
www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms

Greedy Algorithms

And

Genome Rearrangements

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Outline

• Transforming Cabbage into Turnip

• Genome Rearrangements

• Sorting By Reversals

• Pancake Flipping Problem

• Greedy Algorithm for Sorting by Reversals

• Approximation Algorithms

• Breakpoints: a Different Face of Greed

• Breakpoint Graphs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Look and Taste Different

• Although cabbages and turnips share a

recent common ancestor, they look and taste

different

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Comparing Gene Sequences

Yields No Evolutionary Information

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Almost Identical

mtDNA gene sequences

• In 1980s Jeffrey Palmer studied evolution
of plant organelles by comparing
mitochondrial genomes of the cabbage and
turnip

• 99% similarity between genes

• These surprisingly identical gene
sequences differed in gene order

• This study helped pave the way to
analyzing genome rearrangements in
molecular evolution

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA Gene Order

• Gene order comparison:

Before

After

Evolution is manifested as the divergence in

gene order

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Transforming Cabbage into Turnip

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• What are the similarity (synteny) blocks and how
to find them?

• What is the architecture of the ancestral
genome?

• What is the evolutionary scenario for
transforming one genome into the other?

Unknown ancestor

~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

History of Chromosome X

Rat Consortium, Nature, 2004

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals

• Blocks represent conserved genes.

1 32

4

10

5
6

8

9

7

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals
1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks 1,…,10
could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals and Breakpoints
1 32

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break

and

Invert

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Types of Rearrangements

Reversal

1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation
1 2 3

4 5 6

1 2 6

4 5 3

1 2 3 4

5 6
1 2 3 4 5 6

Fusion

Fission

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparative Genomic Architectures:

Mouse vs Human Genome
• Humans and mice

have similar genomes,

but their genes are

ordered differently

• ~245 rearrangements

• Reversals

• Fusions

• Fissions

• Translocation

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s Syndrome: Mouse Provides

Insight into Human Genetic Disorder

• Waardenburg’s syndrome is characterized by
pigmentary dysphasia (such as two differently colored
eyes coupled with hearing problem).

• Gene implicated in the disease was linked to human
chromosome 2 but it was not clear where exactly it is
located on chromosome 2

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s syndrome and splotch mice

• A breed of mice (with splotch gene) had
similar symptoms caused by the same type
of gene as in humans

• Scientists succeeded in identifying location
of gene responsible for disorder in mice

• Finding the gene in mice gives clues to
where the same gene is located in humans

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparative Genomic Architecture of

Human and Mouse Genomes

To locate where

corresponding

gene is in

humans, we

have to analyze

the relative

architecture of

human and

mouse genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Gene Order
There are groups of genes in a mice that appear in the
same order as they do in humans. These genes are likely
to be present in some common ancient mammalian
genome. The human genome is just a mouse genome cut
into about 300 synteney blocks that have been pasted
together in a different order.

For example, the chromosome 2 in humans is built from
fragments that are similar to mouse genomes residing in
chromosome 1,2,3,5,6,7,10,11,12,14 and 17.

This phenomenon is called genome rearrangement. About
250 genome rearrangements have occurred since the
divergence of human and mice 80 million years ago.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Genome Rearrangement

The combinatorial problem that we are interested is to
find a minimum (most parsimonious) number of reversals
or inversions that transform one genome into another.
While there is no guarantee that this scenario represents
an actual evolutionary sequence (excluding
translocation, fusion or fission), this gives a lower bound
on the number of rearrangement events that occurred
and indicates similarity between two species.

The exhaustive gene finding algorithms that we
discussed earlier do not work well for rearrangement
studies because the number of possible variants is very
large.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals and Gene Orders

• The order of genes in a genome can be represented

by a permutation (For simplicity we are ignoring

directionality which needs signed permutation) p:

p = p 1 ------ p i-1 p i p i+1 ------ p j-1 p j p j+1 ----- p n

p 1 ------ p i-1 p j p j-1 ------ p i+1 p i p j+1 ----- pn

 Reversal r (i, j) reverses (flips) the

elements from i to j in p

r(i,j)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example

p = 1 2 3 4 5 6 7 8

r(3,5)

1 2 5 4 3 6 7 8

r(5,6)

1 2 5 4 6 3 7 8

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance Problem
• Goal: Given two permutations, find the shortest

series of reversals that transforms one into another

• Input: Permutations p and s

• Output: A series of reversals r1,…rt transforming p
into s, such that t is minimum

• t - reversal distance between p and s

• d(p, s) - smallest possible value of t, given p and s.

If we set s =(1,2,3, , n), it becomes Sorting by
Reversal problem and the input is simply p

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals Problem

• Goal: Given a permutation, find a shortest
series of reversals that transforms it into the
identity permutation (1 2 … n)

• Input: Permutation p

• Output: A series of reversals r1, … rt
transforming p into the identity permutation
such that t is minimum

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: Example

• t =d(p) - reversal distance of p
• Example :

p = 3 4 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

So d(p) = 3

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting by reversals: 5 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 2 3 4 5 6 7 8 -1

Step 4: -8 -7 -6 -5 -4 -3 -2 -1

Step 5: g 1 2 3 4 5 6 7 8

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting by reversals: 4 steps

Step 0: p 2 -4 -3 5 -8 -7 -6 1

Step 1: 2 3 4 5 -8 -7 -6 1

Step 2: -5 -4 -3 -2 -8 -7 -6 1

Step 3: -5 -4 -3 -2 -1 6 7 8

Step 4: g 1 2 3 4 5 6 7 8

What is the reversal distance for this
permutation? Can it be sorted in 3 steps?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 3 6 4 5, the first
three elements are already in order so it does
not make any sense to break them.

• The length of the already sorted prefix of p is
denoted prefix(p)

• prefix(p) = 3

• This results in an idea for a greedy algorithm:
increase prefix(p) at every step

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• Doing so, p can be sorted

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of
length n is at most (n – 1)

Greedy Algorithm: An Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Greedy Algorithm: Pseudocode

SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3 if j ≠i

4 p  p . r(i, j)

5 output p

6 if p is the identity permutation

7 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pancake Flipping Problem

• The chef is sloppy; he

prepares an unordered stack

of pancakes of different sizes

• The waiter wants to

rearrange them (so that the

smallest winds up on top,

and so on, down to the

largest at the bottom)

• He does it by flipping over

several from the top,

repeating this as many times

as necessary

Christos Papadimitrou and
Bill Gates flip pancakes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pancake Flipping Problem: Formulation

• Goal: Given a stack of n pancakes, what is

the minimum number of flips to rearrange

them into perfect stack?

• Input: Permutation p

• Output: A series of prefix reversals r1, … rt

transforming p into the identity permutation

such that t is minimum

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pancake Flipping Problem: Greedy Algorithm

• Greedy approach: 2 prefix reversals at most

to place a pancake in its right position, 2n – 2

steps total

at most

• William Gates and Christos Papadimitriou

showed in the mid-1970s that this problem

can be solved by at most 5/3 (n + 1) prefix

reversals

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Analyzing SimpleReversalSort

• SimpleReversalSort chooses the “best” reversal at every
step – simply increase prefix(p) - but does not
guarantee the smallest number of reversals. It takes five
steps on p = 6 1 2 3 4 5 :

• Step 1: 1 6 2 3 4 5

• Step 2: 1 2 6 3 4 5

• Step 3: 1 2 3 6 4 5

• Step 4: 1 2 3 4 6 5

• Step 5: 1 2 3 4 5 6

• But it can be sorted in two steps:

p = 6 1 2 3 4 5

• Step 1: 5 4 3 2 1 6

• Step 2: 1 2 3 4 5 6 So, SimpleReversalSort(p) is not optimal

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Algorithms

• These algorithms find approximate solutions
rather than optimal solutions

• The approximation ratio of an algorithm A on
input p is:

A(p) / OPT(p)

where

A(p) -solution produced by algorithm A
OPT(p) - optimal solution of the problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee)

of algorithm A: max approximation ratio of all

inputs of size n, that is, as

• max|p| = n [A(p) / OPT(p)]

We assume that A is a minimization

algorithm which minimizes the objective

function, that is, it minimizes the maximum

number of reversals and the ratio gives the

worst case scenario.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

p = p1p2p3…pn-1pn

• A pair of elements p i and p i + 1 are adjacent if

pi+1 = pi + 1

• For example:

p = 1 9 3 4 7 8 2 6 5

• (3, 4) or (7, 8) and (6,5) are adjacent pairs

Adjacencies and Breakpoints

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

There is a breakpoint between any adjacent
element that are non-consecutive:

p = 1 9 3 4 7 8 2 6 5

• Pairs (1,9), (9,3), (4,7), (8,2) and (2,5) form
breakpoints of permutation p

• b(p) - # breakpoints in permutation p

Breakpoints: An Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Adjacency & Breakpoints

•An adjacency - a pair of adjacent elements that are

consecutive

• A breakpoint - a pair of adjacent elements that are not

consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7

adjacencies

breakpoints

Extend π with π0 = 0 and π7 = 7

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• We put two elements p 0 =0 and p n + 1=n+1 at

the ends of p

Example:

Extending with 0 and 10

Note: A new breakpoint was created after extending

Extending Permutations

p = 1 9 3 4 7 8 2 6 5

p = 0 1 9 3 4 7 8 2 6 5 10

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Each reversal eliminates at most 2 breakpoints.

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5

0 1 3 2 4 6 5 7 b(p) = 4

0 1 2 3 4 6 5 7 b(p) = 2

0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Each reversal eliminates at most 2 breakpoints.

 This implies:

reversal distance ≥ #breakpoints / 2

p = 2 3 1 4 6 5

0 2 3 1 4 6 5 7 b(p) = 5

0 1 3 2 4 6 5 7 b(p) = 4

0 1 2 3 4 6 5 7 b(p) = 2

0 1 2 3 4 5 6 7 b(p) = 0

Reversal Distance and Breakpoints

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals, choose
reversal r minimizing b (p • r)

3 p  p • r (i, j)

4 output p

5 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort(p)

1 while b(p) > 0

2 Among all possible reversals,
choose reversal r minimizing b(p • r)

3 p  p • r(i, j)

4 output p

5 return

Problem: this algorithm may work forever. How can we
make sure that removing some breakpoints does not
introduce others, leading to an endless cycle.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Strips
• Strip: an interval between two consecutive

breakpoints in a permutation, that is, any
maximal segments without breakpoints. Strips
are further divided into:

• Decreasing strip: strip of elements in
decreasing order (e.g. 6 5 and 3 2).

• Increasing strip: strip of elements in increasing
order (e.g. 7 8)

0 1 9 4 3 7 8 2 5 6 10
A single-element strip can be declared either increasing or

decreasing. We will choose to declare them as decreasing with
exception of the strips with 0 and n+1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing the Number of Breakpoints

Theorem 1:

If permutation p contains at least one

decreasing strip, then there exists a

reversal r which decreases the number of

breakpoints (i.e. b(p • r) < b(p))

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider
• For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

• Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

• Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

• Choose decreasing strip with the smallest

element k in p (k = 2 in this case)

• Find k – 1 in the permutation

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• For p = 1 4 6 5 7 8 3 2

0 1 4 6 5 7 8 3 2 9 b(p) = 5

• Choose decreasing strip with the smallest
element k in p (k = 2 in this case)

• Find k – 1 in the permutation

• Reverse the segment between k and k-1:

• 0 1 4 6 5 7 8 3 2 9 b(p) = 5

• 0 1 2 3 8 7 5 6 4 9 b(p) = 4

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing the Number of

Breakpoints Again

• If there is no decreasing strip, there may be
no reversal r that reduces the number of
breakpoints (i.e. b(p • r) ≥ b(p) for any
reversal r).

• By reversing an increasing strip (# of
breakpoints stay unchanged), we will create
a decreasing strip at the next step. Then the
number of breakpoints will be reduced in the
next step (theorem 1).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• There are no decreasing strips in p, for:

p = 0 1 2 5 6 7 3 4 8 b(p) = 3

p • r(6,7) = 0 1 2 5 6 7 4 3 8 b(p) = 3

r(6,7) does not change the # of breakpoints

r(6,7) creates a decreasing strip thus
guaranteeing that the next step will decrease
the # of breakpoints.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)
1 while b(p) > 0
2 if p has a decreasing strip
3 Among all possible reversals, choose reversal r

that minimizes b(p • r)

4 else
5 Choose a reversal r that flips an increasing strip in p

6 p  p • r

7 output p
8 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• ImprovedBreakPointReversalSort is an approximation

algorithm with a performance guarantee of at most 4.

Implicitly it means that the “no progress” situation is rare.

• It eliminates at least one breakpoint in every two

steps; at most 2b(p) steps

• Approximation ratio: 2b(p) / d(p)

• Optimal algorithm eliminates at most 2 breakpoints in

every step: d(p)  b(p) / 2

• Performance guarantee:

• (2b(p) / d(p))  [2b(p) / (b(p) / 2)] = 4

ImprovedBreakpointReversalSort:

Performance Guarantee

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Signed Permutations

• Up to this point, all permutations to sort were

unsigned

• But genes have directions… so we should

consider signed permutations

5’ 3’

p = 1 -2 - 3 4 -5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

GRIMM Web Server

• Real genome architectures are represented

by signed permutations

• Efficient algorithms to sort signed

permutations have been developed

• GRIMM web server computes the reversal

distances between signed permutations:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

GRIMM Web Server

http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Breakpoint Graph

1) Represent the elements of the permutation π = 2 3 1 4 6 5 as

vertices in a graph (ordered along a line)

0 2 3 1 4 6 5 7

2) Connect vertices in order given by π with black edges (black path)

3) Connect vertices in order given by 1 2 3 4 5 6 with grey

edges (grey path)

4) Superimpose black and grey paths

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Two Equivalent Representations of the Breakpoint

Graph

0 2 3 1 4 6 5 7

0 1 2 3 4 5 6 7

• Consider the following Breakpoint Graph

• If we line up the gray path (instead of black path) on a horizontal line,

then we would get the following graph

• Although they may look different, these two graphs are the same

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

What is the Effect of the Reversal ?

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

• The gray paths stayed the same for both graphs

• There is a change in the graph at this point

• There is another change at this point

How does a reversal change the breakpoint graph?

Before: 0 2 3 1 4 6 5 7

After: 0 2 3 5 6 4 1 7

• The black edges are unaffected by the reversal so they remain the

same for both graphs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

A reversal affects 4 edges in the

breakpoint graph

0 1 2 3 4 5 6 7

• A reversal removes 2 edges (red) and replaces them with 2

new edges (blue)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Effects of Reversals
Case 1:

Both edges belong to the same cycle

• Remove the center black edges and replace them with new black

edges (there are two ways to replace them)

• (a) After this replacement, there now exists 2 cycles instead of 1 cycle

c(πρ) – c(π) = 1

This is called a proper reversal

since there’s a cycle increase

after the reversal.

• (b) Or after this replacement, there still exists 1 cycle

c(πρ) – c(π) = 0

Therefore, after the reversal

c(πρ) – c(π) = 0 or 1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

• Remove the center black edges and replace them with new black edges

• After the replacement, there now exists 1 cycle instead of 2 cycles

c(πρ) – c(π) = -1

Therefore, for every

permutation π and reversal ρ,

c(πρ) – c(π) ≤ 1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance and Maximum Cycle

Decomposition

• Since the identity permutation of size n contains the maximum cycle

decomposition of n+1, c(identity) = n+1

• c(identity) – c(π) equals the number of cycles that need to be “added”

to c(π) while transforming π into the identity

• Based on the previous theorem, at best after each reversal, the cycle

decomposition could increased by one, then:

d(π) = c(identity) – c(π) = n+1 – c(π)

• Yet, not every reversal can increase the cycle decomposition

Therefore, d(π) ≥ n+1 – c(π)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Signed Permutation

• Genes are directed fragments of DNA and we represent a genome by

a signed permutation

• If genes are in the same position but there orientations are

different, they do not have the equivalent gene order

• For example, these two permutations have the same order, but each

gene’s orientation is the reverse; therefore, they are not equivalent gene

sequences

1 2 3 4 5

-1 2 -3 -4 -5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

From Signed to Unsigned Permutation

0 +3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11 12

• Begin by constructing a normal signed breakpoint graph

• Redefine each vertex x with the following rules:

 If vertex x is positive, replace vertex x with vertex 2x-1 and

vertex 2x in that order

 If vertex x is negative, replace vertex x with vertex 2x and

vertex 2x-1 in that order

 The extension vertices x = 0 and x = n+1 are kept as it was

before

0 3a 3b 5a 5b 8a 8b 6a 6b 4a 4b 7a 7b 9a 9b 2a 2b 1a 1b 10a 10b 11a 11b 23

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

+3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

From Signed to Unsigned Permutation (Continued)

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• Construct the breakpoint graph as usual

• Notice the alternating cycles in the graph between every other vertex

pair

• Since these cycles came from the same signed vertex, we will not be

performing any reversal on both pairs at the same time; therefore, these

cycles can be removed from the graph

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interleaving Edges

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• Interleaving edges are grey edges that cross each other

These 2 grey edges interleave

Example: Edges (0,1) and (18, 19) are interleaving

• Cycles are interleaving if they have an interleaving edge

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interleaving Graphs

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

• An Interleaving Graph is defined on the set of cycles in the Breakpoint

graph and are connected by edges where cycles are interleaved

A

B
C

E

F

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

A

B
C

E

F

D

D AB

C

E F

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Interleaving Graphs (Continued)

AB

C

D E F

• Oriented cycles are cycles that have the following form

F

C

• Unoriented cycles are cycles that have the following form

• Mark them on the interleave graph

E

• In our example, A, B, D, E are unoriented cycles while C, F are

oriented cycles

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Hurdles
• Remove the oriented components from the interleaving graph

AB

C

D E F

• The following is the breakpoint graph with these oriented

components removed

• Hurdles are connected components that do not contain any other

connected components within it

A

B D

E

Hurdle

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance with Hurdles

• Hurdles are obstacles in the genome rearrangement problem

• They cause a higher number of required reversals for a permutation

to transform into the identity permutation

• Taking into account of hurdles, the following formula gives a

tighter bound on reversal distance:

d(π) ≥ n+1 – c(π) + h(π)

• Let h(π) be the number of hurdles in permutation π

