
Molecular Evolution

Outline

• Evolutionary Tree Reconstruction

• “Out of Africa” hypothesis

• Did we evolve from Neanderthals?

• Distance Based Phylogeny

• Neighbor Joining Algorithm

• Additive Phylogeny

• Least Squares Distance Phylogeny

• UPGMA

• Character Based Phylogeny

• Small Parsimony Problem

• Fitch and Sankoff Algorithms

• Large Parsimony Problem

Early Evolutionary Studies

• Anatomical features were the dominant
criteria used to derive evolutionary
relationships between species since
Darwin till early 1960s

• The evolutionary relationships derived
from these relatively subjective
observations were often inconclusive.
Some of them were later proved incorrect

Evolution and DNA Analysis:

the Giant Panda Riddle

• For roughly 100 years scientists were unable to
figure out which family the giant panda belongs to

• Giant pandas look like bears but have features that
are unusual for bears and typical for raccoons, e.g.,
they do not hibernate

• In 1985, Steven O‟Brien and colleagues solved the
giant panda classification problem using DNA
sequences and algorithms

Evolutionary Tree of Bears and Raccoons

Evolutionary Trees: DNA-based Approach

• 40 years ago: Emile Zuckerkandl and
Linus Pauling brought reconstructing
evolutionary relationships with DNA into
the spotlight

• In the first few years after Zuckerkandl and
Pauling proposed using DNA for
evolutionary studies, the possibility of
reconstructing evolutionary trees by DNA
analysis was hotly debated

• Now it is a dominant approach to study
evolution.

Emile Zuckerkandl on human-gorilla

evolutionary relationships:

From the point of hemoglobin structure, it appears

that gorilla is just an abnormal human, or man an

abnormal gorilla, and the two species form actually

one continuous population.

Emile Zuckerkandl,

Classification and Human Evolution, 1963

Gaylord Simpson vs. Emile Zuckerkandl:

From the point of hemoglobin structure, it appears

that gorilla is just an abnormal human, or man an

abnormal gorilla, and the two species form actually

one continuous population.

Emile Zuckerkandl,

Classification and Human Evolution, 1963

From any point of view other than that properly

specified, that is of course nonsense. What the

comparison really indicate is that hemoglobin is a bad

choice and has nothing to tell us about attributes, or

indeed tells us a lie.

Gaylord Simpson, Science,

1964

Who are closer?

Out of Africa Hypothesis

• Around the time the giant panda riddle

was solved, a DNA-based reconstruction

of the human evolutionary tree led to the

Out of Africa Hypothesis that claims our

most ancient ancestor lived in Africa

roughly 200,000 years ago

Human Evolutionary Tree (cont‟d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm

The Origin of Humans:

”Out of Africa” vs Multiregional Hypothesis

Out of Africa:
– Humans evolved in

Africa ~150,000
years ago

– Humans migrated
out of Africa,
replacing other
humanoids around
the globe

– There is no direct
descendents from
Neanderthals

Multiregional:

• Humans evolved in the last two

million years as a single species.

• Independent appearance of

modern traits in different areas

• Humans migrated out of Africa

mixing with other humanoids on

the way

• There is a genetic continuity from

Neanderthals to humans

mtDNA analysis supports

“Out of Africa” Hypothesis

• African origin of humans inferred from:

– African population was the most diverse

(sub-populations had more time to diverge)

– The evolutionary tree separated one group

of Africans from a group containing all five

populations.

– Tree was rooted on branch between

groups of greatest difference.

Human Migration Out of Africa

http://www.becominghuman.org

1. Yorubans

2. Western Pygmies

3. Eastern Pygmies

4. Hadza

5. !Kung

1

2
3

4

5

Two Neanderthal Discoveries

Feldhofer,
Germany

Mezmaiskaya,
Caucasus

Distance:
25,000km

Two Neanderthal Discoveries

•Is there a connection between Neanderthals and today‟s Europeans?

•If humans did not evolve from Neanderthals, whom did we evolve from?

Multiregional Hypothesis?

• Many predict some genetic continuity from

the Neanderthals through to the Cro-

Magnons up to today‟s Europeans

• Can explain the occurrence of varying

regional characteristics

Evolutionary trees

• A tree with leaves = species, and edge

lengths representing evolutionary time

• Internal nodes also species: the ancestral

species

• Also called “phylogenetic tree”

• How to construct such trees from data?

Tree Construction Algorithms

The evolutionary tree construction

algorithms can be broadly divided into two

basic categories:

1. Distance based methods: input consists of

evolutionary distance data and output is a

weighted tree whose pair-wise distances “agree”

with the given evolutionary data. If the data is

ultrametric, there is an elegant solution. If the data

is not ultrametric but additive, there is also an

efficient algorithm. Otherwise, “approximate”

algorithms have to be developed.

2. Maximum Parsimony methods: These are “character”

(an observable trait or characteristic, which

sometime may be linked to a DNA or amino acid

sequence, but need not always one).

The goal is to build a tree, whose leaves represent the

taxa or species and the internal nodes represent

ancestral taxa such that the total number of

“mutations “ implied by the tree is minimized . This

is also referred to as “maximizing parsimony” in the

literature. If the input taxa are represented by

molecular sequences, the tree corresponds to a

Phylogenetic alignment with minimum cost over all

trees.

Evolutionary Trees

How are these trees built from DNA

sequences?

– leaves represent existing species

– internal vertices represent ancestors

– If the tree is “rooted”, then the root represents

the oldest evolutionary ancestor

Rooted and Unrooted Trees

In the unrooted tree the position of

the root (“oldest ancestor”) is

unknown. Otherwise, they are like

rooted trees

Weighted BinaryTrees

• Internal vertices have degree 3

• Edges (v,w) have weights reflecting:

– # of mutations on the evolutionary path from v to

w (one species to another)

or

– Time estimate for evolution from v to w (one

species to another).

Molecular Clock

• t(v)= time corresponding to the “moment”

when the species v produced its

descendents

• t(w) = time corresponding to the “moment”

when the species w produced its

descendents

• t(w)- t(v)= weight of the edge (v,w)

• Every leaf has time t=0

• Every internal node has “past” or negative

time.

Distance Based Methods

Distance in Trees: an Example

d1,4 = 12 + 13 + 14 + 17 + 13 = 69

i

j

In a tree T, we often compute tree distance

dij(T) between i and j.

dij(T) - the length of a path between leaves i

and j

Distance Matrix

• Given n species, we can compute the n x n

distance matrix Dij

• Dij may be defined as the edit distance between

a gene in species i and a gene in species j. We

assume that the genes of interest have been

sequenced for all n species.

Or

• It could be some other experimental data viz.

gene expression level difference in a microarray

Fitting Distance Matrix

• Given n species, we can compute the n x

n distance matrix Dij

• Evolution of these genes is described by a

tree that we don’t know. Let T be such a

tree and

• dij(T) – tree distance between i and j

• We need an algorithm to construct a tree

that best fits the distance matrix Dij

Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)

Reconstructing a Tree with 3 Leaf nodes

• Tree reconstruction for any 3x3 matrix is
straightforward

• We have 3 leaf nods i, j, k and an internal
center node c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

Reconstructing a 3 Leaved Tree (cont‟d)

dic + djc = Dij

+ dic + dkc = Dik

2dic + djc + dkc = Dij + Dik

2dic + Djk = Dij + Dik

dic = (Dij + Dik – Djk)/2
Similarly,

djc = (Dij + Djk – Dik)/2

dkc = (Dki + Dkj – Dij)/2

Trees with > 3 Leaf nodes

• A tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance

matrix D requires solving a system of “n choose

2” equations with 2n-3 variables, which is not

always possible to solve for n > 3.

• For example, if n=4, we have a system of 6

equations with 2n-3=5 variables

• But, there is a special case when these

equations can be solved: it is the case for the

additive tree.

Additive Distance Matrices

Matrix D is

ADDITIVE if there

exists a tree T with

dij(T) = Dij

NON-ADDITIVE

otherwise

Distance Based Tree Problem

• Goal: Reconstruct an evolutionary tree

from a distance matrix

• Input: n x n distance matrix Dij

• Output: weighted tree T with n leaves

fitting D

• If D is additive, this problem has a solution

and there is a simple algorithm to solve it

Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k

• Remove the rows and columns of i and j

• Add a new row and column corresponding to k,
where the distance from k to any other leaf m can
be computed as: 2Dkm = Dim + Djm – Dij

Compress i and

j into k. Iterate

for rest of tree

Dkm =(Dim + Djm – Dij)/2

Finding Neighboring Leaves

• But, how to find the neighboring leaves of an

unknown tree?

• Select a pair of closest leaves?

Finding Neighboring Leaves

• But, how to find the neighboring leaves of an

unknown tree?

• Select a pair of closest leaves?

WRONG

Finding Neighboring Leaves

• Closest leaves aren‟t necessarily neighbors

• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is

a nontrivial problem! For the moment, we

postpone this approach.

Degenerate Triples

• A degenerate triple is a set of three distinct
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on
the evolutionary path from i to k (or is
attached to this path by an edge of length
0).

i k

j

0
j

Looking for Degenerate Triples

• If distance matrix D has a degenerate triple i,j,k
then j can be “removed” from D thus reducing
the size of the problem.

• If distance matrix D does not have a
degenerate triple i,j,k, one can “create” a
degenerate triple in D by shortening all hanging
edges (edge leading to a leaf) in the tree.

Shortening Hanging Edges to

Produce Degenerate Triples

• Shorten all “hanging” edges (edges that

connect leaves) until a degenerate triple is

found

Finding Degenerate Triples

• If there is no degenerate triple, all hanging edges

are reduced by the same amount δ, so that all pair-

wise distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves

(when δ equals the length of shortest hanging

edge), forming a degenerate triple i,j,k and reducing

the size of the distance matrix D.

• The attachment point for j can be recovered in the

reverse transformations by saving Dij for each

collapsed leaf.

Reconstructing

Trees for Additive

Distance

Matrices.

Actually, during

construction, you

cannot see the graph.

The graph is obtained

during the reverse

construction starting

from T2 to T3 until Tn.

During forward phase,

you only change the

distance matrix.

Shortening of the Hanging Edge

If we reduce length of every hanging edge (an edge leading to

a leaf) by an amount δ, then the distance matrix of the resulting

tree becomes (dij-2δ) since the distance between any two

leaves is reduced by 2δ. If we continue this process, it will

eventually lead to the “collapse” of one of the leaves when δ is

equal to the length of the shortest hanging edge. At this point,

the tree T=Tn with n leaves will be transformed in to a tree with

n-1 leaves, Tn-1. Thus the transformations Tn->Tn-1->…T3->T2

is possible. Since T2 is a tree with only one edge, we can

easily construct it and then reverse the transformation as

T2->T3->…Tn-1->Tn recovering the information about collapsed

edges at every step. We now make a more formal description

of the algorithm.

Additive Tree Algorithm

1. Additive(D)

2. if D is a 2 x 2 matrix

3. T = tree of a single edge of length D1,2

4. return T

5. if D is non-degenerate

6. δ = trimming parameter of matrix D

7. for all 1 ≤ i ≠ j ≤ n

8. Dij = Dij - 2δ

9. else

10. δ = 0

Additive Algorithm (cont‟d)

11. Find a triple i, j, k in D such that Dij + Djk = Dik

12. x = Dij

13. Remove jth row and jth column from D
14. T = Additive(D)
15. Add a new vertex v to T at distance x from i to k
16. Add j back to T by creating an edge (v,j) of length 0
17. for every leaf l in T
18. if distance from l to v in the tree ≠ Dl,j

19. output “matrix is not additive”
20. return
21. Extend all “hanging” edges by length δ
22. return T

Additive Algorithm(Cont‟d)

• This algorithm checks if the matrix D is

additive, and if so, returns the tree T.

• How to compute the trimming parameter δ ?

• The algorithm has O(n4) time complexity

because the matrix has to be tested for

degeneracy for all triplets taking O(n3) time

• And the recursive call takes place O(n) times.

• As we will see later we can construct an

additive tree via ultrametric tree construction.

The Four Point Condition

• Additive Algorithm provides a way to

check if distance matrix D is additive

• An even more efficient additivity check

is the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a

tree

The Four Point Condition (cont‟d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3

2 and 3 represent

the same number:

the length of all

edges + the

middle edges

(they are counted

twice)

1 represents a

smaller

number: the

length of all

edges

skipping the

middle edge

Let 1 ≤ i,j,k,l ≤ n be four distinct indices. Compute the 3 sums

The Four Point Condition

• If D is an additive matrix then these three

sums can be represented by a tree with

four leaves as shown in the previous slide.

• The elements 1 ≤ i,j,k,l ≤ n satisfy the four-

point condition if two of the sums Dij + Dkl,

Dil + Djk are same and the third sum Dik +

Djl is smaller than these two.

The Four Point Condition: Theorem

• The four point condition for the quartet i,j,k,l is

satisfied if two of these sums are the same, with

the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and

only if the four point condition holds for every

quartet 1 ≤ i,j,k,l ≤ n

• An algorithm to construct an additive tree based

on four point theorem has complexity O(n4) and

is very inefficient.

• (We will return to Additive Tree construction after

we discuss Ultrametric Trees)

Least Squared Distance Problem

• If the distance matrix D is NOT additive, then we look
for a tree T that approximates D the best:

Squared Error : ∑i,j (dij(T) – Dij)
2

Squared Error is a measure of the quality of the fitness
between distance matrix and the tree: we want to
minimize it.

• Least Squares Distance Problem: Given the input
nxn distance matrix (Di,j), find a weighted tree T with n
leaves minimizing Squared Error

• ∑i,j (dij(T) – Dij)
2

• finding the best approximation tree T for a non-additive
matrix D is NP-hard.

Ultrametric Tree and

Distances

Let D be a nXn symmetric matrix with real numbers.

An ultrametric tree for D is a rooted tree T with the

following properties:

1. T has n leaves, each labeled by a unique row of D

2. Each internal node of T is labeled by one real

number from D and has at least two children.

3. Along any path in the tree from root to a leaf, the

numbers are strictly decreasing.

4. For any two leaves i and j , D(i,j) is the label of the

least common ancestor of i and j in T.

(For simplicity, assume D(i,i)≠ D(i,j) for all j ≠I, and

D(i,i)=0)

A B C D E

A 0 8 8 5 3

B 0 3 8 8

C 0 8 8

D 0 5

E 0

3

8

5

3

A E

D B C

8

6

4

2

0
A

3 3 3

55

8

E D B C

“Three Point Condition” – Ultrametric

Matrix

Definition: A symmetric matrix D of real numbers

defines an ultrametric distance if for any three

indices i, j and k, there is a tie for the maximum of

D(i,j), D(i,k) and D(j,k). That is, two of the distances

are equal and the third is less than the maximum.

i j k

u

v

The Basic Theorem

Theorem: A symmetric matrix D has an

ultrametric tree if and only if D is an ultrametric

matrix.

It is easy to see that if D has an ultrametric tree

then D is an ultrametric matrix. The converse is

proved by giving a constructive algorithm to

obtain an ultrametric tree T for D.

a1

a2

a3

ap

i

If there are p distinct entries in row i of D then

any ultrametric tree T for D must have a path

from the root to the leaf i with exactly p nodes,

and the entries must appear in strict

decreasing order. Furthermore, any

Internal node v in this path labeled

D(i, j) must be the least common

ancestor of leaf i and leaf j.

This fixes where leaf j must

appear in T relative to the

path of leaf i. Thus, the

path i partitions the

remaining n-1 leaves in p-1 classes.
j

Call this partition P. Leaf nodes j and k belong to the

same partition of P if and only if D(i, j)=D(i, k). Thus,

each node in the path to i gives rise to a distinct

partition in P.

We could now solve the ultrametric tree problem

recursively on each class and connect these trees

to form the ultrametric tree for the full matrix D

A B C D E

A

B

C

D

E

0 8 8 5 3

8

5

3

A

30 3 8 8

0 8 8

0 5
0

B
C

D

E

A Symmetric

ultrametric

Matrix An ultrametric tree for

the matrix.

8

5

3

A

B,C

D

E

A B C D E F G H

A

B

C

D

E

F

G

H

0 4 3 4 5 4 3 4

5

4

3

A C,G

B,D,F,H

E

Without loss of generality, we can make the first row of the matrix to be one of the rows

having the maximum value of all the entries in the matrix. Label this row to be A. Its

distinct set of non-zero real numbers are (3,4,5) . Form a path from root of the tree with

strictly decreasing numbers (5,4,3) ending with the leaf node labeled A. The set of

columns associated with numbers (5,4,3) viz. [(E), (B,D,F,H), (C,G)] are attached as

right child of the internal nodes 5, 4 and 3, respectively. The resulting tree is ultrametric

if and only if the submatrices formed by the right child sets are in their turn also

ultrametric. Repeat the construction step recursively for each of the subsets for the

right children. The tree is unique – if D is an ultrametric matrix then the ultrametric tree

for D is unique. The construction time for building the tree is O(n2). Why?

The Transformations D->T->T’->D’ : Reduction of Additive Tree

problem to Ultrametric Tree problem in time O(n2)

Assume D is additive and T is the corresponding additive tree**. Let v be the row

in D with max entry (viz. row A, Max value mv=9). Construct a tree T „ which is a

sort of a copy of T with node rooted at v marked as the root and all leafs are

equidistant from the root by adding the difference mv – D(v,i) to each edge

leading to leaf i. These differences for nodes B,C and D are 6,0 and 2,

respectively. Also, note that each internal node is equidistant to any leaf node in

its subtree.
A B

C D

2

3

4 2

1

C D

3

4+(0) 2 +(2)

1+ (6)

v=A

B

2A B C D

A 0 3 9 7

B 0 8 6

C 0 6

D 0

D

T T „

** We can use the AdditivePhylogeny(D) algorithm for this purpose now. But, we are

going to develop a more efficient algorithm in the following slides.

The Transformations D->T->T’->D’ (contd.)

Now, label each internal node in T „ with the unique distance from it to any of the

leaves in the Tree. These are 9,7 and 4 for our example, which are non-increasing.

We can now define an ultrametric matrix D‟ where D‟(i,j) is the label at the least

common ancestor of leaves i and j in T „.

C D

4

A

B

7

9

2

1+(6)

3

4+0 2+(2)

D’
T’

We will show soon how to build the original additive matrix D and the tree T from D‟

A B C D
A

B

C

D

0 9 9 9

0 7 7

0 4

0

But, in the above transformations, we needed both T and T ‟. The

question is : without knowing T and T ‟, can we derive the ultrametric

matrix D‟(i,j) directly? Yes. This is how:

i j

w

v

x

y z

Consider two leaves i and j of T, and let w be their least common ancestor.

We can deduce their equal distance to w without the knowledge of T ‟.

With reference to Figure , we have:

D(v,i) = x+y,

D(v,j) = x+z,

D(i,j) = y+z

which gives

2x= (x+y)+(x+z)-(y+z) = D(v,i)+D(v,j) – D(i,j)

or x= [D(v,i)+D(v,j) – D(i,j)]/2

y= D(v,i)-x

z= D(v,j) -x

Now, the distance from w to i is

y+mv –D(v,i)= (D(v,i)-x) +mv –D(v,i) (substituting y= D(v,i)-x for y

=mv –x

= mv – [D(v,i)+D(v,j) – D(i,j).]/2

= mv + [D(i,j)- D(v,i)-D(v,j)]/2

Similarly, the distance from w to j is mv +[D(i,j) - D(v,i)-D(v,j)]/2

Thus, we have

Lemma: Without knowing T and T „, we can deduce

D‟(i,j)= mv +[D(i,j) - D(v,i)- D(v,j)]/2

And we can state the theorem

Theorem: If D is an additive matrix, then D‟ is an

ultrametric matrix where

D‟(i,j)= mv +[D(i,j) - D(v,i)- D(v,j)]/2

The converse of the theorem is

Theorem: If Matrix D‟ is ultrametric, then matrix

D is additive.

Proof: Let T * be the the ultrametric tree for D‟ (we cannot

take T‟ which is yet unknown). First, assign weights to edges

of T * such that the path from any leaf node i to its parent

node w has a distance equal to the label of the node w. To

do this, assign to each edge (p,q) the absolute difference

between the two numbers written at nodes p and q. As a

result, the path-distance between any pair of leaf nodes

(i,j) is exactly twice the number appearing at their common

ancestor. Now, since T * is ultrametric tree for D‟ ,

this distance must be : 2xD‟(i,j)=2mv + D(I,j) – D(v,i) –D(v,j)

Now, do the reverse arithmetic on the edge weights, that is,

“shrink” leaf edge going to the leaf node i by mv - D(v,i).

The makes the tree distance between leaf nodes i and j to

be exactly D(i,j). This final step created the additive tree for

D from the ultrametric tree D‟.

C D

4

A

B

7

T *

9
9

7

4
4

2

3

C D

2

A

B

T

1

4

2

3

0

C D

2

A B

T

1

4

2

3

Additive Tree Algorithm :

1. Create matrix D‟ from D and construct the ultrametric tree T “ from D‟.

2. Next, assign an edge label to each edge equal to the absolute difference

between the node labels of its endpoints.

3. Then for each leaf i. subtract mv –D(v,i) from the distance on the edge into leaf i.

The resulting tree is the additive tree for the matrix D.

B C D
A 9 9 9

B 7 7

C 4

D’

A B C D

A 0 3 9 7

B 0 8 6

C 0 6

D 0

D

Theorem: The additive tree algorithm takes

O(n2) time.

Character Based Trees

Why Character Based Tree?

For evolutionary tree construction, we typically

start with an nxm alignment matrix (n species,

m nucleotides in each). This can be transformed

to a distance matrix and then we can use the

distance based tree construction algorithms as

discussed earlier. But, some information gets

lost during this transformation because after we

obtain the distance based tree, reverse

transformation of the distance matrix to an

alignment matrix is impossible. So, we need

better techniques to handle character or

attributes based tree construction algorithms.

Character-Based Tree Reconstruction

– Character-based reconstruction

algorithms use the n x m alignment

matrix directly instead of using distance

matrix.

(n = # of species, m = # of characters)

– GOAL: determine what character strings at

internal nodes would best explain the

character strings for the n observed species

Character-Based Tree

Reconstruction (cont‟d)

• Characters may be nucleotides, where A, G, C,

T are states of this character. Alternately, the

characters may be the attributes of the species

such as the # of eyes or legs or the shape of a

beak or a fin.

• By setting the length of an edge in the tree to be

the Hamming distance between the end vertices

of the edge, we may define the parsimony

score of the tree as the sum of the lengths

(weights) of the edges.

Parsimony Approach to

Evolutionary Tree Reconstruction

• Applies Occam‟s razor principle (“keep it

simple, stupid”) to identify the simplest

explanation for the data.

• Assumes observed character differences

resulted from the fewest possible

mutations.

• Seeks the tree that yields lowest possible

parsimony score - sum of cost of all

mutations found in the tree

Parsimony and Tree

Reconstruction

A T C G

A T C C

A C C G

Alignment matrix:

n=3,m=4

Character-Based Tree

Reconstruction (cont‟d)

Score Definition

Given a tree with every vertex labeled by an m-long

string of characters, length of an edge (v, w) is the

Hamming distance dH(v, w) between the strings v and

w. The parsimony score of the tree is

The strings at the internal nodes are unknown. The

problem is to find these strings that minimizes the

parsimony score. For Small Parsimony problem the

tree is given but the internal node labels are unknown.

For Large Parsimony problem both the tree and the

strings at the internal nodes are unknown.

),(
 treein the edges all

wvdH

Small Parsimony Problem

• Input: Tree T with each leaves labeled by an m-
character strings.

• Output: Labeling of internal vertices of the tree T
minimizing the parsimony score.

• We can assume that every leaf is labeled by a
single character, because the characters in the
string are assumed to be independent. Thus the
small parsimony problem can be solved
independently for each character. The final tree
will be the union of these trees.

• We will start by solving first the weighted
parsimony problem as defined in the next slide.

Weighted Small Parsimony Problem

• A more general version of Small Parsimony Problem

• Input includes a k X k scoring matrix describing the cost of
transformation of each of k states into another one.

• For “Un-weighted” Small Parsimony problem, the scoring
matrix has 0 entry at all diagonal positions and has 1 in all
other positions. This corresponds to the Hamming distance
between the character strings associated with the nodes v
and w of an edge. For a string of only one character

dH(v, w) = 0 if the character for v and w are equal

dH(v, w) = 1 otherwise.

Scoring Matrices

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem

Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Small Parsimony Score:5

Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Weighted Parsimony Score: 22

Weighted Small Parsimony

Problem: Formulation

• Input: Tree T with each leaf labeled by

elements of a k-letter alphabet and a k x k

scoring matrix (ij)

• Output: Labeling of internal vertices of the

tree T minimizing the weighted parsimony

score

Sankoff Algorithm: Dynamic

Programming (1975)

• The basic idea is to calculate and keep track of a

score for every possible label at each vertex. Let

st(v) = minimum parsimony score of the subtree

rooted at vertex v if v has character t

• The score at each vertex is based on scores of its

children. If each parent node has two children

then:

st(parent) = mini {si(left child) + i, t} +

minj {sj(right child) + j, t}

In other words, for an internal vertex v with children

u and w, the score st(v) can be computed by first

computing k scores si(u), and k scores sj(w)

for 1 <= i, j <= k, and adding the minimum scores for the

children as (below i,j,t are characters):

The initial conditions assign the scores st(v) at

the leaves as: st(v)=0 if v is labeled by the

character t and otherwise st(v) is infinity (a very

large number L). The minimum weighted

parsimony score is given by the smallest score at

the root.

})({min})({min)(,, tjjjtiiit wsusvs 

An Example to illustrate the basic approach

A C T G

X=T
Y=T or G

Suppose, the leaves have been assigned initial values A,C.T,G

in that order. If we assign the internal node X the values A,C,T,G,

the parsimony scores will be

δ(A,A) + δ(A,C) =0+9=9, δ(C,A) + δ(C,C) =9+0=9,

δ(T,A) + δ(T,C) =3+4=7, δ(G,A) + δ(G,C) =4+4=8.

Thus minimum score 7 is achieved if X=T. By a similar analysis,

we can conclude that Y should be assigned either T or G giving

minimum parsimony score δ(T,T) + δ(T,G) =0+2=2 or

δ(G,T) + δ(G,G) =2+0=2 , respectively. It is obvious that the root

Node R must be assigned T to get minimum parsimony score 9.

R=T

3 4 0 2

or 2 or 0

9

Sankoff Algorithm: Two Phase

• In the first phase, the scores at the root vertex are computed by

going up the tree starting from the leaf nodes.

• The initial conditions assign the scores st(v) at the leaves

according to the rule st(v)=0 if v is labeled by letter t and st(v) is

infinity (in practice a very large number L) otherwise.

• In the second phase, after the scores at root vertex have been

computed the Sankoff algorithm moves down the tree and assigns

each vertex with optimal character.

• Note, in general, it is not possible to assign character while

travelling up the tree because, as we noted, in our example the

same minimum score may happen from different choices, We need

to carry upwards all the possible scores for all possible values in an

internal node. The next few slides illustrate the algorithm.

• The algorithm is repeated for each of the m columns of the

alignment matrix.

0 L L L

A T G C

L L L 0

A T G C

L 0 L L

A T G C L L 0 L

A T G C

L=A very large number

0 L L L

A T G C

0 L L L

A T G C L L L 0

A T G C

L 0 L L

A T G C
L L 0 L

A T G C

A C T G

The leaves are labeled

by A, C, T, G in

that order

9 7 8 9

A T G C

7 2 2 8

A T G C

9 7 8 9

A T G C

7 2 2 8

A T G C

14 9 10 15

A T G C

A
C

T
G

A
C T G

L L L 0

A T G C

L 0 L L

A T G C

L L 0 L

A T G C

Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted

parsimony score In this case, 9 –

so label with T

Sankoff Algorithm (Trace Back step for

the dynamic algorithm)
Minimum parsimony

score 9 is derived from

score 7+2=9

So left child is T, and right

child is also T. Here the right

child could have been G also

but making the

root node equal to

T would have

Increased the

score by 2

The running time for the

algorithm is O(nk)

Fitch‟s Algorithm (1971)

• Solves Small Parsimony problem for

unweighted tree.

• Dynamic programming in essence

• Assigns a set of letter to every vertex in

the tree.

• If the two children‟s sets of character

overlap, it‟s the common set of them

• If not, it‟s the combined set of them.

Fitch Algorithm

1) Assign a set of possible letters to every vertex,

traversing the tree from leaves to root in postorder (Left,

Right, Self)

• Each node‟s set is the combination of its children‟s sets

(leaves contain their label). Assume that the internal

vertex v has two child nodes u (left) and w(right). The

set of letters assigned to vertices v , u and w are

denoted as Sv, Su,Sw, respectively. Then,

E.g. if the node v has a left child labeled Su={A, C} and

a right child labeled Sw={A, T}, the node will be given

the set Sv= {A}. If the right child had only Sw= {T}, then

Sv= {A,C,T}.

otherwise

overlap and if

wu

vuwuv

SS

SSSSS









Fitch Algorithm (cont.)

2) Traverse the tree from root to leaves in

preorder (Self, Left. Right)

• Assign root arbitrarily from its set of letters

• For all other vertices, if its parent‟s label is

in its set of letters, assign it its parent‟s

label

• Else, choose an arbitrary letter from its set

as its label

Fitch‟s Algorithm

a

a

a

a

a

a

c

c

{t,a}

c

t

t

t

{t,a}

a

{a,c}

{a,c}
a

a

a

aa tc

An example:

Fitch vs. Sankoff

• Both have an O(nk) runtime

• Are they actually different?

• Let‟s compare …

Fitch Algorithm (Another

Example)

Fitch

As seen previously:

Comparison of Fitch and

Sankoff
• As seen earlier, the scoring matrix for the Fitch

algorithm is merely:

• So let‟s do the same problem using Sankoff
algorithm and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Sankoff

Sankoff vs. Fitch

• The Sankoff algorithm gives the same set of
optimal labels as the Fitch algorithm

• For Sankoff algorithm, character t is optimal for
vertex v if st(v) = min1<i<ksi(v)
– Denote the set of optimal letters at vertex v as S(v)

• If S(left child) and S(right child) overlap, S(parent)
is the intersection

• Else it‟s the union of S(left child) and S(right child)

• This is also the Fitch recurrence

• The two algorithms are identical

Phylogenetic Tree –a special case of

maximum parsimony problem

• Let M be a n x m 0-1 matrix describing n
species or objects, and let m be the number of
characters or attributes. Each character takes
two values 0 or 1. The matrix element M (p.i)=1
if the object p has the attribute i.

1 2 3 4 5

A 1 1 0 0 0

B 0 0 1 0 0

C 1 1 0 0 1 =M

D 0 0 1 1 0

E 0 1 0 0 0
D B

E

A

C

Root

2

1

5
4

3

Given M, a phylogenetic tree for M is a rooted tree
T with n leaves that obey the following:

1. Each of the n objects labels one leaf of the tree
T.

2. Each of the m characters or attributes labels
exactly one edge of the tree T.

3. For any object p, the characters that label the
edges along the unique path from the root to
the leaf p specify all the characters of p whose
state is 1.

We assume that the root represents an ancestral object
that has none of the present characters corresponding
to an object described by (0 0 0 … 0).

We also assume that each character on the edge mutates
the state 0 to 1 but there is no back mutation from 1 to
0.

Perfect Phylogeny Problem

• Given a n x m 0-1 matrix M, determine
whether there is a phylogenetic tree for M,
and if so, build one.

It will be convenient to reorder the matrix M to a “sorted”
matrix M‟ as follows: Consider each column of M as a
binary number with most significant bit in row 1 and sort
the m numbers corresponding to the columns of M in
decreasing order from left to right, placing the largest
number in column 1. Obviously, if M‟ has a phylogenetic
tree, so does M.

D B

E

A

C

Root

1

2

4
5

3

1 2 3 4 5
A 1 1 0 0 0
B 0 0 1 0 0
C 1 1 0 1 0 =M‟
D 0 0 1 0 1
E 1 0 0 0 0

Def: For any column k of M‟, let Qk be the set of

objects with a 1 in column k. For our example,

Q1=(A,C,E), Q2=(A,C), Q3=(B,D), Q4=(C) and Q5=(D)

Theorem: Matrix M‟ (or M) has a phylogenetic

tree if and only if for every pair of columns (i, j),

either Qi and Qj are disjoint or one contains the other.

Phylogenetic Tree Algorithm
1. Sort the numbers corresponding to the columns of

M in decreasing order using O(nm) radix sort, creating

the sorted matrix M‟.

2. For each row p of M‟, construct the string consisting of the

characters in sorted (increasing) order, that p possesses.

(viz. A→12, B → 3, C → 124, D → 35, E → 1).

3. Build the keyword tree T for the n strings constructed

in step 2.

D B

E

A

C

Root

1

2

4
5

3

An Example: no phylogenetic

tree possible

1 2 3 4 5
A 1 1 0 0 0
B 0 0 1 1 0
C 1 1 1 0 0
D 0 0 0 1 1
E 1 0 1 0 0

Q1=(A,C,E), Q2=(A,C), Q3=(B,C,E), Q4=(BD) and Q5=(D).

The set Q3=(B,C,E) is not disjoint nor contained in any other set.

Thus, the matrix does not satisfy the condition of the theorem.

Large Parsimony Problem

• Input: An n x m matrix M describing n
species, each represented by an m-
character string

• Output: A tree T with n leaves labeled by
the n rows of matrix M, and a labeling of
the internal vertices such that the
parsimony score is minimized over all
possible trees and all possible labelings of
internal vertices

Large Parsimony Problem

(cont.)
• Possible search space is huge, especially

as n increases

– (2n – 3)!! possible rooted trees

– (2n – 5)!! possible unrooted trees

• Problem is NP-complete

– Exhaustive search only possible w/ small n(<

10)

• Hence, branch and bound or heuristics

used

