Gene expression & Clustering

Determining gene function

- Sequence comparison tells us if a gene is similar to another gene, e.g., in a new species
 - Dynamic programming
 - Approximate pattern matching
- Genes with similar sequence likely to have similar function
- Doesn't always work.
 - "Homologous" genes may not be similar enough at the sequence level, to be detected this way
- New method to determine gene function: directly measure gene activity (DNA arrays)

DNA Arrays--Technical Foundations

- An array works by exploiting the ability of a given mRNA molecule to hybridize to the DNA template.
- Using an array containing many DNA samples in an experiment, the expression levels of hundreds or thousands genes within a cell by measuring the amount of mRNA bound to each site on the array.
- With the aid of a computer, the amount of mRNA bound to the spots on the microarray is precisely measured, generating a profile of gene expression in the cell.

Gene expression

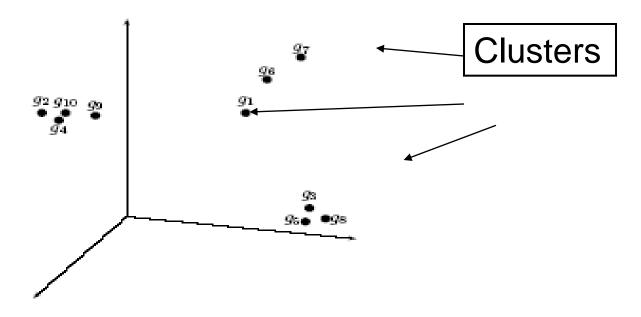
- Microarray gives us an *n* x *m* expression matrix *I*
 - Each of n rows corresponds to a gene
 - Each of m columns corresponds to a condition or time point
 - Each column comes from one microarray
- *I*(*j*,*k*) is the expression level of gene *j* in condition/experiment *k*
- If two genes (rows) have similar "expression profiles", then
 - they may be related in function
 - they may be "co-regulated"

Clustering of Microarray Data

Time	$1 \mathrm{hr}$	2 hr	$3 \mathrm{hr}$		g_1	g_2	g_3	g_4	g_5	$g_{\rm B}$	g_7	g_8	g_9	g_{10}
g_1	10.0	8.0	10.0	g_1	-0.0	8.1	9.2	7.7	9.3	2.3	-5.1	10.2	6.1	7.0
g_2	10.0	0.0	9.0	g_2	-8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	4.0	8.5	3.0	g_3	-9.2	12.0	0.0	11.2	0.7	11.1	-8.1	1.1	10.5	11.5
94	9.5	0.5	8.5	g_4	-7.7	0.9	11.2	0.0	11.2	9.2	-9.5	12.0	1.6	1.1
g_5	4.5	8.5	2.5	g_5	9.3	12.0	-0.7	11.2	0.0	11.2	-8.5	-1.0	10.6	11.6
g_6	10.5	9.0	12.0	<i>9</i> 8	2.3	9.5	11.1	9.2	11.2	0.0	-5.6	12.1	7.7	8.5
g_7	5.0	8.5	11.0	g_7	5.1	10.1	8.1	9.5	8.5	5.6	0.0	-9.1	8.3	9.3
g_8	2.7	8.7	2.0	g_8	10.2	12.8	1.1	12.0	1.0	12.1	-9.1	-0.0	11.4	12.4
g_9	9.7	2.0	9.0	99	6.1	2.0	10.5	1.6	10.6	-7.7	8.3	11.4	0.0	1.1
g_{10}	10.2	1.0	9.2	<i>g</i> 10	-7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

(a) Intensity matrix, I

(b) Distance matrix, d.



(c) Expression patterns as points in three-dimentisional space.

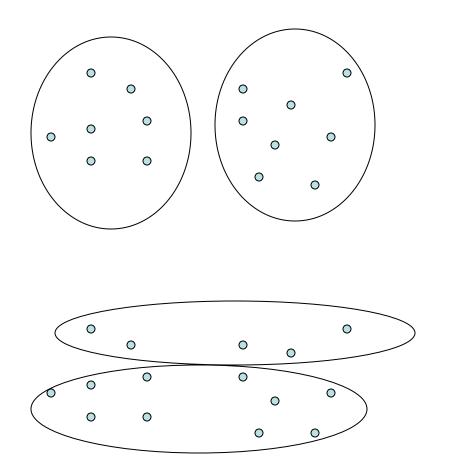
Clustering

- Find groups of genes that have similar expression profiles to one another
- Such groups may be functionally related, and/or co-regulated
- Compute pairwise distance metric d(i,j) for every pair of genes i and j
- This gives an n x n "distance matrix" d

Goal of clustering

- To group together genes into clusters such that
 - Genes within a cluster have highly similar expression profiles (small d(i,j)): "homogeneity"
 - Genes in different clusters have very different expression profiles (large d(i,j)): "separation"
- "Good" clustering is one that adheres to these goals
- A really "good" clustering is decided by biological interpretation of the clusters

The Points are in some multi-dimensional space



Good Clustering

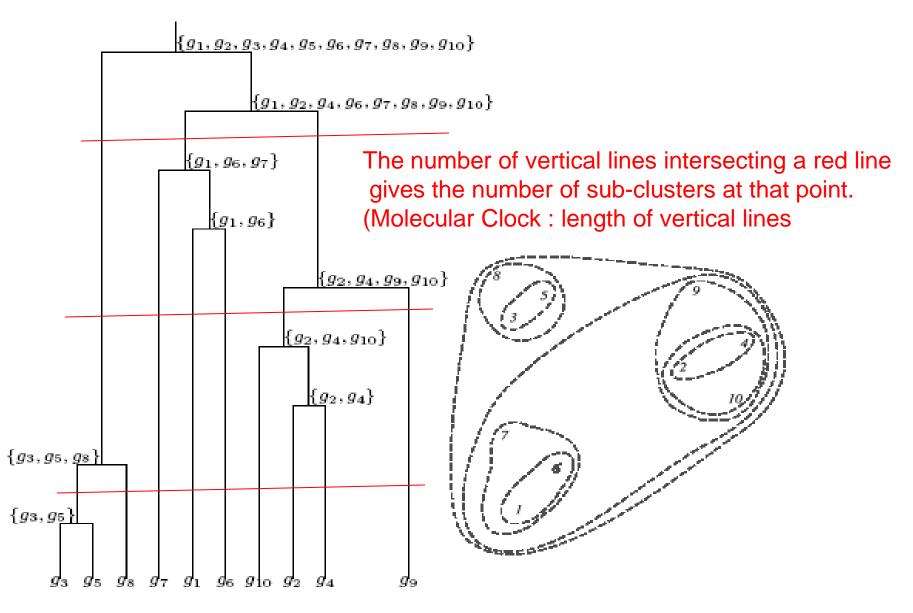
Clustering problems

- How to measure distance/similarity ?
- How many clusters ?
- Very large data sets: ~10,000 gene, ~100 conditions create computational difficulties

Hierarchical clustering

- One approach to clustering
- Does not explicitly partition genes into groups
- Organizes genes into a tree; genes are at the leaves of the tree
- Edges have lengths
- Total path length between two genes (leaves) correlates with the distance between the genes

Hierarchical Clustering



Hierarchical Clustering Algorithm

- 1. <u>Hierarchical Clustering</u> (*d*, *n*)
- 2. Form *n* clusters each with one element
- 3. Construct a graph *T* by assigning one vertex to each cluster
- 4. while there is more than one cluster
- 5. Find the two closest clusters C_1 and C_2
- 6. Merge C_1 and C_2 into new cluster C with $|C_1| + |C_2|$ elements
- 7. Compute distance from *C* to all other clusters
- 8. Add a new vertex C to T and connect to vertices C_1 and C_2
- 9. Remove rows and columns of *d* corresponding to C_1 and C_2
- 10. Add a row and column to *d* corresponding to the new cluster *C*
- 11. return *T*

Different ways to define distances between clusters may lead to different clusterings

Hierarchical Clustering: Recomputing Distances

 $d_{min}(C, C^*) = \min d(x,y)$ for all elements x in C and y in C^{*}

 Distance between two clusters is the smallest distance between any pair of their elements

> $d_{avg}(C, C^*) = (1 / |C^*||C|) \sum d(x,y)$ for all elements x in C and y in C^{*}

 Distance between two clusters is the average distance between all pairs of their elements

K-means clustering

- Another popular solution to the clustering problem
- Guess a number k, which is the number of clusters that will be reported
- Finds explicit clusters (unlike hierarchical clustering)

The Problem

- Given a set of *n* data points $V = (v_1, v_2, \dots, v_n)$
 - Each data point is a vector in an m-dimensional spaceand an integer k, the problem is to determine a set of k points or *centers* in m-dimensional space that minimizes the squared error distortion as defined below.
- Let X=(x₁,x₂,...,x_k) be a set of k points in the same vector space
- For each v_i , find $x \in X$ that is closest to it, i.e., the Euclidian distance $d(v_i, x)$ is least
- Sum the square of this Euclidian distance, over all v_i
- Formally, $d(v_i, X) = \min_{x \in X} d(v_i, x)$

$$d(V,X) = \frac{\sum_{i=1}^{n} d(v_i,X)^2}{n}$$

Objective function

- Find X such that d(V,X) is minimized
- Input: A set, V, consisting of n points and a parameter k
- Output: A set X consisting of k points (*cluster centers*) that minimizes the d(V,X) over all possible choices of X
- An NP-complete problem for k > 1

K-Means Clustering: Lloyd Algorithm

- 1. Lloyd Algorithm
- 2. Arbitrarily assign the *k* cluster centers
- 3. while the cluster centers keep changing
- 4. Assign each data point to the cluster C_i corresponding to the closest cluster representative (center) $(1 \le i \le k)$
- 5. After the assignment of all data points, compute new cluster representatives according to the center of gravity of each cluster, that is, the new cluster representative is

 $\Sigma v / |C|$ for all v in C for every cluster C

*This may lead to merely a locally optimal clustering.

Conservative K-Means Algorithm

- Lloyd algorithm is fast but in each iteration it moves many data points, not necessarily causing better convergence.
- A more conservative method would be to move one point at a time only if it improves the overall clustering cost
 - The smaller the clustering cost of a partition of data points is, the better that clustering is
 - Different methods (e.g.,d(V,X) we saw earlier) can be used to measure this clustering cost

K-Means "Greedy" Algorithm

- 1. <u>ProgressiveGreedyK-Means(k)</u>
- 2. Select an arbitrary partition *P* into *k* clusters
- 3. while forever
- 4. bestChange $\leftarrow 0$
- 5. for every cluster *C*
- 6. for every element *i* not in *C*
- 7. if moving *i* to cluster *C* reduces its clustering cost
- 8. if $(cost(P) cost(P_i \rightarrow C)) > bestChange$
- 9. $bestChange \leftarrow cost(P) cost(P_{i \rightarrow C})$
- 10. $i^* \leftarrow i$
- $11. \qquad C^* \leftarrow C$
- **12.** if *bestChange* > 0
- 13. Change partition *P* by moving i^* to C^*
- *14.* else
- 15. return *P*

UPGMA: Unweighted Pair Group Method with Arithmetic Mean

- UPGMA is a clustering algorithm that:
 - computes the distance between clusters using average pairwise distance
 - –assigns a *height* to every vertex in the tree
- Does not require an additive distance matrix. Output tree does not necessarily match the distance matrix for every pair of nodes

Clustering in UPGMA

Given two disjoint clusters C_i, C_j of sequences,

$$d_{ij} = \frac{1}{|C_i| \times |C_j|} \sum_{\{p \in Ci, q \in Cj\}} d_{pq}$$

 Algorithm is a variant of the hierarchical clustering algorithm

UPGMA Algorithm

<u>UPGMA (*D* , *n*)</u>

- 1. Form *n* clusters each with a single element
- 2. Construct a graph *T* by assigning one vertex to each cluster
- 3. Assign height h(v)=0 to every vertex v in the graph
- 4 while there is more than one cluster
- 5. Find the two closest clusters C_1 and C_2
- 6. Merge C_1 and C_2 into new cluster C with $/C_1/ + /C_2/$ elements
- 7. for every cluster $C^* \neq C$ compute

$$D(C,C^{*}) = \frac{1}{|C||C^{*}|} \sum_{i \text{ in } C} \sum_{j \text{ in } C^{*}} D(i,j)$$

8. Add a new vertex C to T and connect to vertices C_1 and C_2

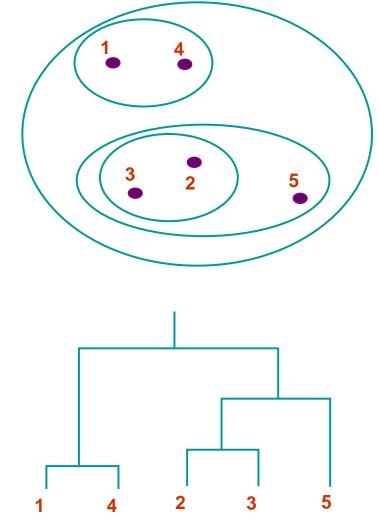
9.

$$h(C) \leftarrow \frac{D(C_1, C_2)}{2}$$

- 10. Assign length $h(C) h(C_1)$ to edge (C₁,C)
- 11. Assign length $h(C) h(C_2)$ to edge (C₂,C)
- 12. Remove rows and columns of *D* corresponding to C_1 and C_2
- 13. Add a row and column to *D* corresponding to the new cluster *C*

14. return *T*

UPGMA Algorithm (cont'd)



UPGMA's Weakness

- The algorithm produces an ultrametric tree : the distance from the root to any leaf is the same
- UPGMA assumes a constant molecular clock: all species represented by the leaves in the tree are assumed to accumulate mutations (and thus evolve) at the same rate. This is a major pitfall of UPGMA.

Neighbor Joining Algorithm

The neighbor joining algorithm works well with additive trees, does not assume any molecular clock and generates clusters that satisfy homogeneity and separation criteria. For a cluster C, define u(C) as

$$u(C) = \frac{1}{\text{number of clusters - 2}} \sum_{\text{all clusters } C'} D(C, C')$$

- To choose which two clusters to merge, the algorithm minimizes $D(C_1, C_2) u(C_1) u(C_2)$
 - (The theory behind this algorithm is complex and is left out here.)

NeighborJoining (*D*,*n*)

- 1. Form *n* clusters, each with a single element
- Construct a graph *T* by assigning a vertex to each cluster 2.
- 3.
- *while* there is more than one cluster Find clusters C_1, C_2 minimizing $D(C_1, C_2) u(C_1) u(C_2)$ 4.
- Merge C_1, C_2 into a new cluster C of size $|C_1|, + |C_2|$ 5.

6 Compute
$$D(C,C^*) = \frac{D(C_1,C) + D(C_2,C)}{2}$$
 to every other cluster C*

Add vertex C_1 to T and connect to vertices C_1 and C_2 Assign length $\frac{1}{2}^{D(C_1, C_2) + \frac{1}{2}(u(C_1) - u(C_2))}$ to edge (C_1, C) 7 8.

Assign length $\frac{1}{2}D(C_1, C_2) + \frac{1}{2}(u(C_2) - u(C_1))$ to edge (C_2, C) 9.

- Remove rows and columns of D corresponding to C_1 and C_2 10.
- Add a row and column to D for the new cluster C 11

12. **Return** T

Sources

- <u>http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf</u>
- <u>http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf</u>
- <u>http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimu</u> <u>m_spanning_tree.htm</u>
- Serafim Batzoglou (UPGMA slides) http://www.stanford.edu/class/cs262/Slides
- Watkins, W.S., Rogers A.R., Ostler C.T., Wooding, S., Bamshad M. J., Brassington A.E., Carroll M.L., Nguyen S.V., Walker J.A., Prasas, R., Reddy P.G., Das P.K., Batzer M.A., Jorde, L.B.: Genetic Variation Among World Populations: Inferences From 100 Alu Insertion Polymorphisms