Hidden Markov Models
Chapter 11



CG “Islands”

The dinucleotide “CG” is rare

— Cin a “CG” often gets “methylated” and the
resulting C then mutatesto T

Methylation is suppressed in some areas of
genome, called “CG islands”

Such CG islands often found around genes
Problem: find CG islands in whole genome



high CG rare CG

CG

Island ’

* TWO states.
e Each state emits seguence.
« Sequence emitted by “CG island” state is
high in CG frequency
« Concatenation of sequence emissions = genome



more “H” equal “H” & “T”

Biased
coin

* TWO states.

« Each state emits a “coin toss” result.

« Sequence emitted by “Biased coin” state is
high in “Heads” frequency



CG Islands and the “Fair Bet Casino”

The CG islands problem can be modeled after a
problem named

The game is to flip coins, which results in only two
possible outcomes: Head or Tall.

The Fair coin will give Heads and Tails with same
probabillity Y.

The Biased coin will give Heads with prob. %a.



The “Fair Bet Casino” (contd)

* Thus, we define the probabillities:
—P(H|F) = P(T|F) =%
—P(H|B) = %, P(T|B) = %
—The crooked dealer chages between

Fair and Biased coins with probability
10%




The Fair Bet Casino Problem

A sequence X = X;X,X5...X, Of coin
tosses made by two possible coins (F or
B).

A sequence 1T =1y M, My... T,
with each m; being either F or B indicating
that x; Is the result of tossing the Fair or
Biased coin respectively.



Problem...

Need to incorporate a
way to grade different
sequences differently.

Any observed @
outcome of coin

tosses could
have been J
generated by
any seguence

of states!




Hidden Markov Model (HMM)

« Can be viewed as an abstract machine with k
hidden states that emits symbols from an
alphabet 2.

« Each state has its own probability distribution, and
the machine switches between states according
to this probability distribution.

 While Iin a certain state, the machine makes 2
decisions:

— What state should | move to next?

— What symbol - from the alphabet > - should |
emit?



Why “Hidden”?

* Observers can see the emitted symbols
of an HMM but have no ability to know
which state the HMM is currently in.

* Thus, the goal Is to infer the most likely
hidden states of an HMM based on the
given sequence of emitted symbols.



HMM Parameters

: set of emission characters.
Ex.: 2 = {H, T} for coin tossing

. set of hidden states, each emitting
symbols from 2.

Q={F,B} for coin tossing



HMM Parameters (contd)

a |Q| x |Q| matrix of probability of
changing from state k to state |.

a=09 a=01
ag-=0.1 agg=0.9
a |Q| x || matrix of probability of
emitting symbol b while being in state k.
er(0) =% eg(l) ="
eg(0) =% eg(1) =%



HMM for Fair Bet Casino (contqd)

H |

HMM model for the Fair Bet Casino Problem



Hidden Paths

« A m=rm,... T, Inthe HMM is defined as a sequence
of states.

« Consider path m = FFFBBBBBFFF and sequence x =
01011101001

Probability that x; was emitted from state 7z

X 0 1 0 1 1 1 0 1 0 0 1
I F FFBBBBIBFFF
P(x|n,) Vo Vo Vo 34 3 3 Va 34 V2 V2

P(ni-l 9 nI) . 1/2 9/10 9/10 1/10 9/10 9/10 9/10 9/10 1/10 9/10 9/10 /

Transition probability from state n,, to state n.



P(x|tr) Calculation

Probability that sequence x was
generated by the path

P(x.7) = Pz, > m)] [Pl > m.0)P(x, | 7)
= ﬁ P(ziy — m;)P(X | ;)

= H a, €. (Xi)



Decoding Problem

Find an optimal hidden path of states
given observations.

Sequence of observations x = x;...x,
generated by an HMM M(2, Q, A, E)

A path that maximizes P(x,m) over all
possible paths 1.



Dynamic programming for the
Decoding Problem

Andrew Viterbi used Dynamic programming
to solve the Decoding Problem.

Build a graph with one node for every (i,)),
representing the possibility that the it position
of m was emitted from state |.

Every choice of m = m,... T, corresponds to a
path in the graph.

Edges are weighted. Sum of edge weights on
a path m corresponds to P(x,r)



Graph for Decoding Problem
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Decoding Problem

« Every path in the graph has the probability
P(x, ).

* The Viterbi algorithm finds the path that
maximizes P(x,1m) among all possible paths.

« The Viterbi algorithm runs in O(n|QJ?) time.



Decoding Problem: weights of
edges

o " S
(k, 1) (1, i+1)

The weight w is given by:

7777



Decoding Problem: weights of
edges

N
P(x,m) :izl'll em(X). am, m
o " e
(k, 1) (1, i+1)

The weight w is given by:

?7?



Decoding Problem: weights of
edges

i+1-thterm=e nmyy (Xiy1) - @ m
= €(Xj41)- &y

o " TSe

(k, 1) (1, i+1)

Mi+q

The weight w=e/(x,,,). a,



Dynamic programming recurrence

* S, Is the probability of the most likely path
for the prefix x,...x; that ends in k

* S|4 = Max,{s,; x weight of edge from (ki) to

(1,i+1)}
— MaxX {Sk,i Ay eI(Xi+1)}
 Let i be the optimal path. Then,
P(x,7m") = max {Sy» - &ena}
+ Time complexity: O(n |Q|?)



Viterbi Algorithm

* The value of the product can become
extremely small, which leads to
overflowing.

* To avoid overflowing, use log value
Instead: S, ;= log sy ;

e New recurrence:
Sii+1= loge|(Xi) + max, {Sy; + log(a,)}



Forward-Backward Problem

a sequence X = X; X, ...X,
generated by an HMM.

find the probabillity that x;, was
generated by state k.

That is, given x, what is P(1r=k | X) ?




Forward Algorithm

* Define f; (forward probability) as the
probability of emitting the prefix x,...x; and
reaching the state = = k.

* The recurrence for the forward algorithm:

i = elXy) - %{)fl,i-l - Qi




Backward Algorithm

 However, forward probability is not the only
factor affecting P(z; = k|x).

* The sequence of transitions and emissions
that the HMM undergoes between z;,, and z,
also affect P(z; = k|x).

forward  x; backward




Backward Algorithm (contad)

Define backward probability b, . as the
probability of being In state m; = k and
emitting the suffix x;,,...X,.

The recurrence for the backward algorithm:

by i = E}C%(Xm) DBy - By




Backward-Forward Algorithm

* The probabillity that the dealer used a
biased coin at any moment I:

P(X, @ = k) B f(1) . By (1)
PG)  P(X)

P(m; = k|x) =

P(x) Is the sum of P(x, m; = k) over all k



