
Hidden Markov Models

Chapter 11



CG “islands”

• The dinucleotide “CG” is rare

– C in a “CG” often gets “methylated” and the 

resulting C then mutates to T

• Methylation is suppressed in some areas of 

genome, called “CG islands”

• Such CG islands often found around genes

• Problem: find CG islands in whole genome



CG 

island normal

high CG rare CG

• Two states. 

• Each state emits sequence.

• Sequence emitted by “CG island” state is 

high in CG frequency

• Concatenation of sequence emissions = genome



Biased

coin

Fair

coin

more “H” equal “H” & “T”

• Two states. 

• Each state emits a “coin toss” result.

• Sequence emitted by “Biased coin” state is 

high in “Heads” frequency



CG Islands and the “Fair Bet Casino”

• The CG islands problem can be modeled after a 

problem named “The Fair Bet Casino”

• The game is to flip coins, which results in only two 

possible outcomes: Head or Tail.

• The Fair coin will give Heads and Tails with same 

probability ½.

• The Biased coin will give Heads with prob. ¾.



The “Fair Bet Casino” (cont’d)

• Thus, we define the probabilities:

– P(H|F) = P(T|F) = ½

– P(H|B) = ¾, P(T|B) = ¼

– The crooked dealer chages between 
Fair and Biased coins with probability  
10%



The Fair Bet Casino Problem

• Input: A sequence x = x1x2x3…xn of coin 

tosses made by two possible coins (F or 

B).

• Output: A sequence π = π1 π2 π3… πn, 

with each πi being either F or B indicating 

that xi is the result of tossing the Fair or 

Biased coin respectively.



Problem…

Fair Bet 

Casino 

Problem

Any observed 

outcome of coin 

tosses could 

have been 

generated by 

any sequence 

of states!

Need to incorporate a 

way to grade different 

sequences differently.

Decoding Problem



Hidden Markov Model (HMM)
• Can be viewed as an abstract machine with k 

hidden states that emits symbols from an 

alphabet Σ.

• Each state has its own probability distribution, and 

the machine switches between states according 

to this probability distribution.

• While in a certain state, the machine makes 2 

decisions:

– What state should I move to next?

– What symbol - from the alphabet Σ - should I 

emit?



Why “Hidden”?

• Observers can see the emitted symbols 

of an HMM but have no ability to know 

which state the HMM is currently in.

• Thus, the goal is to infer the most likely 

hidden states of an HMM based on the 

given sequence of emitted symbols.



HMM Parameters

Σ: set of emission characters.

Ex.: Σ = {H, T} for coin tossing

Q: set of hidden states, each emitting 

symbols from Σ.

Q={F,B} for coin tossing



HMM Parameters (cont’d)

A = (akl): a |Q| x |Q| matrix of probability of 
changing from state k to state l.

aFF = 0.9     aFB = 0.1

aBF = 0.1     aBB = 0.9

E = (ek(b)): a |Q| x |Σ| matrix of probability of 
emitting symbol b while being in state k.

eF(0) = ½     eF(1) = ½ 

eB(0) = ¼     eB(1) = ¾ 



HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem



Hidden Paths
• A path π = π1… πn in the HMM is defined as a sequence 

of states.

• Consider path π = FFFBBBBBFFF and sequence x = 
01011101001

x 0     1     0    1     1      1    0      1    0     0     1

π      =        F   F   F   B   B   B   B   B   F   F   F

P(xi|πi)               ½   ½    ½    ¾   ¾    ¾    ¼ ¾    ½   ½   ½ 

P(πi-1  πi) ½   9/10
9/10      

1/10      
9/10      

9/10      
9/10     

9/10    
1/10     

9/10     
9/10

Transition probability from state πi-1 to state πi

Probability that xi was emitted from state πi



P(x|π) Calculation

• P(x,π): Probability that sequence x was 

generated by the path π:
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Decoding Problem

• Goal: Find an optimal hidden path of states 

given observations.

• Input: Sequence of observations x = x1…xn

generated by an HMM M(Σ, Q, A, E)

• Output: A path that maximizes P(x,π) over all 

possible paths π.



Dynamic programming for the 

Decoding Problem

• Andrew Viterbi used Dynamic programming 
to solve the Decoding Problem.

• Build a graph with one node for every (i,j), 
representing the possibility that the ith position 
of π was emitted from state j.

• Every choice of π = π1… πn corresponds to a 
path in the graph.

• Edges are weighted. Sum of edge weights on 
a path π corresponds to P(x,π)



Graph for Decoding Problem



Decoding Problem

• Every path in the graph has the probability 

P(x,π).

• The Viterbi algorithm finds the path that 

maximizes P(x,π) among all possible paths.

• The Viterbi algorithm runs in O(n|Q|2) time.



Decoding Problem: weights of 

edges

w

The weight w is given by:

???

(k, i) (l, i+1)



Decoding Problem: weights of 

edges

w

The weight w is given by:

??

(k, i) (l, i+1)

n

P(x,π) = Π e πi (xi) . a πi-1, πii=1



Decoding Problem: weights of 

edges

w

The weight  w=el(xi+1). akl

(k, i) (l, i+1)

i+1-th term = e πi+1 (xi+1) . a πi, πi+1

= el(xi+1). akl



Dynamic programming recurrence

• sk,i is the probability of the most likely path 

for the prefix x1…xi that ends in k

• sl,i+1 = maxk {sk,i x weight of edge from (k,i) to 

(l,i+1)}

= maxk {sk,i akl el(xi+1)}

• Let π* be the optimal path. Then,

P(x,π*) = maxk {sk,n . ak,end}

• Time complexity: O(n |Q|2)



Viterbi Algorithm

• The value of the product can become 
extremely small, which leads to 
overflowing.

• To avoid overflowing, use log value 
instead: Sk,i = log sk,i

• New recurrence:

Sl,i+1= logel(xi+1) + max k {Sk,i  + log(akl)}



Forward-Backward Problem

Given: a sequence x = x1 x2 …xn

generated    by an HMM.

Goal: find the probability that xi was 

generated by state k.

That is, given x, what is P(πi=k | x) ?



Forward Algorithm

• Define fk,i (forward probability) as the 
probability of emitting the prefix x1…xi and 
reaching the state π = k.

• The recurrence for the forward algorithm:

fk,i = ek(xi) . Σ fl,i-1 . alk
l Є Q



Backward Algorithm

• However, forward probability is not the only 

factor affecting P(πi = k|x).

• The sequence of transitions and emissions 

that the HMM undergoes between πi+1 and πn

also affect P(πi = k|x).

forward      xi backward



Backward Algorithm (cont’d)

• Define backward probability bk,i as the 
probability of being in state πi = k and 
emitting the suffix xi+1…xn.

• The recurrence for the backward algorithm:

bk,i = Σ el(xi+1) . bl,i+1 . akl  
l Є Q



Backward-Forward Algorithm

• The probability that the dealer used a 
biased coin at any moment i:

P(x, πi = k)       fk(i) . bk(i)
P(πi = k|x) = _______________ = ______________

P(x)                 P(x)

P(x) is the sum of P(x, πi = k) over all k


