
Space Efficient Sequence 
Alignment

A Divide-and Conquer Algorithm: The limiting 

resource for computing the dynamic 
programming computation table is not the 
running time but the storage or space required 
to to store the table. We will present a linear 
space algorithm [Hirschberg,1975] at the 
expense of doubling the computation time 
using a divide-and conquer algorithm.



Computing Alignment Path Requires Quadratic 
Memory

Alignment Path

• Space complexity for 
computing alignment path 
for sequences of length n
and m is O(nm)

• We need to keep all 
backtracking references in 
memory to reconstruct the 
path (backtracking)
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Computing Alignment Score with Linear 
Memory

Alignment Score

• Space complexity of computing just the score itself is  O(n) We only 
need the previous column to calculate the current column, and we can 
then throw away that previous column once we’re done using it. 
Alternately, we can do the same row-by-row. But to find longest path in 
the edit graph, we need to store all the backtracking pointers which 
takes O(nm) space. 
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Crossing the Middle Line

m/2 m

n

Prefix(i)

Suffix(i)

We want to calculate the longest 
path from (0,0) to (n,m) that passes 
through some unknown middle 
vertex (mid,m/2). Can we find this 
middle vertex without knowing the 
longest path? 

Define length(i) as the length of the 
longest path from (0,0) to (n,m) that 
passes through vertex (i, m/2) 
where i ranges from 0 to n and 
represents the i-th row



Vertex (i, m/2) splits the length(i)-long path into a 
prefix and a suffix with lengths prefix(i) and suffix(i)
,respectively. The prefix runs from source (0,0) to (i, 
m/2) and its length is prefix(i). The suffix runs from 
(i, m/2)  to sink (n,m) and its length is length of the 
longest path from sink (n,m) to (i, m/2)  computed 
in the reverse direction in the “reversed edit graph”.

We also have 

length(i)= prefix(i)+ suffix(i) 
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Prefix(i)

Suffix(i)

Define (mid,m/2) as the vertex where the longest path crosses the 

middle column.  

length(mid) = optimal length = max0i n length(i)

Crossing the Middle Line



Computing Prefix(i)
• prefix(i) is the length of the longest path from (0,0) 

to (i,m/2)

• Compute prefix(i) by dynamic programming in the 
left half of the matrix

0         m/2      m

store prefix(i) column



Computing Suffix(i)
• suffix(i) is the length of the longest path from (i,m/2) to (n,m)

• suffix(i) is the length of the longest path from (n,m) to (i,m/2) with all edges reversed

• Compute suffix(i) by dynamic programming in the right half of the “reversed” matrix

0         m/2               m

store suffix(i) column



Length(i) = Prefix(i) + Suffix(i)

• Add prefix(i) and suffix(i) to compute length(i):
• length(i)=prefix(i) + suffix(i) 

• You now have a middle vertex of the maximum path 
(i,m/2) as maximum of  length(i)

middle point found

0      m/2   m
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Finding the Middle Point
0             m/4             m/2            3m/4           m



After the middle vertex (mid, m/2) is found , the 
problem of finding the longest path from source to 
sink can be partitioned into two sub-problems: to  
find longest path from (0,0) to (mid, m/2)  and to 
find longest path from (mid, m/2) to (n,m). For 
this, we iterate the partitioning process  of finding 
the “mid” points of   smaller and smaller 
rectangles . 



Finding the Middle Point again
0             m/4             m/2            3m/4           m



And Again
0    m/8     m/4    3m/8    m/2    5m/8    3m/4  7m/8  m



The Algorithm

Path (source, sink)

If source and sink are in consecutive columns

Output  longest path from source to sink

else 

mid <- middle vertex  (i , m/2) with largest score length(i)

Path (source, mid)

Path (mid, sink)

The total storage needed to store the mid points for all the calls for “Path” is O(n)



Time = Area: First Pass

• On first pass, the algorithm covers the entire 
area

Area = nm



Time = Area: First Pass

• On first pass, the algorithm covers the entire 
area

Area = nm

Computing 
prefix(i)

Computing 
suffix(i)



Time = Area: Second Pass

• On second pass, the algorithm covers only 1/2 of 
the area

Area/2



Time = Area: Third Pass

• On third pass, only 1/4th is covered.

Area/4



Geometric Reduction At Each Iteration

1 + ½ + ¼ + ... + (½)k ≤ 2

• Runtime: O(Area) = O(nm)

first pass: 1

2nd pass: 1/2

3rd pass: 1/4

5th pass: 1/16

4th pass: 1/8


