ∞

4. i = 1

5. while i > 0

6. if i < l

7. prefix = nucleotide string corresponding to (s1, s2, s3, …, si )

8. optimisticPrefixDistance = TotalDistance (prefix, DNA)

9. if (optimisticPrefixDistance < bestsubstring[ i ])

10. bestsubstring[ i ] = optimisticPrefixDistance

11. if (l - i < i )

12. optimisticSufxDistance = bestsubstring[l -i ] 

13. else

14. optimisticSufxDistance = 0;

15. if optimisticPrefixDistance + optimisticSufxDistance > bestDistance

16. (s, i ) = Bypass(s, i, l, 4)

17. else

18. (s, i ) = NextVertex(s, i, l,4)

19. else

20. word = nucleotide string corresponding to (s1,s2, s3, …, st)

21. if TotalDistance( word, DNA) < bestDistance

22. bestDistance = TotalDistance(word, DNA)

23. bestWord = word

24. (s,i) = NextVertex(s, i,l, 4)

25. return bestWord



CONSENSUS: Greedy Motif Search

• Find two closest l-mers in sequences 1 and 2 and forms 

2 x l alignment matrix with Score(s,2,DNA)

• At each of the following t-2 iterations CONSENSUS finds a “best” 
l-mer in sequence i from the perspective of the already 
constructed (i-1) x l alignment matrix for the first (i-1) sequences

• In other words, it finds an l-mer in sequence i maximizing 

Score(s,i,DNA) 

under the assumption that the first (i-1) l-mers have been already 
chosen 

• CONSENSUS sacrifices optimal solution for speed:  in fact the 
bulk of the time is actually spent locating the first 2 l-mers



Some Motif Finding Programs

• CONSENSUS

Hertz, Stromo (1989)

• GibbsDNA

Lawrence et al (1993)

• MEME

Bailey, Elkan (1995)

• RandomProjections

Buhler, Tompa (2002)

• MULTIPROFILER 

Keich, Pevzner (2002)

• MITRA

Eskin, Pevzner (2002)

• Pattern Branching

Price, Pevzner (2003)

• PRUNER II

Ravi Vijaya Satya and 

A. Mukherjee (2005)


