
Molecular Evolution



Outline

• Evolutionary Tree Reconstruction

• “Out of Africa” hypothesis

• Did we evolve from Neanderthals? 

• Distance Based Phylogeny

• Neighbor Joining Algorithm

• Additive Phylogeny

• Least Squares Distance Phylogeny

• UPGMA

• Character Based Phylogeny

• Small Parsimony Problem 

• Fitch and Sankoff Algorithms

• Large Parsimony Problem



Early Evolutionary Studies

• Anatomical features were the dominant 
criteria used to derive evolutionary 
relationships between species since 
Darwin till early 1960s

• The evolutionary relationships derived 
from these relatively subjective 
observations were often inconclusive. 
Some of them were later proved incorrect



Evolution and DNA Analysis: 

the Giant Panda Riddle

• For roughly 100 years scientists were unable to 
figure out which family the giant panda belongs to

• Giant pandas look like bears but have features that 
are unusual for bears and typical for raccoons, e.g., 
they do not hibernate

• In 1985, Steven O‟Brien and colleagues solved the 
giant panda classification problem using DNA 
sequences and algorithms



Evolutionary Tree of Bears and Raccoons



Evolutionary Trees: DNA-based Approach

• 40 years ago: Emile Zuckerkandl and 
Linus Pauling brought reconstructing 
evolutionary relationships with DNA into 
the spotlight 

• In the first few years after Zuckerkandl and 
Pauling proposed using DNA for 
evolutionary studies, the possibility of 
reconstructing evolutionary trees by DNA 
analysis was hotly debated

• Now it is a dominant approach to study 
evolution. 



Emile Zuckerkandl on human-gorilla 

evolutionary relationships:

From the point of hemoglobin structure, it appears 

that gorilla is just an abnormal human, or man an 

abnormal gorilla, and the two species form actually 

one continuous population. 

Emile Zuckerkandl, 

Classification and Human Evolution, 1963



Gaylord Simpson vs. Emile Zuckerkandl:

From the point of hemoglobin structure, it appears 

that gorilla is just an abnormal human, or man an 

abnormal gorilla, and the two species form actually 

one continuous population. 

Emile Zuckerkandl, 

Classification and Human Evolution, 1963

From any point of view other than that properly 

specified, that is of course nonsense. What the 

comparison really indicate is that hemoglobin is a bad 

choice and has nothing to tell us about attributes, or 

indeed tells us a lie. 

Gaylord Simpson,                                              Science, 

1964



Who are closer? 



Out of Africa Hypothesis

• Around the time the giant panda riddle 

was solved, a DNA-based reconstruction 

of the human evolutionary tree led to the 

Out of Africa Hypothesis that claims our 

most ancient ancestor lived in Africa 

roughly 200,000 years ago



Human Evolutionary Tree (cont‟d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm



The Origin of Humans:

”Out of Africa” vs Multiregional Hypothesis

Out of Africa:
– Humans evolved in 

Africa ~150,000 
years ago

– Humans migrated 
out of Africa, 
replacing other 
humanoids around 
the globe

– There is no direct 
descendents from 
Neanderthals

Multiregional:

• Humans evolved in the last two 

million years as a single species.

• Independent appearance of 

modern traits in different areas

• Humans migrated out of Africa 

mixing with other humanoids on 

the way

• There is a genetic continuity from 

Neanderthals to humans



mtDNA analysis supports 

“Out of Africa” Hypothesis

• African origin of humans inferred from:

– African population was the most diverse        

(sub-populations had more time to diverge)

– The evolutionary tree separated one group 

of Africans from a group containing all five 

populations.

– Tree was rooted on branch between 

groups of greatest difference.



Human Migration Out of Africa

http://www.becominghuman.org

1. Yorubans

2. Western Pygmies

3. Eastern Pygmies

4. Hadza

5. !Kung
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Two Neanderthal Discoveries

Feldhofer,     
Germany

Mezmaiskaya,     
Caucasus

Distance:
25,000km



Two Neanderthal Discoveries

•Is there a connection between Neanderthals and today‟s Europeans?

•If humans did not evolve from Neanderthals, whom did we evolve from?



Multiregional Hypothesis?

• Many predict some genetic continuity from 

the Neanderthals through to the Cro-

Magnons up to today‟s Europeans

• Can explain the occurrence of varying 

regional characteristics



Evolutionary trees

• A tree with leaves = species, and edge 

lengths representing evolutionary time

• Internal nodes also species: the ancestral 

species

• Also called “phylogenetic tree”

• How to construct such trees from data?



Tree Construction Algorithms

The evolutionary tree construction

algorithms can be broadly divided into two

basic categories: 

1. Distance based methods: input consists of 

evolutionary distance data and output is a 

weighted  tree whose pair-wise distances “agree” 

with the given evolutionary data. If the data is 

ultrametric, there is an elegant solution. If the data 

is not ultrametric but additive, there is also an 

efficient algorithm.  Otherwise, “approximate” 

algorithms have to be developed.



2. Maximum Parsimony methods: These are “character” 

( an observable trait  or characteristic, which 

sometime may be linked to a DNA or amino acid 

sequence, but need not always one).

The goal is to build a tree, whose leaves represent the 

taxa or species and the internal nodes represent 

ancestral taxa such that the total number of 

“mutations “ implied by the tree is minimized . This 

is also  referred to as “maximizing parsimony” in the 

literature. If the input taxa are represented by 

molecular sequences, the tree corresponds to a 

Phylogenetic  alignment  with minimum cost over all 

trees.



Evolutionary Trees

How are these trees built from DNA 

sequences?

– leaves represent existing species

– internal vertices represent ancestors

– If the tree is “rooted”, then the root represents 

the oldest evolutionary ancestor



Rooted and Unrooted Trees

In the unrooted tree the position of 

the root (“oldest ancestor”) is 

unknown. Otherwise, they are like 

rooted trees



Weighted BinaryTrees

• Internal vertices have degree 3

• Edges (v,w)  have weights reflecting:

– # of mutations on the evolutionary path from v to 

w ( one species to another )

or

– Time estimate for evolution from v to w ( one 

species to another).



Molecular Clock

• t(v)= time corresponding to the “moment” 

when the species v produced its 

descendents

• t(w) = time corresponding to the “moment” 

when the species w produced its 

descendents

• t(w)- t(v)= weight of the edge (v,w)

• Every leaf has time t=0

• Every internal node has “past” or negative 

time.



Distance Based Methods



Distance in Trees: an Example

d1,4 = 12 + 13 + 14 + 17 + 13 = 69

i

j

In a tree T, we often compute tree distance 

dij(T) between i and j.

dij(T) - the length of a path between leaves i 

and j 



Distance Matrix

• Given n species, we can compute the n x n 

distance matrix Dij

• Dij may be defined as the edit distance between 

a gene in species i and a gene in species j. We 

assume that the genes of interest  have been 

sequenced for all n species.

Or

• It could be some other experimental data  viz. 

gene expression level difference in a microarray



Fitting Distance Matrix

• Given n species, we can compute the n x 

n distance matrix Dij

• Evolution of these genes is described by a 

tree that we don’t know. Let T be such a 

tree and

• dij(T) – tree distance between i and j 

• We need an algorithm to construct a tree 

that best fits the distance matrix Dij



Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)



Reconstructing a Tree with  3 Leaf nodes

• Tree reconstruction for any 3x3 matrix is 
straightforward

• We have 3 leaf nods  i, j, k and an internal  
center node c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk



Reconstructing a 3 Leaved Tree (cont‟d)

dic + djc = Dij

+  dic + dkc = Dik

2dic + djc + dkc = Dij + Dik

2dic +    Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2

dkc = (Dki + Dkj – Dij)/2



Trees with > 3 Leaf nodes

• A tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance 

matrix D requires solving a system of “n choose 

2” equations with  2n-3 variables, which is not 

always possible to solve for n > 3.

• For example, if n=4, we have a system of 6 

equations with 2n-3=5 variables

• But, there is a special case when these 

equations can be solved: it is the case for the 

additive tree. 



Additive Distance Matrices

Matrix D is 

ADDITIVE if there 

exists a tree T with 

dij(T) = Dij

NON-ADDITIVE 

otherwise



Distance Based Tree Problem

• Goal: Reconstruct an evolutionary tree 

from a distance matrix

• Input: n x n distance matrix Dij

• Output: weighted tree T with n leaves 

fitting D

• If D is additive, this problem has a solution 

and there is a simple algorithm to solve it



Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k

• Remove the rows and columns of i and j

• Add a new row and column corresponding to k, 
where the distance from k to any other leaf m can 
be computed as: 2Dkm = Dim + Djm – Dij

Compress i and

j into k. Iterate 

for rest of tree

Dkm =(Dim + Djm – Dij)/2



Finding Neighboring Leaves

• But, how to find the neighboring leaves of an 

unknown tree?

• Select a pair of closest leaves?



Finding Neighboring Leaves

• But, how to find the neighboring leaves of an 

unknown tree?

• Select a pair of closest leaves?

WRONG



Finding Neighboring Leaves

• Closest leaves aren‟t necessarily neighbors

• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is 

a nontrivial problem! For the moment, we 

postpone this approach.



Degenerate Triples

• A degenerate triple is a set of three distinct 
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on 
the evolutionary path from i to k (or  is  
attached to  this path by an edge of length 
0).

i k

j

0
j



Looking for Degenerate Triples

• If distance matrix D has a degenerate triple i,j,k 
then j can be “removed” from D thus reducing 
the size of the problem.

• If distance matrix D does not have a 
degenerate triple i,j,k, one can “create” a 
degenerate triple in D by shortening all hanging 
edges (edge leading to a leaf) in the tree. 



Shortening Hanging Edges to 

Produce Degenerate Triples

• Shorten all “hanging” edges (edges that 

connect leaves) until a degenerate triple is 

found



Finding Degenerate Triples

• If there is no degenerate triple, all hanging edges 

are reduced by the same amount δ, so that all pair-

wise distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves 

(when δ equals the length of shortest hanging 

edge), forming a degenerate triple i,j,k and reducing 

the size of the distance matrix D.

• The attachment point for j can be recovered in the 

reverse transformations by saving Dij for each 

collapsed leaf.



Reconstructing 

Trees for Additive 

Distance 

Matrices.

Actually, during 

construction, you 

cannot  see the graph.

The graph is obtained

during the reverse

construction starting

from T2 to T3 until Tn.

During forward phase,

you only change the

distance matrix.



Shortening of the Hanging Edge

If we reduce length of every hanging edge (an edge leading to 

a leaf) by an amount δ, then the distance matrix of the resulting  

tree becomes (dij-2δ) since the distance  between any two 

leaves is reduced by 2δ. If we continue this process, it will 

eventually  lead to the “collapse” of one of the leaves  when δ is 

equal to the length of the shortest hanging edge. At this point, 

the  tree T=Tn with n leaves will be transformed in to a tree with 

n-1 leaves, Tn-1. Thus the transformations Tn->Tn-1->…T3->T2

is possible. Since T2 is a tree with only one edge, we can 

easily construct it  and then reverse the transformation as

T2->T3->…Tn-1->Tn recovering the information about collapsed 

edges at every step. We now make a more formal description 

of the algorithm.



Additive Tree Algorithm

1. Additive(D)

2. if D is a 2 x 2 matrix

3. T = tree of a single edge of length D1,2

4. return T

5. if D is non-degenerate

6. δ = trimming parameter of matrix D

7. for all 1 ≤ i ≠ j ≤ n

8. Dij = Dij - 2δ

9. else

10. δ = 0



Additive Algorithm (cont‟d)

11.    Find a triple i, j, k in D such that Dij + Djk = Dik

12.    x = Dij

13.    Remove jth row and jth column from D
14.    T = Additive(D)
15.   Add a new vertex v to T at distance x from i to k
16.   Add j back to T by creating an edge (v,j) of length 0
17.    for every leaf l in T
18.       if distance from l to v in the tree ≠ Dl,j

19.          output “matrix is not additive”
20.          return
21.    Extend all “hanging” edges by length δ
22.    return T



Additive Algorithm(Cont‟d)

• This algorithm checks if the matrix D is 

additive, and if so, returns the tree T.

• How to compute the trimming parameter δ ?

• The algorithm has O(n4) time complexity 

because the matrix has to be tested for 

degeneracy for all triplets taking O(n3) time

• And the recursive call takes place O(n) times.

• As we will see later we can construct an 

additive tree via ultrametric tree construction.



The Four Point Condition

• Additive Algorithm provides a way to 

check if distance matrix D is additive

• An even more efficient additivity check 

is the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a 

tree



The Four Point Condition (cont‟d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3

2 and 3 represent 

the same number:

the length of all 

edges + the 

middle edges 

(they are counted 

twice)

1 represents a 

smaller 

number: the 

length of all 

edges  

skipping the 

middle edge

Let 1 ≤ i,j,k,l ≤ n be four distinct  indices. Compute the 3 sums



The Four Point Condition

• If D is an additive matrix  then these three 

sums can be represented by a tree with 

four leaves as shown in the previous slide.

• The elements 1 ≤ i,j,k,l ≤ n satisfy the four-

point condition if two of the sums Dij + Dkl, 

Dil + Djk are same and the third sum Dik + 

Djl   is smaller than these two.



The Four Point Condition: Theorem

• The four point condition for  the quartet i,j,k,l is 

satisfied if two of these sums are the same, with 

the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and 

only if the four point condition holds for every

quartet 1 ≤ i,j,k,l ≤ n

• An algorithm to construct an additive tree based 

on four point theorem has complexity O(n4) and 

is very inefficient.

• (We will return to Additive Tree construction after 

we discuss Ultrametric Trees)



Least Squared Distance Problem

• If the distance matrix D is NOT additive, then we look 
for a tree T that approximates D the best:

Squared Error :   ∑i,j (dij(T) – Dij)
2

Squared Error is a measure of the quality of the fitness 
between distance matrix and the tree: we want to 
minimize it.

• Least Squares Distance  Problem: Given the input  
nxn distance matrix  (Di,j), find a weighted tree  T with n
leaves minimizing Squared Error

• ∑i,j (dij(T) – Dij)
2

• finding the best approximation tree T for a non-additive 
matrix D  is NP-hard.



Ultrametric Tree and 

Distances

Let D be a nXn symmetric matrix with real numbers. 

An ultrametric tree for D is a rooted tree T with the 

following properties:

1. T has n leaves, each labeled by a unique row of D

2. Each internal node of T is labeled by one real 

number from D and has at least two children.

3. Along any path in the tree from root to a leaf, the 

numbers are  strictly decreasing.

4. For any two leaves i and j , D(i,j) is the label of the 

least common ancestor of i and j in T.   

( For simplicity, assume D(i,i)≠ D(i,j) for all j ≠I, and 

D(i,i)=0)



A   B   C   D   E

A      0   8    8   5    3

B           0    3   8    8

C                 0   8    8

D                      0    5

E                            0

3

8

5

3

A E

D B C

8

6

4

2

0
A

3 3 3

55

8

E D B C



“Three Point Condition” – Ultrametric 

Matrix

Definition: A symmetric matrix D of real numbers 

defines an ultrametric distance if for any three 

indices i, j and k, there is a tie for the maximum of 

D(i,j), D(i,k) and D(j,k). That is, two of the distances 

are equal and the third is less than the maximum.

i j k

u

v



The Basic Theorem

Theorem: A symmetric matrix D has an

ultrametric tree if and only if D is an ultrametric 

matrix.

It is easy to see that if D has an ultrametric tree 

then D is an ultrametric matrix. The converse is 

proved by giving a constructive algorithm to 

obtain an ultrametric tree T for D.



a1

a2

a3

ap

i

If there are p distinct entries in row i of D then 

any ultrametric tree T for D must have a path 

from the root to the leaf i with exactly p nodes, 

and the entries                 must appear in strict

decreasing                      order. Furthermore, any

Internal node                    v in this path labeled 

D(i, j) must be                      the least common

ancestor                               of leaf i and  leaf j. 

This fixes                              where leaf j must 

appear                                  in T relative to the

path                                      of leaf i. Thus, the 

path                                          i partitions the 

remaining n-1 leaves     in p-1 classes.
j



Call this partition P.  Leaf nodes j and k belong to the 

same partition of P if and only if D(i, j)=D(i, k). Thus,

each node in the path to  i gives rise to a distinct 

partition in P.

We could now solve the ultrametric tree problem 

recursively on each class and connect these trees

to form the ultrametric tree for the full matrix D

A   B  C  D  E  

A

B

C

D

E

0   8   8   5   3  

8

5

3

A

30   3   8   8  

0   8   8  

0   5  
0    

B
C

D

E

A Symmetric

ultrametric

Matrix An ultrametric tree for 

the matrix.

8

5

3

A

B,C

D

E



A   B  C  D  E  F  G  H

A

B

C

D

E

F

G

H

0   4   3   4   5  4  3  4

5

4

3

A C,G

B,D,F,H

E

Without loss of generality, we can make the first row of the matrix to be one of the rows

having the maximum value of all the entries in the matrix.  Label  this row to be A. Its 

distinct set of non-zero real numbers are (3,4,5) . Form a path from root of the tree with

strictly decreasing numbers (5,4,3) ending with the leaf node labeled A. The set of

columns associated with numbers (5,4,3) viz. [(E), (B,D,F,H), (C,G)] are attached as 

right child of the internal nodes 5, 4 and 3, respectively. The resulting tree is ultrametric 

if and only if the submatrices formed by the right child sets are in their turn also

ultrametric. Repeat the construction step recursively for each of the subsets for the 

right children.  The tree is unique – if D is an ultrametric matrix then the ultrametric tree

for D is unique. The construction time for building the tree is O(n2). Why?



The Transformations D->T->T’->D’ : Reduction of Additive Tree 

problem to Ultrametric Tree problem in time O(n2)

Assume D is additive and T is the corresponding additive tree**. Let v be the row 

in D with max entry (viz. row A, Max value mv=9). Construct a tree T „ which is a 

sort of a copy of T with node rooted at v marked as the root and all leafs are 

equidistant from the root by adding the  difference  mv – D(v,i) to each edge 

leading to leaf i.  These differences for nodes B,C and D are 6,0 and 2, 

respectively. Also, note that each internal  node is equidistant to any leaf node in 

its subtree.
A B

C D

2

3

4 2

1

C D

3

4+(0) 2 +(2)

1+ (6)

v=A

B

2A   B   C   D   

A      0   3    9   7    

B           0    8   6

C                 0   6    

D                      0    

D

T T „

** We can use the AdditivePhylogeny(D) algorithm for this purpose now. But, we are

going to develop a more efficient algorithm in the following slides.



The Transformations D->T->T’->D’ (contd.)

Now, label each internal node in T „ with the unique distance from it to any of the

leaves in the Tree. These are 9,7 and 4 for our example,  which are non-increasing.

We can now define an ultrametric matrix D‟  where D‟(i,j) is the label at the least 

common ancestor of leaves i and j in T „. 

C D

4

A

B

7

9

2

1+(6)

3

4+0 2+(2)

D’ 
T’

We will show soon how to build the original additive matrix D and the tree T from D‟

A  B  C  D
A

B

C

D

0  9  9   9

0  7   7

0   4

0



But, in  the above transformations, we needed both T and T ‟. The 

question is : without knowing T and T ‟, can we derive the ultrametric 

matrix D‟(i,j) directly? Yes. This is how:

i j

w

v

x

y z

Consider two leaves i and j of T, and let w be their least common ancestor. 

We can deduce their equal distance to w without the knowledge of T ‟. 

With reference to Figure , we have:  

D(v,i) = x+y, 

D(v,j) = x+z, 

D(i,j) = y+z

which gives 

2x= (x+y)+(x+z)-(y+z) = D(v,i)+D(v,j) – D(i,j) 

or  x= [ D(v,i)+D(v,j) – D(i,j) ]/2

y= D(v,i)-x

z= D(v,j) -x

Now, the distance from w to i is

y+mv –D(v,i)=  (D(v,i)-x) +mv –D(v,i)   ( substituting y= D(v,i)-x for y

=mv –x 

= mv – [D(v,i)+D(v,j) – D(i,j). ]/2

= mv + [D(i,j)- D(v,i)-D(v,j) ]/2

Similarly, the distance from w to j is mv +[ D(i,j) - D(v,i)-D(v,j)]/2



Thus, we have 

Lemma: Without knowing T and T „, we can deduce  

D‟(i,j)= mv +[D(i,j) - D(v,i)- D(v,j)]/2

And we can state the theorem

Theorem: If D is an additive matrix, then D‟ is an 

ultrametric matrix where 

D‟(i,j)= mv +[D(i,j) - D(v,i)- D(v,j)]/2

The converse of the theorem is

Theorem: If Matrix D‟ is ultrametric, then matrix 

D is additive. 



Proof: Let T * be the  the ultrametric tree for  D‟ (we cannot

take T‟ which is yet unknown). First, assign weights to edges

of T * such that  the path from any leaf node i to its parent

node w has a distance equal to the label of the node w. To 

do this, assign to each edge (p,q) the absolute difference

between the two numbers written at nodes p and q.  As a

result, the path-distance between any pair of  leaf nodes

(i,j) is exactly twice the number appearing at their common 

ancestor. Now, since T *  is ultrametric tree for D‟  , 

this distance must be : 2xD‟(i,j)=2mv + D(I,j) – D(v,i) –D(v,j)

Now, do the reverse arithmetic on the edge weights, that is,

“shrink” leaf edge going to the leaf node i by mv - D(v,i). 

The makes the tree distance between leaf nodes i and j to

be exactly D(i,j).  This final step created the additive tree  for 

D from the ultrametric tree D‟.



C D

4

A

B

7

T *

9
9

7

4
4

2

3

C D

2

A

B

T

1

4

2

3

0

C D

2

A B

T

1

4

2

3

Additive Tree Algorithm :

1. Create matrix D‟ from D and construct the ultrametric tree T “  from D‟.

2. Next, assign an edge label to each edge equal to the absolute difference

between the node labels of its endpoints.  

3. Then for each leaf i. subtract mv –D(v,i) from the distance on the edge into leaf i.

The resulting tree is the additive tree for the matrix D.

B  C  D
A   9  9   9

B       7   7

C            4

D’ 

A   B   C   D   

A      0   3    9   7    

B           0    8   6

C                 0   6    

D                      0    

D

Theorem: The additive tree algorithm takes

O(n2) time.



Character Based Trees



Why Character Based Tree?

For evolutionary tree construction, we typically 

start with an nxm alignment matrix (n species, 

m nucleotides in each). This can be transformed 

to a distance matrix and then we can use the

distance based  tree construction algorithms as

discussed earlier. But, some information gets

lost during this transformation because after we 

obtain the distance based tree, reverse 

transformation  of the distance matrix to an 

alignment matrix is impossible. So, we need 

better techniques to handle character or

attributes based tree construction algorithms.



Character-Based Tree Reconstruction 

– Character-based reconstruction 

algorithms use the n x m alignment 

matrix directly instead of using distance 

matrix. 

(n = # of  species, m = # of characters)

– GOAL: determine what character strings at 

internal nodes would best explain the 

character strings for the n observed species



Character-Based Tree 

Reconstruction (cont‟d)

• Characters may be nucleotides, where A, G, C, 

T are states of this character.  Alternately, the 

characters may be the attributes  of the species 

such as the  # of eyes or legs or the shape of a 

beak or a fin. 

• By setting the length of an edge in the tree to be 

the Hamming distance between the end vertices 

of the edge, we may define the parsimony 

score of the tree as the sum of the lengths 

(weights) of the edges.



Parsimony Approach to 

Evolutionary Tree Reconstruction

• Applies Occam‟s razor principle (“keep it 

simple, stupid”) to identify the simplest 

explanation for the data.

• Assumes observed character differences 

resulted from the fewest possible 

mutations.

• Seeks the tree that yields lowest possible 

parsimony score - sum of cost of all 

mutations found in the tree



Parsimony and Tree 

Reconstruction 

A T C G

A T C C

A C C G

Alignment matrix:

n=3,m=4



Character-Based Tree 

Reconstruction (cont‟d)



Score Definition

Given a tree with every vertex labeled by an m-long 

string of characters, length of an edge (v, w) is the 

Hamming distance  dH(v, w) between the strings v and 

w. The parsimony score of the tree is 

The strings at the internal nodes are unknown. The 

problem is to find these strings that minimizes the 

parsimony score. For Small Parsimony problem the 

tree is given but the internal node labels are unknown. 

For Large Parsimony problem both the tree and the 

strings at the internal nodes are unknown.

),(
 treein the   edges all

wvdH



Small Parsimony Problem

• Input: Tree T with each leaves labeled by an m-
character strings.

• Output: Labeling of internal vertices of the tree T
minimizing the parsimony score.

• We can assume that every leaf is labeled by a 
single character, because the characters in the 
string are assumed to be independent. Thus the 
small parsimony problem can be solved 
independently for each character. The final tree 
will be the union of these trees.

• We will start by solving first the weighted 
parsimony problem as defined in the next slide.



Weighted Small Parsimony Problem

• A more general version of Small Parsimony Problem

• Input includes a k X k scoring matrix describing the cost of 
transformation of each of k states into another one. 

• For “Un-weighted”  Small Parsimony problem, the scoring 
matrix has 0 entry at all diagonal positions and has 1 in all 
other positions.  This corresponds to the  Hamming distance 
between the character strings associated with the nodes v
and w of an edge. For a string of only one character

dH(v, w) = 0 if the character for v and w are equal

dH(v, w) = 1 otherwise.



Scoring Matrices

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem



Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Small Parsimony Score:5



Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Weighted Parsimony Score: 22



Weighted Small Parsimony 

Problem: Formulation

• Input: Tree T with each leaf labeled by 

elements of a k-letter alphabet and a k x k

scoring matrix (ij)

• Output: Labeling of internal vertices of the 

tree T minimizing the weighted parsimony 

score



Sankoff Algorithm: Dynamic 

Programming (1975)

• The basic idea is to calculate and keep track of a 

score for every possible label at each vertex. Let 

st(v) = minimum parsimony score of the subtree

rooted at vertex v if v has character t

• The score at each vertex is based on scores of its 

children. If each parent node has two children 

then:

st(parent) = mini {si( left child )   + i, t} + 

minj   {sj( right child ) + j, t}



In other words, for an internal vertex v with children

u and w, the score st(v) can be computed by first

computing   k scores si(u),  and k scores sj(w) 

for 1 <= i, j <= k,  and adding the minimum scores for the

children as (below i,j,t are characters):

The initial conditions  assign the scores st(v) at 

the leaves as: st(v)=0 if v is labeled by the 

character t and otherwise st(v) is infinity ( a very 

large number L). The minimum weighted 

parsimony score is given by the smallest score at

the root.

})({min})({min)( ,, tjjjtiiit wsusvs 



An Example to illustrate the basic approach

A C T G

X=T
Y=T or G

Suppose, the leaves have been assigned initial values A,C.T,G 

in that order. If we assign the internal node X the values A,C,T,G,

the parsimony scores will be

δ(A,A) + δ(A,C) =0+9=9,   δ(C,A) + δ(C,C) =9+0=9,

δ(T,A) + δ(T,C) =3+4=7, δ(G,A) + δ(G,C) =4+4=8.

Thus minimum score 7 is achieved if X=T. By a similar analysis,

we can conclude that Y should be assigned either T or G giving

minimum parsimony score   δ(T,T) + δ(T,G) =0+2=2 or

δ(G,T) + δ(G,G) =2+0=2 , respectively. It is obvious that the root 

Node R must be assigned T to get minimum parsimony score 9.

R=T

3 4 0 2

or 2 or 0

9



Sankoff Algorithm: Two Phase

• In the first phase, the scores at the root vertex are computed by 

going up the tree starting from the leaf nodes. 

• The  initial conditions assign the scores st(v)  at the leaves 

according to the rule st(v)=0 if v is labeled by letter t and st(v) is 

infinity (in practice a very large number L) otherwise. 

• In the second phase, after the scores at root vertex have been  

computed the Sankoff algorithm moves down the tree and assigns 

each vertex with optimal character.

• Note, in general,  it is not possible to assign character while 

travelling up the tree because, as we noted, in our example the 

same minimum score may happen from different choices, We need 

to carry upwards all the possible scores for all possible values in an 

internal node. The next few slides illustrate the algorithm. 

• The algorithm is repeated for each of the m columns of the 

alignment matrix.



0  L   L   L

A  T  G   C

L  L   L   0

A  T  G   C

L  0  L   L

A  T  G   C L  L 0   L

A  T  G   C

L=A very large number

0  L   L   L

A  T  G   C

0  L   L   L

A  T  G   C L   L L 0

A  T  G   C

L  0  L   L

A  T  G  C
L  L 0    L

A  T  G   C

A C T G

The leaves are labeled

by A, C, T, G  in 

that order

9  7  8    9

A  T  G   C

7  2  2    8

A  T  G  C

9  7  8    9

A  T  G   C

7  2  2    8

A  T  G  C

14  9  10 15

A   T  G  C

A
C

T
G

A
C T G

L   L L 0

A  T  G   C

L  0  L   L

A  T  G   C

L  L 0   L

A  T  G   C



Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted 

parsimony score In this case, 9 –

so label with T



Sankoff Algorithm (Trace Back step for 

the dynamic algorithm)
Minimum parsimony 

score 9 is derived from 

score 7+2=9

So left child is T, and right 

child is  also T. Here the right 

child could have been G also 

but making the

root node equal to 

T would have

Increased the 

score by 2

The running time for the

algorithm is  O(nk)



Fitch‟s Algorithm (1971)

• Solves Small Parsimony problem for 

unweighted tree.

• Dynamic programming in essence

• Assigns a set of letter to every vertex in 

the tree.

• If the two children‟s sets of character 

overlap, it‟s the common set of them

• If not, it‟s the combined set of them.



Fitch Algorithm

1) Assign a set of possible letters to every vertex, 

traversing the tree from leaves to root in postorder (Left, 

Right, Self)

• Each node‟s set is the combination of its children‟s sets 

(leaves contain their label). Assume that  the internal 

vertex v has two child nodes u (left) and w(right). The 

set of letters assigned to vertices v , u and w are 

denoted as Sv, Su,Sw, respectively. Then,

E.g. if the node v has a left child labeled Su={A, C} and 

a right child labeled Sw={A, T}, the node will be given 

the set Sv= {A}. If the right child had only Sw= {T}, then

Sv= {A,C,T}.

otherwise       

overlap    and    if   

wu

vuwuv

SS

SSSSS











Fitch Algorithm (cont.)

2) Traverse the tree from root to leaves in 

preorder (Self, Left. Right)

• Assign root arbitrarily from its set of letters

• For all other vertices, if its parent‟s label is 

in its set of letters, assign it its parent‟s 

label

• Else, choose an arbitrary letter from its set 

as its label



Fitch‟s Algorithm

a

a

a

a

a

a

c

c

{t,a}

c

t

t

t

{t,a}

a

{a,c}

{a,c}
a

a

a

aa tc

An example:



Fitch vs. Sankoff

• Both have an O(nk) runtime

• Are they actually different?

• Let‟s compare …



Fitch Algorithm (Another 

Example)



Fitch

As seen previously:



Comparison of Fitch and 

Sankoff
• As seen earlier, the scoring matrix for the Fitch 

algorithm is merely:

• So let‟s do the same problem using Sankoff 
algorithm and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0



Sankoff



Sankoff vs. Fitch

• The Sankoff algorithm gives the same set of 
optimal labels as the Fitch algorithm

• For Sankoff algorithm, character t is optimal for 
vertex v if st(v) = min1<i<ksi(v)
– Denote the set of optimal letters at vertex  v as S(v)

• If S(left child) and S(right child) overlap, S(parent) 
is the intersection

• Else it‟s the union of S(left child) and S(right child) 

• This is also the Fitch recurrence

• The two algorithms are identical



Phylogenetic Tree –a special case of 

maximum parsimony problem

• Let M be a  n x m 0-1 matrix describing n 
species or objects, and let m be the number of 
characters or attributes. Each character takes 
two values 0 or 1.  The matrix element M (p.i)=1 
if the object p has the attribute i. 

1  2  3  4  5

A  1  1  0  0  0

B  0  0  1  0  0

C  1  1  0  0  1    =M

D  0  0  1  1  0

E  0  1  0  0  0
D B

E

A

C

Root

2

1

5
4

3



Given M,  a phylogenetic tree for M is a rooted tree 
T with n leaves that obey the following:

1. Each of the n objects labels one leaf of the tree 
T.

2. Each of the m characters or attributes labels 
exactly one edge of the tree T.

3. For any object p, the characters  that label the 
edges along the unique path from the root to 
the leaf p specify all the characters of p whose 
state is 1.

We assume that the root represents an ancestral object 
that has none of the present characters corresponding 
to an object described by (0  0  0  … 0).

We also assume that each character on the edge mutates 
the state 0 to 1 but there is no back mutation from 1 to 
0.



Perfect Phylogeny Problem

• Given a n x m 0-1 matrix M, determine 
whether there is a phylogenetic tree for M, 
and if so, build one.

It will be convenient  to reorder the matrix M to a “sorted” 
matrix M‟ as follows: Consider each column of M as a 
binary number with most significant bit in row 1 and sort 
the m numbers corresponding to the columns of M in 
decreasing order from left to right, placing the largest 
number in column 1. Obviously, if M‟ has a phylogenetic 
tree, so does M.



D B

E

A

C

Root

1

2

4
5

3

1  2  3  4  5
A  1  1  0  0  0
B  0  0  1  0  0
C  1  1  0  1  0    =M‟
D  0  0  1  0  1
E  1  0  0  0  0

Def: For any column k of M‟, let Qk be the set of 

objects with a 1 in column k. For our example,

Q1=(A,C,E), Q2=(A,C), Q3=(B,D), Q4=(C) and Q5=(D)

Theorem: Matrix M‟ (or M) has a phylogenetic

tree if and only if for every pair of columns ( i, j ),

either Qi and Qj are disjoint or one contains the other.



Phylogenetic Tree Algorithm
1. Sort the numbers corresponding to the columns of

M in decreasing order using O(nm) radix sort, creating 

the sorted matrix M‟.

2. For each row p of M‟, construct the string consisting of the 

characters in sorted (increasing) order, that p possesses. 

(viz. A→12, B → 3,  C → 124,  D → 35,  E → 1).

3. Build the keyword tree T for the n strings constructed

in step 2.

D B

E

A

C

Root

1

2

4
5

3



An Example: no phylogenetic 

tree possible

1  2  3  4  5
A  1  1  0  0  0
B  0  0  1  1  0
C  1  1  1  0  0    
D  0  0  0  1  1
E  1  0  1  0  0

Q1=(A,C,E),  Q2=(A,C), Q3=(B,C,E), Q4=(BD) and Q5=(D).

The set Q3=(B,C,E) is not disjoint nor contained in any other set.

Thus, the matrix does not satisfy the condition of the theorem.



Large Parsimony Problem

• Input: An n x m matrix M describing n 
species, each represented by an m-
character string

• Output: A tree T with n leaves labeled by 
the n rows of matrix M, and a labeling of 
the internal vertices such that the 
parsimony score is minimized over all 
possible trees and all possible labelings of 
internal vertices



Large Parsimony Problem 

(cont.)
• Possible search space is huge, especially 

as n increases

– (2n – 3)!! possible rooted trees

– (2n – 5)!! possible unrooted trees

• Problem is NP-complete

– Exhaustive search only possible w/ small n(< 

10)

• Hence, branch and bound or heuristics 

used


