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• Scoring Matrices

• Alignment with Affine Gap Penalties

• Local Alignment

• Multiple Alignment

In this part we consider certain generalization of the definition of the concept
of  ‘similarity’ leading to scoring matrices that are deterministic or probabilistic. 
We will also consider ‘gaps’ in the alignment and also local similarity of a much
smaller length string against a larger string.  We then consider alignment of a set 
of strings, the set containing more than two strings.



The Basic Problem

A gene or a protein may be related to another gene or protein. “Relatedness” may 
mean 

1. They are homologous if they shared a common ancestry. 

2. They may have common functions. 

Analysis of DNA or protein sequences (the sequence of amino acids or “residues”) may 
reveal certain domains or “motifs” that are shared among a group of molecules. 
Protein alignments give more information than DNA alignments. This is because 
certain DNA mutations, particularly at the third location in a codon, do not 
change the protein.  Such mutations are called silent mutations. Also mutations 
in the intron regions of a DNA has practically no effect on the protein. When a 
DNA sequence is analyzed, it is common practice to analyze the translated amino 
acid sequence.

Protein sequence comparison can identify homologous sequences that originated 
from a common ancestor over 1 billion years ago (BYA) whereas DNA sequences 
can look back up to 600 MYA (millions of years ago). 

But there are situations where the DNA sequence must be identified viz. to locate a 
gene or a motif, searching for polymorphism or identifying a cloned CDNA 
fragment.



Need to Develop Scoring Matrices

• Two sequences are either homologous or not homologous. 
Statements like two sequences are 20% or 50% homologous are 
wrong.  The only relevant criterion to be homologous is that they 
are originated from a common ancestral sequence.  But, it is correct 
to say that two homologous sequences are 20% or 50% similar if 
20% or 50 % of nucleotides or residues are identical (matched). The 
cost of substitution of one nucleotide for another  nucleotide is  set 
arbitrarily in models for DNA comparison, but two amino acids may 
not “matched” but may still be biochemically or biophysically 
related and may command a large similarity score. These are called 
conservative substitutions. 

• Thus definition of scoring matrices are essential for comparing 
amino acid sequences. 



Homologous: Orthologous and 
Paralogous

• Homologous proteins may be orthologous or paralogous. 
Orthologs are homologous sequences in different species  
that arose from a common ancestor. For example, humans 
and rodents diverged 80 MYA (“millions of years ago”) 
when a single ancestral myoglobin gene diverged by 
speciation. Orthologs have similar biological function viz. 
the myoglobin transport oxygen in both human or rat.

• Genes are often duplicated to produce multiple copies in 
the same genome, which often diverge in functions slightly. 
Where the homology is the result of gene duplications so 
that the copies have descended side by side during the 
history of the organism, the genes should be called 
paralogous (para=parallel). For example, human α-1 globin
and β globin are paralogous. 



Key Issues

• The scoring system to rank alignments

• The algorithm complexity to find the optimal or good 
alignments

• Statistical and Biological significance of an alignment score.

Consider the following pairwise alignments (All from same region of the 
human  alpha globin protein sequence SWISS-PORT data base of proteins. The 
middle line shows identical (red) and ‘similar’ (+ sign,blue) meaning 
functionally conservative:
a)
HBA_HUMAN :  GS A QVK G HGKKVADALTNAV AHVDDMPNALSALSDLHAHKL

G+     +VK +  HGKKV A+++++ AH+D+ +   + ++++ LS+LH KL
HBB_HUMAN :   GN P KVK A HGKKVLG  AFSDGLAHLDNL KGTFAT LSELHCDKL

This shows clear similarity of human alpha globin to beta globin. 



(b)
HBA_HUMAN : GSAQVKGHGKKVADALTNAVAHV- - - D- - DMPNALSALSDLHAHKL

++   + + ++H+   KV       +    +A     ++                         +L+  L+ ++H+   K
LGB2_LUPLU :    NNPELQAHAGKVFKLVYEAAIQLQVTGVVVT DATLKNLGSVHVSKG

This shows a biologically meaningful alignment between leghaemoglobin and yellow 
lupin. These two sequences are evolutionary related and have same three
Dimensional structure , and function in oxygen binding. Note much fewer match
Characters and ‘gaps’ inserted to maintain alignment

(c)
HBA_HUMAN: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD- - - - LHAHKL

GS+  +    G   +        +D  L     ++   H+    D+     A   +AL  D        ++AH+
F11G11.2         GSGYLVGDSLTFVDLL - - VAQHTADLLAANAALLDEFPQFKAHQE

A spurious high-scoring alignment to a nematode glutathione S-tranferase homolog 
named F11G11.2. The two proteins have totally different structure and function.

How do we differentiate cases like  (b) and (c). This calls for a careful definition of the 
scoring system that we use to evaluate alignments.



Additive Score Model

We consider the mutations at different sites in a 
sequence to be Independent . A “gap” of arbitrary 
length considered to be a single mutation. 

This assumption is a reasonable approximation for DNA 
and protein sequences ( although we know that 
interactions between the bases play a significant role 
for protein structures). 

For RNA sequences, this assumption is erroneous since 
the base pairing gives rise to long-distance 
dependencies due to the folding structures. We leave 
out RNA sequences from our discussions.



Substitution Matrices

• Given a pair of aligned sequences, how do we assign a score
that gives relative likely hood that the sequences are related?  
Earlier, we discussed the general scoring equations with 
respect to DNA and protein sequences using constant cost 
parameters such as μ and σ,   but their applications to specific 
biological context is a bit more involved process. A 
convenient way to specify scoring is a matrix called the 
Substitution Matrix which is |Σ|+1 by |Σ|+1 matrix giving the 
values of  δ(a,b)  for all possible (a,b) except (-,-). Ideally, the 
scores should capture the underlying evolutionary or bio-
chemical properties of the sequences.  



Substitution Matrices

Since nucleotides differ very little in biochemical functions, simple
scoring functions are reasonable for DNA sequences. But random
mutations of the nucleotide  sequence within a gene may change 
the amino acid sequence of the corresponding protein.  Some of 
these may produce drastic change in the structure and function 
of the protein while others do not affect the fitness of the 
organism.  The amino acids Asn, Asp, Glu, and Ser are the most 
mutable amino acids ; Cys and Trp are the least mutable. 
Knowledge of the frequency of occurrences  of most and least 
common evolutionary events allow Biologists to define models 
to derive scoring matrices for  computing biologically relevant
alignments.



Amino acid similarities

• Leucine (L) and Isoleucine (I) biochemically similar

– High score for subsitution = +2

– But not as high as no change (L,L) or (I,I) = +4

• Leucine (hydrophobic) and Aspartic Acid (D) (hydrophilic) 
biochemically different

– Low score for substitution = -4

– Conservative Substitutions: T(Threonine) and S(serine),

– L(Leucine )and V(Valine).

– Basic amino acids:  (K,R,H)

– Acidic amino acids : (D,E)

– Hydroxylated amino acids: (S,T)

– Hydrophobic amino acids : (W,F,Y,L,I,V,M,A)



20 amino acids



Proteins

Proteins are polymers, also called polypeptides consisting of a sequence  of amino acids. There 
are twenty amino acids that are found in proteins.

Hydrophobic Group                      Hydrophilic Group
-------------------------------------------------------------------------------------

A Alanine               ala                R   Arginine                 arg          

C     Cysteine            cys               N   Asparagine            asn

G     Glycine              gly               D    Aspartic  acid       asp

I      Isoleucine         ile                Q    Glutamine             gln

L     Leucine             leu               E    Glutamic acid       glu             

M     Methionine       met              H    Histidine               his

F     Phenylalanine phe                K    Lysine                   lys

P     proline             pro                 S   Serine                    ser

T     Trypyophan     trp                  T   Threonine              thr

Y    Tyrosine          tyr

V    Valine               val

---------------------------------------------------------------------------------------



Making a Scoring Matrix

• Scoring matrices are created based on 
biological evidence. 

• Alignments can be thought of as two 
sequences that differ due to mutations.  

• Some of these mutations have little effect on 
the protein’s function, therefore some 
penalties, δ(vi , wj), will be less harsh than 
others.



Scoring Matrix: Example
A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although R 
and K are different 
amino acids, they have a 
positive score.

• Why? They are both 
positively charged amino 
acids will not greatly 
change function of 
protein.



Construction of Scoring Matrix

The entry  δ(a,b) in the scoring matrix for proteins usually denotes  how often the
amino acid ‘a’ substitutes the amino acid ‘b’  in the alignments of related protein 
sequences. The most commonly used scoring matrices point accepted mutation 
(PAM) and block substitution  matrix (BLOSUM)  are created by using this 
principle. 

Margaret Dayhoff and her team  made significant contributions in this field in the
70’s. They published a book  Atlas of Protein Sequence and Structure which 
listed all protein sequences  known in late 70’s  along with information about
their structures and functions. They defined an accepted point mutation( APM 
–changed to PAM for ease of pronunciation)as a substitution that has been 
accepted by natural selection. This happens if 
1. A  gene undergoes a DNA mutation such that it encodes a different amino acid.
2. The entire species adopts that change as the predominant form of the protein.

Dayhoff,M.O.,Schwartz,R.M. and Orcutt, B. C.,”A model of evolutionarychange in protein “ in
“Atlas of Protein Sequence and Structure”, Vol.5, National Biomedical Research Foundation,
Washington D.C.  Pp.89-90, 1978. (Also read pp.178-180 from text by Jones and Pevzner)



Dayhoff’s Method of Construction of Scoring Matrices

Dayhoff and her team used phylogenetic tree analysis 
technique s on  1572 changes in 71 groups of 
extremely similar proteins. Such analysis allows 
comparison of extant amino acid sequences to inferred  
ancestral sequences.  This approach involved 
phylogenetic analysis rather than comparing the two 
amino acid sequences directly.

For the PAM 1 matrix, they identified proteins  that have 
undergone 1% change (that is, 1 accepted point 
mutation per 100 amino acid residues). Such 
sequences are defined as being one PAM unit diverged. 
Such alignments  are called the base alignments.



Given a set of base alignments, let
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The quantity f(a).f(b)  is the joint probability of aligning  a with b by chance. 

The PAM-n matrix is defined as the result of applying PAM-1 matrix n times. If G is the
20X20 matrix of frequencies  g(a,b), then Gn ( multiplying this matrix by itself n times)
gives the probability that amino acid a mutates into amino acid b during n PAM units. 
The (a,b) entry of the PAM-n matrix is defined as  

)(
log
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G n

For large n, the resulting PAM matrices often allow one to find related proteins   even
when there are practically no matches  in the alignment. The underlying DNA sequences
are so diverged that there comparison will not find any statistically significant biological 
similarities. 



Scoring Two Amino Acid Sequences

• Random model (R): Assumes that every amino acid in the 
sequence occurs independently. Thus, the probability of the 
two sequences is the product of probabilities of each amino 
acid.

where pi and pj denote probabilities of ith and jth symbols in 
the two sequences.

• Match model (M) : the aligned pair of bases occur with 
a joint probability pij .  We can  think of pij as the 
probability  that the residues i and j have been derived  
from some unknown original base k in their common 
ancestor (k could be same as i and/or j). Thus
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Substitution matrices
The ratio of these two likelihood is known as  the odds-ratio

))(
2

),(
1

( iSi

i

SsS 

In order to arrive at an additive scoring system, we take the 
sum of logarithm of this ratio, known as the log-odds ratio S:

Where                

is the log likelihood of the residue pair occurring as an aligned pair. These scores can 
then be arranged as a 20X20 matrix  (for protein sequences) with                    in position 
i,j where ai and  aj are the ith and jth amino acids. 
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PAM10  - see separate posting



The values for pij are called the “target frequencies” and they  
indicate  the amount of evolutionary change that  has taken 
place. For example, for a pair of closely related proteins, an 
aligned Serine were to change to threonine 5% of the time, 
the  target frequency for pS,T is 0.05. The quantity pipj

represents probabilities of amino acids I and j occurring by 
chance. These frequencies are derived by first calculating 
relative mutabilities ( how often a residue is going to change 
in a short period of evolution) and dividing them by the overall 
frequencies of occurrences of these residues. 
The less mutable residues are those that play a more 
significant role in the function and structure of the protein 
(viz. one residue mutation is known to cause cystic fibrosis) 
whereas more mutable residues like Asp, Ser, Asn and Gly
have functions in protein that can be easily assumed by other 
residues. These phenomena are obviously related to the 
genetic code  and how the mutations in the triplets of the 
reading frame affect the production of protein





BLOSUM

Blocks Substitution Matrix represents a statistical alternative to PAM. 
It gives a more accurate measure of differences of distantly related 
proteins. It is more effective for searching sequences that contain 
relatively sparse regions of close evolutionary relatedness.

PAM assumes that the mutations occur at a constant rate – the same 
rate that is observed in the short term. BLOSUM is derived by 
observing all amino acid changes from a protein families  in an 
aligned region without any bias regarding the level of similarity 
between the two sequences. 

PAM matrices are based on scoring of all amino acid positions, but 
BLOSUM matrices are based on conserved positions that occur in 
blocks representing the most similar regions of related sequences.



BLOSUM

• Blocks Substitution Matrix 

• Scores derived from observations of the 

frequencies of substitutions in blocks of local 
alignments in related proteins

• Matrix name indicates evolutionary distance

– BLOSUM62 was created using sequences 
sharing no more than 62% identity



The Blosum50 Scoring Matrix

The log-odds values have 
been scaled and rounded 
To the nearest integers for
the purpose of computational
efficiency.



Substitution matrix: BLOSUM62

A  C  D  E

A 4 0 -2 -1

C 0  9 -3 -4

D -2 -3  6 2

E -1 -4  2  5

Identities, e.g. E+E
High scores (main diagonal).

Subsititions, e.g. C+E
score depends on how likely the 
two amino acid types are to 
substitute for each other.

Matrix is symmetrical



BLOSUM62    -- See separate posting



Optimal Alignment with Gap

• Definition: 
– A gap in an alignment between two strings, is a run of 

contiguous spaces.

• An insertion or deletion of a character was represented 
by a space. 

• Each occurrence of such a space character in the 
alignment is considered to be a mutation. 

• Sometimes a gap of more than one space can be created 
by only one mutational or evolutionary event. To handle 
this kind of situation, we need to develop a model of 
alignment cost function that does not attribute a 
negative cost or penalty based on the length of the gap 
(which is called a linear model).



Biological Significance of Gap

• Examples of ‘gaps’ in biological context is numerous. 
• The case of cDNA is a good biology application. 

– In a genome, not all DNA are responsible for the production of 
proteins or hormones; 

– those that carry these functions are said to be expressed. 

• To study this phenomenon, biologists make DNA , called 
cDNA, corresponding to mRNA that leaves the nucleolus 
to cytoplasm for translation, by replacing uracil (U) in 
RNA by thyamine (T) .

• Concatenation of these DNA strands then corresponds to 
complement of the exon of the gene, cDNA.



Biological Significance of Gap(contd.)

• If we now sequence the cDNA and compare this with similar DNA in 
the chromosomal DNA, we would have obtained a map of 
chromosomal genes that are expressed. 

• While doing this similarity search, the introns have to be aligned with 
long gaps. 

• Recall a gene may be distributed over several segments with 
interleaving introns. If we used our scoring scheme for similarity search 
here, we would have penalized heavily our total score for the 
alignment (since gap will translate into a set of contiguous delete 
operations) and the similarity of the cDNA with some segment of 
chromosomal DNA would be missed. 

• The alignment that best reflect the relationship consists of a few 
regions of strong similarity interspersed with long regions of gaps.



Linear Gap Penalty

• Gaps subtract a value from the objective score

• Simplest design: “linear” penalties

• a fixed parameter (h) multiplied by length of 
gap

“h” for “gap extension”

h = 4 (fixed penalty)

• Subtract e for every “-” in the alignment

L A K E
I - - E

(L,I) = 2 (E,E) = 62h = –8

= -1



Computing Maximum Objective Score

E
E

E
-

-
E

V(GEN,AP) V(GEN,APE) V(GENE,AP)

V(GEN,AP) + B(E,E) V(GEN,APE) - h V(GENE,AP) - h

max Score(GENE,APE) = ?

BLOSUM62 score is 5

Gap penalty



Problem with linear gap penalties
GRB2_CHICK   ...SVKFGN----D-VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK   ...SVKFGND-----VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

• These  alignments have same objective score with linear penalties

• But lower alignment is more biologically reasonable

– One gap instead of two = one insertion / deletion event instead 
of two



Affine Gap Penalties
• Prefer fewer gaps (parsimony: fewer insert / 

delete events)

• Gap Penalty= gap(k) = g + hk

g = “gap open” or “per-gap” penalty, typical g = 9

h = “gap extension” penalty, typical h = 2

k = gap length (number of consecutive “-” symbols)

GRB2_CHICK   ...SVKFGN----D-VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK   ...SVKFGND-----VQQFKV...

SRC_RSVSR    ...SIRDWDDMKGDHVKHYKI...

gap penalty
= -2g – 5h = -28

gap penalty
= -g – 5h= -19



Goto’s Algorithm
Ref: E.W.Myers and W. Miller, “Optimal Alignments in Linear Space”, CABIOS, 

Vol.4,No.1, 1988, pp.11-17 (posted  in this website)

The alignment problem is often formulated as 
maximizing similarity score rather than minimizing 
difference score. Earlier, we discussed the 
replacement cost as δ(a,b) with δ(a,a)=0 in the 
context of difference score. For similarity, a bonus 
score σ(a,b) is added for every aligned pair (a,b) and 
a gap penalty gap(k) is subtracted for every k symbol 
gap. We also know that if we have the minimum cost 
solution, we can transform it to a solution of 
maximum similarity.



Definitions

• Recall Ai denote the i-symbol prefix a1a2…ai of  n-symbol 
sequence A=a1a2…an and Bj denote the j-symbol prefix 
b1b2…bj of the sequence B=b1b2…bm. Define

• C(i,j)= minimum cost of conversion of  Ai→Bj

• D(i,j)= minimum cost of conversion of  Ai→Bj that deletes ai

• I(i,j)= minimum cost of conversion of  Ai→Bj that inserts bj

If i=0, D(i,j) is not defined since A0  is a null string  and deleting a 
null symbol does not make any sense. Similarly, I(i,j) for j=0 is 
not defined since we cannot insert a null symbol. Taking these 
boundary conditions into account, the recurrence relations to 
obtain  C(i,j) is given in the next slide.



For i,j>o, the first line is obvious because the alignment must end with 
a delete, insert or a replacement operation.

For i=0 and j>1,  C(i,j)=gap(j) ,  since A0→Bj corresponds to  alignment
- - - a1a2..an

b1b2…bjbj +1     …   bm

For i>1 and j=0,  C(i,j)=gap(i) , since  Ai→B0 corresponds to 
a1a2..ai ai+1ai+2..an

- - - bj +1     …   bm

For i=j=0,  C(i,j)=0, since  A0→B0 corresponds to  an empty alignment.

Recurrence Relations for C(i,j) 
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Consider i>0 and j>0. Possible scenarios for minimum cost conversion of  Ai to 
Bj that deletes ai are shown. This justifies 1st line for D(I,j) below.

For i=0 and j>0, D(0,j) corresponds to A0 →Bj . As we noted earlier, if i=0, D(i,j) 
is not defined since A0  is a null string and deleting a null symbol does not 
make any sense. So, we are free to pick the function D(0,j) for i=0 and j>0. 
Since the alignment starts with a “delete”, we define D(0,j)=C(0,j)+g.

We  need not compute D(i,0) for i >=0 since other quantities do not depend 
on these values.

Thus, we can write

Recurrence Relation for D(i,j)

ai
ai-1

bj
-- --

ai-1
--

-- ai
bj --

ai-1 ai

--bj
Gap already exists:  D(i-1,j)+h New gap created:  C(i-1,j)+g+h

0   and   0for                                                    ),  0(  

0   and   0for           ])  ,  1(    ),,  1(  [min   
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Recurrence Relation for D(i,j) (contd.)

For the case i=1, an optimal Conversion of A1 to Bj ending 

with a delete, must convert  A0 to Bj and then delete a1. Thus,

by  substituting                                  which yields:

This shows that it was okay to define 
so that the recursion terminates properly.

-b1b2bj--
- -- --a1

)1(  ),0(),1( gapjCjD 

gjCjD  ),0(),0(
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• I is handled like D. Thus, if we define I(i,0)= 
C(i,0)+g for i>0 and ignore I(0,j) for j>=0, then

The recurrence relations C,D and I can be used 
to write an algorithm as presented in the 
paper cited earlier.

Recurrence Relation for I(i,j) 
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An Example

v=AGTAC w=AAG

Cost Model: δ(a,b)=1 if a is not equal to b and  with δ(a,a)=0
gap(k)= g + hk= 2+0.5k where g is gap open penalty .

We know that for i=0, j>0  C(0,j)=gap(j)  for converting A0 →Bj

Now, D(0,j) is not defined since an alignment  that ends with
deleting a null symbol does not make any sense. We are free
to define D(0,j). It is “convenient “  to define D(0,j) as

0 jfor     ),0(  ),0(  gjCjD .  Thus, g(j)    ),0(  ),0(  gapgjCjD . This yields
 4.5    2    0.5   2      g  ) 1 (       )1  ,0(   gapD

 5    2     1   2      g  ) 2 (       )2  ,0(   gapD

 5.5    2    1.5   2      g  ) 3 (       )3  ,0(   gapD

We need not compute D(0,0),D(1,0), D(2,0),D(3,0),D(4,0) and D(5,0) 
Since they are not needed in any computation step.



Similarly, since I(i,0)= C(i,0)+g for i>0 , we can write
I(i,0)= C(i,0)+g= gap(i) + g  and obtain 

 4.5    2    0.5   2      g  ) 1 (       )0  ,1(   gapI

 5    2     1   2      g  ) 2 (       )0  ,2(   gapI

 5.5    2    1.5   2      g  ) 3 (       )0  ,3(   gapI

 6    2    2   2      g  ) 4 (       )0  , 4(   gapI

 6.5    2     2.5   2      g  )  5 (       )0  ,5(   gapI
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Now, we can compute the first row  of C(1,j) using the general formula : 
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Thus the computation proceeds as follows:
1. Compute 0-th row and 0-th column of matrices D, I, C
2. Compute  the 1st rows of D and I
3. Compute  the 1st row of C
4. Compute  the 2nd row of D and I
5. Compute  the 2nd row of C

Repeat until you finish computation of the last rows of D, I, C

*

*

*

**

* *** *

0         1         2      3 0         1         2      3

0

1

2

3

4

5

0

1

2

3

4

5

4.5

4.5

6

5.5

5

5.5

6.5

5

5

5.5

6 5 2.5 3

0         1         2      3

0 2.5 3

3

2.5

3.5

3.5

4

4.5

0 2.5 3

D I C

2.5 5 5.5

3 3.5 2

3.5 4 4.5

4* 4.5 5

5.5 5 3.5

6 5.5 6

6.5

7

6

6.5

5.5

7

2.5 1 2.5

3

3.5

4

3.5

3

4.5

2

4.5

4

0

1

2

3

4

5



Global alignment (Summary)

• Global alignment

– all letters from both sequences

• Objective score: substitution matrix + affine 
gap penalties

• Three cost matrices C,D,I

• Three trace-back matrices (if alignment 
needed as well.)

• Convert to dual problem to get similarity.



Needleman-Wunsch Algorithm

• Global alignment by dynamic programming 
often called “the Needleman-Wunsch 
algorithm”
– Needleman, S.B. and Wunsch, C.D. (1970) A 

general method applicable to the search for 
similarities in the amino acid sequence of two 
proteins. J Mol Biol 48(3): 443-53.

– Paper describes an algorithm with fixed gap 
penalty (independent of length)

– First application of dynamic programming to 
biological sequences



Local Alignments: Smith- Waterman 
Algorithm 

• A particularly interesting variant of similarity search is local
alignment or similarity.

• Suppose we have two long DNA sequences in which there is a
particularly interesting subsequence representing a gene that
are common between the sequences.
– Doing a global alignment or similarity search will not be able to

identify this because there may be a lot of dissimilarity in the rest of
the sequence which yield a low value for similarity and a large value of
edit distance, none of which say anything about this interesting region.

• If the regions of highly similar local alignment are small, they
might get lost in the context of global alignment.

• If we need to detect similarity between two protein
sequences which are highly diverged but share a common
conserved evolutionary sequence in a particular domain,
doing a global alignment or similarity search does not help
much.



Local Alignments: Why?

• Two genes in different species may be similar 
over short conserved regions and dissimilar 
over remaining regions.

• Example:
– Homeobox genes have a short region called 

the homeodomain that is highly conserved 
between species. 

– A global alignment would not find the 
homeodomain because it would try to align 
the ENTIRE sequence



Local alignment
• Often called “the Smith-Waterman algorithm”

– Smith, T.F. and Waterman, M.S. (1981) Identification of 
common molecular subsequences. J Mol Biol 147(1): 195-
7.

– Introduces the critical “all prefixes of all suffixes” trick.

• Surprisingly, only small modification of global case will yield 
an algorithm for local alignment

– Many more local alignments than global alignments

– Prior to Smith-Waterman paper, algorithms were much 
slower



Local vs. Global Alignment

• The Global Alignment Problem tries to find the 
longest path between vertices (0,0) and (n,m) in 
the edit graph.

• The Local Alignment Problem tries to find the 
longest path among paths between arbitrary 
vertices (i,j) and (i’, j’) in the edit graph.

• In the edit graph with negatively-scored edges, 
Local Alignment may score higher than Global 
Alignment



Local vs. Global Alignment (cont’d)

 Global Alignment

 Local Alignment—better alignment to find 
conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
|  || |  ||  | | | |||    || | | |  | ||||   |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc



Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” Global 
Alignment to get Local



Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” Global 
Alignment to get Local



Local Alignment: Example



Local Alignment: Example



Local Alignment: Example



Local Alignment: Example



Local Alignment: Example



Local Alignment: Running Time



The Local Alignment Problem

• Goal: Find the best local alignment between 
two strings

• Input : Strings v, w and scoring matrix δ

• Output : Alignment of substrings of v and w 
whose alignment score is maximum among all 
possible alignment of all possible substrings



The Problem with Exhaustive 
Algorithm

• An obvious exhaustive algorithm is to enumerate all the
substrings of S1 and S2 and execute a dynamic
programming algorithm on each pair.

– There are O(n2m2) such pairs.

• For one string, a substring is defined by two positions the
string which can be chosen in O(n2) and O(m2) ways for
S1 and S2, respectively.

• For each pair, dynamic programming takes O(nm) time.
Thus, the complexity of such an approach is O(n3m3) .



Problem Formulation

The algorithm is essentially a minor modification in the dynamic 
programming equations for the global alignment with two 
differences:

1. In each cell in the dynamic programming matrix, an extra 
possibility is added to allow the value to be 0 if all other 
options lead to a negative value for that cell. Essentially, it 
means starting a new computation if the best alignment 
gives a negative value. This also implies that the first row 
and column are set to value 0 at the beginning of the 
computation.

2. The new alignment can end anywhere in the matrix not 
necessarily at point (n,m) in the matrix. Whenever a local 
maxima is encountered. The trace back starts and it ends 
when it meets the first 0 in the path.



Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from (0,0) to every other node.

Yeah, a free ride!



Algorithm to find value of optimal V(i,j)

• The algorithm is very similar to the algorithm to 
determine maximum similarity of two strings. 

• Use again recurrence relations. 

• Make reasonable assumptions about insert and delete 
operations as and , respectively. 

• Since the optimal suffix to align with an empty suffix is a 
string of length zero, we can write the basis as:

V(i,0)=0

V(0,j)=0

0),(  x 0),( x



The Recurrence Realtion

• For i>0 and j>0, the recurrence relations are:

),(),(()1,1(,0max[),( 21 jSiSjiVjiV 

),),((),1( 1  iSjiV 

))](,()1,( 2 jSjiV  



Example

Let S = ABCLDEL and T = LLLCDE, a match score +2, and a 
mismatch or space score -1.  Initialization step:

j

i

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0 0
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3    0

4    0

5    0

6    0
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0 0        0        0        0        0        0
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0
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0
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0 2 2 2 1 1 4

0 0 0 0 2 5

1 1 1 1 3 2

2 2 2 1 1 0

0 0 0 2 1 0

Example: Let S = ABCLDEL and T = LLLCDE, a match score +2, and a
mismatch or space score -1.  



0        1        2        3        4        5        6    
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The value of optimal alignment is V(6,6) = 5. We can construct optimal alignments
by retracing from any maximum entry to any zero entry: 



The Optimal Local Alignment

• The optimal local alignments corresponding to these 
paths are:

L - D E

L C D E

C L D E

C - D E



Space Complexity

• It is easy to see that the time complexity of the algorithm 
is O(nm) , as in the general case of dynamic 
programming. 

• The algorithm takes O(nm) space. This is quite expensive 
if the sequences are large. 

• If one were interested only in the value of the alignment 
and not obtaining a trace, this could easily be done by 
keeping only the last two rows of the matrix to compute 
the next row. 

• This will need only O(n+m) space. 
• Is it possible to reconstruct an alignment using only 

linear space?



i-1,j

i-1,j-1 i,j-1

i,j

Saving space

Current row depends only
on previous row and current row

Need only store two rows to 
compute score of best alignment
= O(L) space, where L denotes 
number of cells in a row or column 
whichever is minimum.

(Can it done with space for one row 
or column  only?).

Compute matrix left-to-right
and top-to-bottom

This row no longer needed



Trace-back in O(L) space

• Trace-back is harder

• Myers-Miller algorithm

– Myers, E.W. and Miller, W. (1988) Optimal 
alignments in linear space. Comput Appl Biosci
4(1): 11-7.

• Repeatedly divides similarity matrix in half



Faster speed

• Speed improvements require approximation

– give up guarantee that an objective score is 
optimized

• Global alignment: k-difference

• Local and global alignment: seeds



Freely available source code

• FASTA package
– align: Myers-Miller global alignment

– lalign: Smith-Waterman local alignment

– fasta: fast database search by k-mer matching and d. 
p. extension

• BLAST (NCBI)
– Fast database search

– Seeds by “neighborhood” method

– Match seeds by lookup in pre-computed index

– Extend seeds by d. p. with score threshold



Multiple Alignment



Outline

• Dynamic Programming in 3-D 
• Progressive Alignment
• Profile Progressive Alignment (ClustalW)
• Scoring Multiple Alignments
• Entropy
• Sum of Pairs Alignment



Multiple Alignment versus Pairwise Alignment

• Up until now we have only 

tried to align two sequences. 

http://www.aldeaeducativa.com/small/venter.jpg
http://images.google.com/imgres?imgurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/baboon.GIF&imgrefurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/&h=512&w=512&sz=258&tbnid=jKpgkJ-c2OYJ:&tbnh=128&tbnw=128&start=13&prev=/images?q=baboon&hl=en&lr=&sa=N


Multiple Alignment versus Pairwise Alignment

• Up until now we have only 

tried to align two sequences. 

• What about more than two?  

And what for? 

http://www.aldeaeducativa.com/small/venter.jpg
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http://images.google.com/imgres?imgurl=http://www.nature.com/news/2004/041206/images/chicken.jpg&imgrefurl=http://www.nature.com/news/2004/041206/full/041206-8.html&h=166&w=180&sz=25&tbnid=TbBpwwkh5PQJ:&tbnh=88&tbnw=95&start=16&prev=/images?q=chicken&hl=en&lr=&sa=G


Multiple Alignment versus Pairwise Alignment

• Up until now we have only 

tried to align two sequences. 

• What about more than two?  

And what for? 

• A faint similarity between two 

sequences becomes significant 

if present in many

• Multiple alignments can reveal 

subtle similarities that pairwise 

alignments do not reveal

http://www.aldeaeducativa.com/small/venter.jpg
http://images.google.com/imgres?imgurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/baboon.GIF&imgrefurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/&h=512&w=512&sz=258&tbnid=jKpgkJ-c2OYJ:&tbnh=128&tbnw=128&start=13&prev=/images?q=baboon&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://news.bbc.co.uk/olmedia/1765000/images/_1768316_tiger2.jpg&imgrefurl=http://ai-o-artista.blogspot.com/&h=300&w=300&sz=14&tbnid=bjq3xD6A-2AJ:&tbnh=111&tbnw=111&start=6&prev=/images?q=tiger&hl=en&lr=&sa=G
http://images.google.com/imgres?imgurl=http://www.nature.com/news/2004/041206/images/chicken.jpg&imgrefurl=http://www.nature.com/news/2004/041206/full/041206-8.html&h=166&w=180&sz=25&tbnid=TbBpwwkh5PQJ:&tbnh=88&tbnw=95&start=16&prev=/images?q=chicken&hl=en&lr=&sa=G


Multiple Sequence Alignment 

• Generalization of two sequence similarity problem, the 
problem of determining the similarity among multiple 
sequences. 

• The purpose is to discover ‘faint but widely dispersed’ 
common sequences which might represent biologically 
important information. 

• These common sequences might reveal evolutionary 
history, conserved motifs in the genome of divergent 
species, common chemical structure that give rise to 
similar folding or 3-D structures of proteins giving rise to 
similar functions. 



• An example is the notion of protein family
which is a collection of proteins having 
– similar 3-D structure, 
– similar functions,
– and similar evolutionary history. 

• If a new protein is discovered and if one is 
interested in classifying which family it 
belongs, comparison with individual members 
in the family might produce conflicting or 
confusing results. 



Multiple Alignment of Several Amino Acid 
Sequences of Globin Proteins

• The example below shows how common features are 
dispersed faintly among a group of proteins which may not be 
apparent when two sequences in the family are compared.

• The abbreviations on the left denote the organisms that the 
globin sequences are from. The sequences are displayed in 
several rows since they are longer than a page can 
accommodate. Columns containing highly similar residues in 
regions of known secondary structures are marked by “v” and 
columns with identical residues are marked by *. Two residues 
are considered similar if they are from any one of the folowing 
classes: (F,Y), (M,L,I,V), (A,G),(T,S),(Q,N),(K,R) and (E,D).



An Example of Multiple Alignment



Example of Multiple Alignment (contd.)



Example of Multiple Alignment (contd.)



Family Membership

If the faint similarity of the members in the 
family can be represented by what is called a 
‘consensus sequence’, it will be more efficient 
to find an alignment of the new protein with 
this consensus sequence to determine 
whether it belongs to this family.



Definition

Given a set of  multiple sequences

a (global) alignment maps them to sequences 

that may contain spaces, where

and the removal of all spaces  from

kSSS ,...., 21
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Multiple Alignment

• Although the generalization of definition from two 
sequences to multiple sequences seems straightforward, 
it is not that obvious how to score or assign value to a 
multiple alignment. 

• There are various scoring methods such as sum-of –pairs 
(SP) functions, consensus functions, and tree functions. 

• For the sake of mathematical ease, SP functions have 
been widely used and good approximation algorithms 
have also been developed. 



Multiple Alignment Methods

1. Exact Approach to Multiple Sequence Alignment 
2. Greedy Approach 
3. Progressive Sequence Alignment
4. Center Star Algorithm

Other Approaches
5. Consistency Based Approach
6. Structure Based Approach



Exact Approach

• Alignment of 2 sequences is represented as a 
2-row matrix

• In a similar way, we represent alignment of 3 sequences 
as a 3-row matrix 

A T _ G C G _
A _ C G T _ A
A T C A C _ A

• Score: more conserved columns, better alignment



Alignments = Paths in 3-D Edit Graph

 Align  3 sequences:   ATGC, AATC,ATGC

A A T -- C

A -- T G C

-- A T G C



Alignment Paths

0 1 1 2 3 4

A A T -- C

A -- T G C

-- A T G C

x coordinate



Alignment Paths

 Align the following 3 sequences: 

ATGC, AATC,ATGC
0 1 1 2 3 4

0 1 2 3 3 4

A A T -- C

A -- T G C

-- A T G C

•

x coordinate

y coordinate



Alignment Paths

0 1 1 2 3 4

0 1 2 3 3 4

A A T -- C

A -- T G C

0 0 1 2 3 4

-- A T G C

• Resulting path in (x,y,z) space: 

(0,0,0)(1,1,0)(1,2,1) (2,3,2) (3,3,3) (4,4,4)

x coordinate

y coordinate

z coordinate



Aligning Three Sequences
• Same strategy as aligning 

two sequences

• Use a 3-D “Manhattan 
Cube”, with each axis 
representing a sequence to 
align

• For global alignments, go 
from source to sink

source

sink



2-D vs 3-D Alignment Grid

V

W

2-D edit graph

3-D edit graph



Optimize SP for N sequences

• Similarity matrices become N-dimensional

• E.g., for 3 sequences it will be cubes.

M[i,j,k] = 
score of best alignment of
first i letters in A
first j letters in B
first k letters in C

i

j

k



3-D cell versus 2-D  Cell 

In 3-D, 7 edges in each 
unit cube

In 2-D, 3 edges in each 
unit square



Architecture of 3-D Alignment Cell

(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)



Multiple Alignment: Dynamic Programming

• si,j,k = max

• (x, y, z) is an entry in the 3-D scoring matrix

si-1,j-1,k-1 +  (vi, wj, uk)

si-1,j-1,k +  (vi, wj, _ )

si-1,j,k-1 +  (vi, _,  uk)

si,j-1,k-1 +  (_, wj, uk)

si-1,j,k +  (vi, _ , _)

si,j-1,k +  (_, wj, _)

si,j,k-1 +  (_, _, uk)

cube diagonal: no indels

face diagonal: one indel

edge diagonal: 
two indels



Multiple Alignment: Running Time

• For 3 sequences of length n, the run time is  O(7mnp) 
or O(n3)  if all  sequences have same length n.

• For k sequences, build a k-dimensional edit graph, with 
run time (2k-1)(nk) or O(2knk)

• Conclusion: dynamic programming approach for 
alignment between two sequences is easily extended 
to k sequences but it is impractical due to exponential 
running time

• It will be a difficult task to define score matrices with 
real biological significance. See later sum-of-pairs 
score.



Very slow

• Time and space is O(nk)

• Is NP-complete

– Wang, L. and Jiang, T. (1994), “On the complexity 
of multiple sequence alignment” J Comput Biol
1(4): 337-48.

• Totally impractical for most biologically 
interesting problems

• Faster methods needed



An Objective Scoring Function of 
Multiple Alignment

• Objective score: Sum-of-pairs (SP)

• Sum of objective score for alignment of each 
pair of sequences

SEQVENCE
SDQVE-CR
TEQVEACESP( )=

SEQVENCE
SDQVE-CR

Score( ) +

SEQVENCE
TEQVEACE

Score( ) +

SDQVE-CR
TEQVEACE

Score( )



Multiple Alignment Induces Pairwise 
Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

x: ACGCGG-C;  x: AC-GCGG-C;  y: AC-GCGAG

y: ACGC-GAC;  z: GCCGC-GAG;  z: GCCGCGAG



Reverse Problem: Constructing Multiple 
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments: 

x: ACGCTGG-C;  x: AC-GCTGG-C;  y: AC-GC-GAG

y: ACGC--GAC;  z: GCCGCA-GAG;  z: GCCGCAGAG

can we construct a multiple alignment that induces

them?



Reverse Problem: Constructing Multiple 
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments: 

x: ACGCTGG-C;  x: AC-GCTGG-C;  y: AC-GC-GAG

y: ACGC--GAC;  z: GCCGCA-GAG;  z: GCCGCAGAG

can we construct a multiple alignment that induces

them?

NOT ALWAYS

Pairwise alignments may be inconsistent



Combining Optimal 
Pairwise Alignments into 
Multiple Alignment:

Can combine pairwise
alignments into multiple 
alignment

Can not combine 
pairwise alignments 
into multiple alignment



Inferring Multiple Alignment from 
Pairwise Alignments 

• From an optimal multiple alignment, we can 
infer pairwise alignments between all pairs of 
sequences, but they are not necessarily 
optimal

• It is difficult to infer a ``good” multiple 
alignment from optimal pairwise alignments 
between all sequences



Multiple Alignment: Greedy Approach

• Choose most similar pair of strings and align. 

• Choose the next sequence that gives maximum score with the 
existing sequences and insert this sequence with possible 
insertion of additional space characters. Repeat.

• This is a heuristic greedy method



Greedy Approach: Example

• Consider these 4 sequences

s1 GATTCA
s2 GTCTGA
s3 GATATT
s4 GTCAGC



Greedy Approach: Example (cont’d)

• There are       = 6 possible alignments

• Cost Model: sub -1, indel -1 and match 1









2

4

s2 GTCTGA
s4 GTCAGC (score = 2)

s1 GAT-TCA
s2 G-TCTGA (score = 1)

s1 GAT-TCA
s3 GATAT-T (score  = 1)

s1  GATTCA--
s4 G—T-CAGC(score = 0)

s2 G-TCTGA
s3 GATAT-T (score = -1)

s3 GAT-ATT
s4 G-TCAGC (score = -1)



Greedy Approach: Example (cont’d)

s2 and s4 are closest; combine:

s2 GTCTGA
s4 GTCAGC

Now  take the alignment with max score from 
(s1,s2) and (s1,s4), which is (s1,s2) and add s4 in it 
with inserted gaps if necessary. Now, find the best 
alignment between s3 and (s1,s2,s4) which is (s1,s3)

s1 GAT-TCA
s2 G-TCTGA
s4 G-TCAGC

s1 GAT-TCA
s3 GATAT-T

s1 GAT-TCA
S3  GATAT-T
s2 G-TCTGA
s4 G-TCAGC

Now, add s3 to the existing alignment with s1.Fortunately, 
here we do not need to insert additional space characters 
for s2 or s4



Progressive Alignment

• Progressive alignment is a variation of greedy 
algorithm with a somewhat more intelligent strategy 
for choosing the order of alignments. 

• Progressive alignment works well for close 
sequences, but deteriorates for distant sequences

– Gaps in consensus string are permanent

– Use profiles to compare sequences



ClustalW

• Popular multiple alignment tool today

• ‘W’ stands for ‘weighted’ (different parts of 
alignment are weighted differently).

• Three-step process

1.) Construct pairwise alignments

2.) Build Guide Tree

3.) Progressive Alignment guided by the tree



Percent Sequence Identity

• The extent to which two nucleotide or amino 
acid sequences are invariant

A C  C  T G  A  G  – A G 
A C  G  T G  – G  C  A G

70% identical

mismatch
indel



Step 1: Pairwise Alignment

• Aligns each sequence again each other giving 
a similarity matrix

• Similarity = exact matches / sequence length 
(percent identity)

v1 v2 v3 v4
v1 -

v2 .17  -

v3 .87 .28  -

v4 .59 .33 .62 -
(.17 means 17 % identical)



Step 2: Guide Tree

•Create Guide Tree using the similarity matrix

•ClustalW uses the neighbor-joining method

•Guide tree roughly reflects evolutionary 
relations



Step 2: Guide Tree (cont’d)

v1
v3

v4

v2

Calculate:
v1,3 = alignment (v1, v3)
v1,3,4 = alignment((v1,3),v4)
v1,2,3,4 = alignment((v1,3,4),v2)

v1 v2 v3 v4
v1 -

v2 .17  -

v3 .87 .28  -

v4 .59 .33 .62 -



Step 3: Progressive Alignment

• Start by aligning the two most similar sequences

• Following the guide tree, add in the next sequences, 
aligning to the existing alignment

• Insert gaps as necessary

FOS_RAT         PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD

FOS_MOUSE       PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD

FOS_CHICK       SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD

FOSB_MOUSE      PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ

FOSB_HUMAN      PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ

.   . :   ** .     :..  *:.*   *   . *                   **:

Dots(less conservative substitution), colon(conservative substitution)
and stars(exact match) show how well-conserved a column is.



Multiple Alignments: Scoring 

• Number of matches (multiple longest 
common subsequence score)

• Entropy score

• Sum of pairs (SP-Score)



Multiple LCS Score

• A column is a “match” if all the letters in the 
column are the same

• Only good for very similar sequences

AAA
AAA
AAT
ATC



Entropy

• Define frequencies for the occurrence of each letter in each 
column of multiple alignment

– pA = 1, pT=pG=pC=0 (1st column)

– pA = 0.75, pT = 0.25, pG=pC=0 (2nd column)

– pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column)

• Compute entropy of each column
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Entropy: Example
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Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum 
of entropies of its columns:

X

TGCAX

X pp log
cols. ,,,

 






Entropy of an Alignment: Example

column entropy:
-( pAlogpA + pClogpC + pGlogpG + pTlogpT)

•Column 1 = -[1*log(1) + 0*log0 + 0*log0 +0*log0]

= 0

•Column 2 = -[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0] 

= -[ (1/4)*(-2) + (3/4)*(-.415) ] = +0.811

•Column 3 = -[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4) +(1/4)*log(1/4)] 

= 4* -[(1/4)*(-2)] = +2.0

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

A A A

A C C

A C G

A C T



Multiple Alignment Induces Pairwise 
Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

x: ACGCGG-C;  x: AC-GCGG-C;  y: AC-GCGAG

y: ACGC-GAC;  z: GCCGC-GAG;  z: GCCGCGAG



Sum of Pairs Score(SP-Score)

• Consider pairwise alignment of sequences 

ai and aj

imposed by a multiple alignment of k sequences  

• Denote the score of this suboptimal (not necessarily 

optimal) pairwise alignment as 

s*(ai, aj)

• Sum up the pairwise scores for a multiple alignment:

s(a1,…,ak) = Σi,j s*(ai, aj)



Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a1,a2,a3,a4:

s(a1…a4) = s*(ai,aj) = s*(a1,a2) + s*(a1,a3) 
+ s*(a1,a4) + s*(a2,a3)
+ s*(a2,a4) + s*(a3,a4)



SP-Score: Example

a1

.
ak

ATG-C-AAT
A-G-CATAT
ATCCCATTT


ji

jik aaSaaS
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Pairs of Sequences

A

A A

11

1

G

C G

1m

m

Score=3 Score =   1 – 2m

Column 1 Column 3

s s*(

To  calculate each column:



Center Star Alignment Algorithm

• Gusfield proposed this algorithm, called 
Center Star Alignment Algorithm . It can be 
proved that the SP values are less than twice 
the optimal value. We sketch this algorithm 
now.



Center Star Alignment Algorithm

• We make the following assumptions:

– s(x,x)=0, for all characters x.

– Symmetric:  , for all characters 
x and y.

– Triangle inequality:
, for all characters x, y and z.

• We have used the symbol to denote the 
edit distance or minimum global alignment 
distance of  S1 and S2.

),(),( xysyxs 

),(),(),( yzszxsyxs 

),( 21 SSD



Algorithm

The input  is a set  Γ of k strings.

1. First find S1ε Γ that minimizes . This can be done by 
running the dynamic programming algorithm on each of 
the pairs of sequences in Γ.  
 Note this S1 is not necessarily the first string specified in the 

input set Γ.  Call the remaining sequences in Γ to be S2,S3,….,Sk.  

2. Now add these strings S2,S3,…,Sk one at a time to a 
multiple alignment that so far has only one sequence 
viz. S1. Suppose  are already aligned as
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3. To add Si, run the dynamic programming 
algorithm  again on S1’ and Si to produce S1’’
and Si’.

4. Then adjust                      by adding spaces to 
those columns where spaces were added to 
get S1’’ from  S1’. 

5. Replace S1’ by S1’’.

'

1

'

2 ......... iSS



Example

• Γ=( AGTGC, ATC, ATTC, ATC, AGC)

• Step1. S1 is ATC (any one of them) since the edit distance 
between ATC and ATC is zero. 
– For all other pair the edit distance is more than 0. Call the 

remaining set S2=ATTC, S3=ATC, S4=AGAGC and S5=AGC.

• Step2 and 3:  Add S2=ATTC. The alignment between S1’
and S2 is: 

S1’’=    A  T  -- C

S2’  =   A  T  T C



• Step4 and 5: We only have one S1’ which is now replaced 
by S1’’=    A  T  -- C. 
– To add ATC , the new alignment is 

S1’’=    A  T  -- C

S3’ =    A  T  -- C

• Since no extra space has been inserted in S1’’, we don’t 
have to do anything. So the alignment at this point look 
like.                                                       

A  T  -- C

A  T  T C

A  T  -- C



• Next we add S4=AGTGC. The alignment is now      
A – T – C

A G T GC

• Now, we have introduced a ‘–‘ in the second column of 
S1’= S1’’. So the new multiple alignment have to be  
“adjusted” giving

A – T – C

A -- T  T C

A – T – C

A G T G C



• Finally, we have to add S5=AGC.  Since the latest S1’= S1’’=
A – T – C, S5=AGC can be aligned in two different ways by 
putting G aligned with any one of the spaces for S1’.

• Thus, one of the solutions is                                                                                                
A – T – C

A --T  T C

A – T  – C

A G T G C

A G -- -- C



Time Complexity

• Theorem:  

– The algorithm just described above has a time 
complexity O(k2n2), where k is the number of 
sequences and each sequence has a maximum 
length of n.

– It can be proved that the total SP cost of the 
solution obtained by the above algorithm is not 
worse than the twice the optimal cost. 



Multiple Alignment: History

1975 Sankoff
Formulated multiple alignment problem and gave dynamic programming 
solution

1988 Carrillo-Lipman
Branch and Bound approach for MSA

1990 Feng-Doolittle
Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW
Most popular multiple alignment program

1998 Morgenstern et al.-DIALIGN
Segment-based multiple alignment

2000 Notredame-Higgins-Heringa-T-coffee
Using the library of pairwise alignments

2004 MUSCLE 


