
Space Efficient Sequence
Alignment

A Divide-and Conquer Algorithm: The limiting

resource for computing the dynamic
programming computation table is not the
running time but the storage or space required
to to store the table. We will present a linear
space algorithm [Hirschberg,1975] at the
expense of doubling the computation time
using a divide-and conquer algorithm.

Computing Alignment Path Requires Quadratic
Memory

Alignment Path

• Space complexity for
computing alignment path
for sequences of length n
and m is O(nm)

• We need to keep all
backtracking references in
memory to reconstruct the
path (backtracking)

n

m

Computing Alignment Score with Linear
Memory

Alignment Score

• Space complexity of computing just the score itself is O(n) We only
need the previous column to calculate the current column, and we can
then throw away that previous column once we’re done using it.
Alternately, we can do the same row-by-row. But to find longest path in
the edit graph, we need to store all the backtracking pointers which
takes O(nm) space.

2

n

m

Crossing the Middle Line

m/2 m

n

Prefix(i)

Suffix(i)

We want to calculate the longest
path from (0,0) to (n,m) that passes
through some unknown middle
vertex (mid,m/2). Can we find this
middle vertex without knowing the
longest path?

Define length(i) as the length of the
longest path from (0,0) to (n,m) that
passes through vertex (i, m/2)
where i ranges from 0 to n and
represents the i-th row

Vertex (i, m/2) splits the length(i)-long path into a
prefix and a suffix with lengths prefix(i) and suffix(i)
,respectively. The prefix runs from source (0,0) to (i,
m/2) and its length is prefix(i). The suffix runs from
(i, m/2) to sink (n,m) and its length is length of the
longest path from sink (n,m) to (i, m/2) computed
in the reverse direction in the “reversed edit graph”.

We also have

length(i)= prefix(i)+ suffix(i)

m/2 m

n

Prefix(i)

Suffix(i)

Define (mid,m/2) as the vertex where the longest path crosses the

middle column.

length(mid) = optimal length = max0i n length(i)

Crossing the Middle Line

Computing Prefix(i)
• prefix(i) is the length of the longest path from (0,0)

to (i,m/2)

• Compute prefix(i) by dynamic programming in the
left half of the matrix

0 m/2 m

store prefix(i) column

Computing Suffix(i)
• suffix(i) is the length of the longest path from (i,m/2) to (n,m)

• suffix(i) is the length of the longest path from (n,m) to (i,m/2) with all edges reversed

• Compute suffix(i) by dynamic programming in the right half of the “reversed” matrix

0 m/2 m

store suffix(i) column

Length(i) = Prefix(i) + Suffix(i)

• Add prefix(i) and suffix(i) to compute length(i):
• length(i)=prefix(i) + suffix(i)

• You now have a middle vertex of the maximum path
(i,m/2) as maximum of length(i)

middle point found

0 m/2 m

0

i

Finding the Middle Point
0 m/4 m/2 3m/4 m

After the middle vertex (mid, m/2) is found , the
problem of finding the longest path from source to
sink can be partitioned into two sub-problems: to
find longest path from (0,0) to (mid, m/2) and to
find longest path from (mid, m/2) to (n,m). For
this, we iterate the partitioning process of finding
the “mid” points of smaller and smaller
rectangles .

Finding the Middle Point again
0 m/4 m/2 3m/4 m

And Again
0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

The Algorithm

Path (source, sink)

If source and sink are in consecutive columns

Output longest path from source to sink

else

mid <- middle vertex (i , m/2) with largest score length(i)

Path (source, mid)

Path (mid, sink)

The total storage needed to store the mid points for all the calls for “Path” is O(n)

Time = Area: First Pass

• On first pass, the algorithm covers the entire
area

Area = nm

Time = Area: First Pass

• On first pass, the algorithm covers the entire
area

Area = nm

Computing
prefix(i)

Computing
suffix(i)

Time = Area: Second Pass

• On second pass, the algorithm covers only 1/2 of
the area

Area/2

Time = Area: Third Pass

• On third pass, only 1/4th is covered.

Area/4

Geometric Reduction At Each Iteration

1 + ½ + ¼ + ... + (½)k ≤ 2

• Runtime: O(Area) = O(nm)

first pass: 1

2nd pass: 1/2

3rd pass: 1/4

5th pass: 1/16

4th pass: 1/8

