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Turnip vs Cabbage: Look and Taste Different

• Although cabbages and turnips share a 

recent common ancestor, they look and taste 

different
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Turnip vs Cabbage: Comparing Gene Sequences 

Yields No Evolutionary Information
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Turnip vs Cabbage: Almost Identical 

mtDNA gene sequences

• In 1980s Jeffrey Palmer studied evolution 
of plant organelles by comparing 
mitochondrial genomes of the cabbage and 
turnip

• 99% similarity between genes

• These surprisingly identical gene 
sequences differed in gene order

• This study helped pave the way to 
analyzing genome rearrangements in 
molecular evolution
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Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:
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Turnip vs Cabbage: Different mtDNA Gene Order
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Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Before

After

Evolution is manifested as the divergence in 

gene order
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Transforming Cabbage into Turnip
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• What are the similarity (synteny) blocks and how 
to find them?

• What is the architecture of the ancestral 
genome?

• What is the evolutionary scenario for 
transforming one genome into the other?

Unknown ancestor

~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements
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History of Chromosome X

Rat Consortium, Nature, 2004
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Reversals

• Blocks represent conserved genes.

1 32

4

10

5
6

8

9

7

1, 2, 3, 4,  5,  6,   7,  8, 9, 10
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Reversals
1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks 1,…,10 
could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.
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Reversals and Breakpoints
1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).
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Reversals: Example

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break 

and 

Invert
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Types of Rearrangements

Reversal

1  2  3  4  5 6 1  2 -5 -4 -3 6

Translocation
1  2  3  

4 5  6

1  2 6  

4 5 3 

1  2  3  4  

5  6
1  2  3  4  5  6

Fusion

Fission
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Comparative Genomic Architectures: 

Mouse vs Human Genome
• Humans and mice 

have similar genomes, 

but their genes are 

ordered differently

• ~245 rearrangements

• Reversals

• Fusions

• Fissions

• Translocation
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Waardenburg’s Syndrome: Mouse Provides 

Insight into Human Genetic Disorder

• Waardenburg’s syndrome is characterized by 
pigmentary dysphasia (such as two differently colored 
eyes coupled with hearing problem).

• Gene implicated in the disease was linked to human 
chromosome 2 but it was not clear where exactly it is 
located on chromosome 2 
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Waardenburg’s syndrome and splotch mice

• A breed of mice (with splotch gene) had 
similar symptoms caused by the same type 
of gene as in humans

• Scientists succeeded in identifying location 
of gene responsible for disorder in mice

• Finding the gene in mice gives clues to 
where the same gene is located in humans
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Comparative Genomic Architecture of 

Human and Mouse Genomes

To locate where 

corresponding 

gene is in 

humans, we 

have to analyze 

the relative 

architecture of  

human and 

mouse genomes
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Gene Order
There are groups of genes in a mice that appear in the 
same order as they do in humans. These genes are likely 
to be present in some common ancient mammalian 
genome. The human genome is just a mouse genome cut 
into about 300 synteney blocks that have been pasted 
together in a different order. 

For example, the chromosome 2 in humans is built from 
fragments that are similar to mouse genomes residing in 
chromosome 1,2,3,5,6,7,10,11,12,14 and 17.

This phenomenon is called genome rearrangement. About 
250 genome rearrangements have occurred since the 
divergence of human and mice 80 million years ago.
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Genome Rearrangement

The combinatorial problem that we are interested is to 
find a minimum (most parsimonious) number of reversals 
or inversions that transform one genome into another. 
While there is no guarantee that this scenario represents 
an actual evolutionary sequence ( excluding 
translocation, fusion or fission), this gives a lower bound 
on the number of rearrangement events that occurred 
and indicates similarity between two species.

The exhaustive gene finding algorithms that we 
discussed earlier do not work well for rearrangement 
studies because the number of possible variants is very 
large.
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Reversals and Gene Orders

• The order of genes in a genome can be represented 

by a permutation (For simplicity we are ignoring 

directionality which needs signed permutation) p:  

p   = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

 Reversal r ( i, j ) reverses (flips) the 

elements from i to j in p

r(i,j)
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Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r(3,5)

1 2 5 4 3 6 7 8
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Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8
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Reversal Distance Problem
• Goal: Given two permutations, find the shortest 

series of reversals that transforms one into another

• Input: Permutations p and s

• Output: A series of reversals r1,…rt transforming p
into s, such that t is minimum

• t - reversal distance between p and s

• d(p, s) - smallest possible value of t, given p and s.

If we set s =(1,2,3,   , n), it becomes Sorting by 
Reversal problem and the input is simply p
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Sorting By Reversals Problem

• Goal: Given a permutation, find a shortest 
series of reversals that transforms it into the 
identity permutation (1 2 … n ) 

• Input: Permutation p

• Output: A series of reversals r1, … rt
transforming p into the identity permutation 
such that t is minimum
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Sorting By Reversals: Example

• t =d(p ) - reversal distance of p
• Example :

p =  3  4 2  1  5  6  7  10  9  8

4  3  2  1 5   6  7  10  9  8

4  3  2  1 5  6  7    8  9 10

1  2  3  4  5  6  7    8  9 10

So d(p ) = 3
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Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: g 1 2 3 4 5 6 7 8
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Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8
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Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8

What is the reversal distance for this 
permutation? Can it be sorted in 3 steps? 
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Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 3 6 4 5, the first 
three elements are already in order so it does 
not make any sense to break them. 

• The length of the already sorted prefix of p is 
denoted prefix(p)

• prefix(p) = 3

• This results in an idea for a greedy algorithm: 
increase prefix(p) at every step
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• Doing so, p can be sorted

1 2 3 6 4 5 

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of 
length n is at most (n – 1)

Greedy Algorithm: An Example
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Greedy Algorithm: Pseudocode

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i )

3    if j ≠i

4       p  p . r(i, j)

5       output p

6    if p is the identity permutation 

7      return
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Pancake Flipping Problem

• The chef is sloppy; he 

prepares an unordered stack 

of pancakes of different sizes

• The waiter wants to 

rearrange them (so that the 

smallest winds up on top, 

and so on, down to the 

largest at the bottom)

• He does it by flipping over 

several from the top, 

repeating this as many times 

as necessary

Christos Papadimitrou and 
Bill Gates flip pancakes
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Pancake Flipping Problem: Formulation

• Goal: Given a stack of n pancakes, what is 

the minimum number of flips to rearrange 

them into perfect stack?

• Input: Permutation p

• Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation 

such that t is minimum
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Pancake Flipping Problem: Greedy Algorithm

• Greedy approach: 2 prefix reversals at most 

to place a pancake in its right position, 2n – 2

steps total

at most

• William Gates and Christos Papadimitriou 

showed in the mid-1970s that this problem 

can be solved by at most 5/3 (n + 1) prefix 

reversals
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Analyzing SimpleReversalSort

• SimpleReversalSort chooses the “best” reversal at every 
step – simply increase prefix(p ) - but does not 
guarantee the smallest number of reversals.  It takes five 
steps on  p = 6 1 2 3 4 5 :

• Step 1: 1 6 2 3 4 5

• Step 2: 1 2 6 3 4 5 

• Step 3: 1 2 3 6 4 5

• Step 4: 1 2 3 4 6 5

• Step 5: 1 2 3 4 5 6

• But it can be sorted in two steps:

p =  6 1 2 3 4 5

• Step 1:  5 4 3 2 1 6     

• Step 2:  1 2 3 4 5 6          So, SimpleReversalSort(p) is not optimal
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Approximation Algorithms

• These algorithms find approximate solutions 
rather than optimal solutions

• The approximation ratio of an algorithm A on 
input p is:

A(p) / OPT(p)

where 

A(p) -solution produced by algorithm A                 
OPT(p) - optimal solution of the problem
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Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) 

of algorithm A: max approximation ratio of all 

inputs of size n, that is, as

• max|p| = n [A(p) / OPT(p)]

We assume that A is a  minimization  

algorithm which minimizes the  objective 

function, that is, it minimizes the maximum 

number of reversals and the ratio gives the 

worst case scenario. 
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p = p1p2p3…pn-1pn

• A pair of elements p i and p i + 1 are adjacent if 

pi+1 = pi + 1

• For example:

p = 1  9  3  4  7  8  2  6  5

• (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints
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There is a breakpoint between any adjacent 
element that are non-consecutive:

p = 1  9  3  4  7  8  2  6  5

• Pairs  (1,9), (9,3), (4,7), (8,2) and (2,5) form 
breakpoints of permutation p 

• b(p) - # breakpoints in permutation p

Breakpoints: An Example
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Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are 

consecutive

• A breakpoint - a pair of adjacent elements that are not 

consecutive

π = 5  6  2  1  3  4

0  5  6  2  1  3  4  7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7
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• We put two elements p 0 =0 and p n + 1=n+1 at 

the ends of p

Example: 

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1  9  3  4  7  8  2  6  5

p = 0 1  9  3  4  7  8  2  6  5 10
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 Each reversal eliminates at most 2 breakpoints.

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7 b(p) = 5

0 1  3  2 4  6  5  7 b(p) = 4

0 1  2  3  4  6  5 7 b(p) = 2

0 1  2  3  4  5  6  7 b(p) = 0

Reversal Distance and Breakpoints
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 Each reversal eliminates at most 2 breakpoints.

 This implies: 

reversal distance  ≥  #breakpoints / 2

p = 2  3  1  4  6  5

0 2  3  1 4  6  5 7 b(p) = 5

0 1  3  2 4  6  5  7 b(p) = 4

0 1  2  3  4  6  5 7 b(p) = 2

0 1  2  3  4  5  6  7 b(p) = 0

Reversal Distance and Breakpoints
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Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   choose 
reversal r minimizing b (p • r)

3 p  p • r (i, j)

4 output p

5 return
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Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,   
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return

Problem: this algorithm may work forever. How can we 
make sure that removing some breakpoints does not 
introduce others, leading to an endless cycle. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Strips
• Strip: an interval between two consecutive 

breakpoints in a permutation, that is, any 
maximal segments without breakpoints. Strips 
are further divided into:

• Decreasing strip: strip of elements in 
decreasing order (e.g. 6 5 and 3 2 ).

• Increasing strip: strip of elements in increasing 
order (e.g. 7 8)

0 1  9  4  3  7  8  2  5  6 10
A single-element strip can be declared either increasing or 

decreasing. We will choose to declare them as decreasing with 
exception of the strips with 0 and n+1
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Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one 

decreasing strip, then there exists a 

reversal r which decreases the number of 

breakpoints (i.e. b(p • r) < b(p) )
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Things To Consider
• For p = 1 4 6 5 7 8 3 2  

0 1  4  6  5  7  8  3  2  9 b(p) = 5

• Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 
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Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2  

0 1  4  6  5  7  8  3  2 9 b(p) = 5

• Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 
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Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2  

0 1 4  6  5  7  8  3  2 9 b(p) = 5

• Choose decreasing strip with the smallest 

element k in p ( k = 2 in this case) 

• Find k – 1 in the permutation
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Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2  

0 1 4  6  5  7  8  3  2 9 b(p) = 5

• Choose decreasing strip with the smallest 
element k in p ( k = 2 in this case) 

• Find k – 1 in the permutation

• Reverse the segment between k and k-1:

• 0 1 4  6  5  7  8  3  2 9 b(p) = 5

• 0 1 2 3  8  7  5  6  4 9 b(p) = 4
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Reducing the Number of 

Breakpoints Again

• If there is no decreasing strip, there may be 
no reversal r that reduces the number of 
breakpoints (i.e. b(p • r)  ≥ b(p) for any  
reversal r). 

• By reversing an increasing strip ( # of 
breakpoints stay unchanged ), we will create 
a decreasing strip at the next step. Then the 
number of breakpoints will be reduced in the 
next step (theorem 1).
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Things To Consider (cont’d)

• There are no decreasing strips in p, for:

p = 0 1  2  5  6  7  3  4 8    b(p) = 3

p • r(6,7) = 0 1  2  5  6  7  4  3  8 b(p) = 3

r(6,7) does not change the # of breakpoints

r(6,7) creates a decreasing strip thus 
guaranteeing that the next step will decrease 
the # of breakpoints.
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ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2     if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that   minimizes b(p • r)

4     else
5        Choose a reversal r that flips an increasing strip in p

6   p  p • r

7      output p
8  return
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• ImprovedBreakPointReversalSort is an approximation 

algorithm with a performance guarantee of at most 4. 

Implicitly it means that the “no progress” situation is rare.

• It eliminates at least one breakpoint in every two 

steps;  at most 2b(p) steps

• Approximation ratio: 2b(p)  / d(p)

• Optimal algorithm eliminates at most 2 breakpoints in 

every step: d(p)  b(p) / 2

• Performance guarantee:

• ( 2b(p) / d(p) )  [ 2b(p) / (b(p) / 2) ] =  4

ImprovedBreakpointReversalSort: 

Performance Guarantee
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Signed Permutations

• Up to this point, all permutations to sort were 

unsigned

• But genes have directions… so we should 

consider signed permutations

5’ 3’

p =    1 -2 - 3 4         -5
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GRIMM Web Server 

• Real genome architectures are represented 

by signed permutations 

• Efficient algorithms to sort signed 

permutations have been developed

• GRIMM web server computes the reversal 

distances between signed permutations:
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GRIMM Web Server

http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM
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Breakpoint Graph

1) Represent the elements of the permutation π = 2 3 1 4 6 5 as 

vertices in a graph (ordered along a line)

0           2            3           1          4            6           5            7

2) Connect vertices in order given by π with black edges (black path)

3) Connect vertices in order given by 1 2 3 4 5 6 with grey 

edges  (grey path)

4)    Superimpose black and grey paths
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Two Equivalent Representations of the Breakpoint 

Graph

0           2            3           1          4            6           5            7

0           1            2           3          4            5           6            7

• Consider the following Breakpoint Graph

• If we line up the gray path  (instead of black path) on a horizontal line, 

then we would get the following graph

• Although they may look different, these two graphs are the same
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What is the Effect of the Reversal ?

0           1            2           3          4            5           6            7

0           1            2           3          4            5           6            7

• The gray paths stayed the same for both graphs

• There is a change in the graph at this point

• There is another change at this point

How does a reversal change the breakpoint graph?  

Before: 0 2 3 1 4 6 5 7

After:   0 2 3 5 6 4 1 7

• The black edges are unaffected by the reversal so they remain the 

same for both graphs
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A reversal affects 4 edges in the 

breakpoint graph

0           1            2           3          4            5           6            7

• A reversal removes  2 edges (red) and replaces them with 2 

new edges (blue)
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Effects of Reversals
Case 1: 

Both edges belong to the same cycle

• Remove the center black edges and replace them with new black 

edges (there are two ways to replace them)

• (a) After this replacement, there now exists 2 cycles instead of 1 cycle

c(πρ) – c(π) = 1

This is called a proper reversal

since there’s a cycle increase 

after the reversal.

• (b) Or after this replacement, there still exists 1 cycle

c(πρ) – c(π) = 0

Therefore, after the reversal 

c(πρ) – c(π) = 0 or 1 
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Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

• Remove the center black edges and replace them with new black edges

• After the replacement, there now exists 1 cycle instead of 2 cycles

c(πρ) – c(π) = -1

Therefore, for every 

permutation π and reversal ρ, 

c(πρ) – c(π) ≤ 1



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance and Maximum Cycle 

Decomposition

• Since the identity permutation of size n contains the maximum cycle 

decomposition of n+1, c(identity) = n+1

• c(identity) – c(π) equals the number of cycles that need to be “added” 

to c(π) while transforming π into the identity

• Based on the previous theorem, at best after each reversal, the cycle 

decomposition could increased by one, then:                                        

d(π) = c(identity) – c(π) = n+1 – c(π)

• Yet, not every reversal can increase the cycle decomposition

Therefore, d(π) ≥ n+1 – c(π)
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Signed Permutation

• Genes are directed fragments of DNA and we represent a genome by 

a signed permutation

• If genes are in the same position but there orientations are 

different, they do not have the equivalent gene order

• For example, these two permutations have the same order, but each 

gene’s orientation is the reverse; therefore, they are not equivalent gene 

sequences

1       2        3        4       5

-1       2       -3      -4      -5
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From Signed to Unsigned Permutation

0    +3    -5   +8    -6    +4    -7   +9    +2   +1  +10  -11   12

• Begin by constructing a normal signed breakpoint graph

• Redefine each vertex x with the following rules:

 If vertex x is positive, replace vertex x with vertex 2x-1 and 

vertex 2x in that order

 If vertex x is negative, replace vertex x with vertex 2x and 

vertex 2x-1 in that order

 The extension vertices x = 0 and x = n+1 are kept as it was 

before

0    3a    3b 5a  5b 8a  8b 6a   6b 4a   4b 7a   7b 9a   9b 2a   2b 1a  1b 10a  10b 11a 11b 23

0     5     6 10    9 15   16 12   11 7    8 14   13 17   18 3     4 1    2 19   20 22   21 23

+3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11
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From Signed to Unsigned Permutation (Continued)

0     5     6 10    9 15   16 12   11 7    8 14   13 17   18 3     4 1    2 19   20 22   21 23

• Construct the breakpoint graph as usual

• Notice the alternating cycles in the graph between every other vertex 

pair

• Since these cycles came from the same signed vertex, we will not be 

performing any reversal on both pairs at the same time; therefore, these 

cycles can be removed from the graph
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Interleaving Edges

0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23

• Interleaving edges are grey edges that cross each other

These 2 grey edges interleave

Example: Edges (0,1) and (18, 19) are interleaving

• Cycles are interleaving if they have an interleaving edge
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Interleaving Graphs

0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23

• An Interleaving Graph is defined on the set of cycles in the Breakpoint 

graph and are connected by edges where cycles are interleaved

A

B
C

E

F

0     5     6   10    9    15   16   12   11    7    8    14   13   17   18    3     4     1    2    19   20   22   21   23

A

B
C

E

F

D

D AB

C

E F
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Interleaving Graphs (Continued)

AB

C

D E F

• Oriented cycles are cycles that have the following form

F

C

• Unoriented cycles are cycles that have the following form

• Mark them on the interleave graph

E

• In our example, A, B, D, E are unoriented cycles while C, F are 

oriented cycles
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Hurdles
• Remove the oriented components from the interleaving graph

AB

C

D E F

• The following is the breakpoint graph with these oriented 

components removed

• Hurdles are connected components that do not contain any other 

connected components within it

A

B D

E

Hurdle
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Reversal Distance with Hurdles

• Hurdles are obstacles in the genome rearrangement problem

• They cause a higher number of required reversals for a permutation 

to transform into the identity permutation

• Taking into account of hurdles, the following formula gives a 

tighter bound on reversal distance:

d(π) ≥ n+1 – c(π) + h(π)

• Let h(π) be the number of hurdles in permutation π


