Outline

- Scoring Matrices
- Alignment with Affine Gap Penalties
- Local Alignment
- Multiple Alignment

In this part we consider certain generalization of the definition of the concept of 'similarity' leading to scoring matrices that are deterministic or probabilistic. We will also consider 'gaps' in the alignment and also local similarity of a much smaller length string against a larger string. We then consider alignment of a set of strings, the set containing more than two strings.

The Basic Problem

A gene or a protein may be related to another gene or protein. "Relatedness" may mean

1. They are homologous if they shared a common ancestry.
2. They may have common functions.

Analysis of DNA or protein sequences (the sequence of amino acids or "residues") may reveal certain domains or "motifs" that are shared among a group of molecules. Protein alignments give more information than DNA alignments. This is because certain DNA mutations, particularly at the third location in a codon, do not change the protein. Such mutations are called silent mutations. Also mutations in the intron regions of a DNA has practically no effect on the protein. When a DNA sequence is analyzed, it is common practice to analyze the translated amino acid sequence.
Protein sequence comparison can identify homologous sequences that originated from a common ancestor over 1 billion years ago (BYA) whereas DNA sequences can look back up to 600 MYA (millions of years ago).
But there are situations where the DNA sequence must be identified viz. to locate a gene or a motif, searching for polymorphism or identifying a cloned CDNA fragment.

Need to Develop Scoring Matrices

- Two sequences are either homologous or not homologous. Statements like two sequences are 20% or 50% homologous are wrong. The only relevant criterion to be homologous is that they are originated from a common ancestral sequence. But, it is correct to say that two homologous sequences are 20% or 50% similar if 20% or 50% of nucleotides or residues are identical (matched). The cost of substitution of one nucleotide for another nucleotide is set arbitrarily in models for DNA comparison, but two amino acids may not "matched" but may still be biochemically or biophysically related and may command a large similarity score. These are called conservative substitutions.
- Thus definition of scoring matrices are essential for comparing amino acid sequences.

Homologous: Orthologous and Paralogous

- Homologous proteins may be orthologous or paralogous. Orthologs are homologous sequences in different species that arose from a common ancestor. For example, humans and rodents diverged 80 MYA ("millions of years ago") when a single ancestral myoglobin gene diverged by speciation. Orthologs have similar biological function viz. the myoglobin transport oxygen in both human or rat.
- Genes are often duplicated to produce multiple copies in the same genome, which often diverge in functions slightly. Where the homology is the result of gene duplications so that the copies have descended side by side during the history of the organism, the genes should be called paralogous (para=parallel). For example, human $\alpha-1$ globin and β globin are paralogous.

Key Issues

- The scoring system to rank alignments
- The algorithm complexity to find the optimal or good alignments
- Statistical and Biological significance of an alignment score.

Consider the following pairwise alignments (All from same region of the human alpha globin protein sequence SWISS-PORT data base of proteins. The middle line shows identical (red) and 'similar' (+ sign,blue) meaning functionally conservative:
a)

HBA_HUMAN: GS A QVK G HGKKVADALTNAV AHVDDMPNALSALSDLHAHKL G+ +VK + HGKKV A+++++ AH+D++ +++++ LS+LH KL
HBB_HUMAN: GN P KVK A HGKKVLG AFSDGLAHLDNL KGTFAT LSELHCDKL
This shows clear similarity of human alpha globin to beta globin.
(b)

HBA_HUMAN : GSAQVKGHGKKVADALTNAVAHV- - - D- - DMPNALSALSDLHAHKL ++ ++++H+ KV + +A ++ +L+ L+ ++H+ K

LGB2_LUPLU : NNPELQAHAGKVFKLVYEAAIQLQVTGVVVT DATLKNLGSVHVSKG

This shows a biologically meaningful alignment between leghaemoglobin and yellow lupin. These two sequences are evolutionary related and have same three Dimensional structure, and function in oxygen binding. Note much fewer match Characters and 'gaps' inserted to maintain alignment

$$
\begin{array}{cc}
\text { HBA_HUMAN: } & \text { GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD---- LHAHKL } \tag{c}\\
& \text { GS+ + G + +D L ++ H+ D+ A +AL D ++AH+ } \\
\text { F11G11.2 } & \text { GSGYLVGDSLTFVDLL }- \text { VAQHTADLLAANAALLDEFPQFKAHQE }
\end{array}
$$

A spurious high-scoring alignment to a nematode glutathione S-tranferase homolog named F11G11.2. The two proteins have totally different structure and function.

How do we differentiate cases like (b) and (c). This calls for a careful definition of the scoring system that we use to evaluate alignments.

Additive Score Model

We consider the mutations at different sites in a sequence to be Independent . A "gap" of arbitrary length considered to be a single mutation.
This assumption is a reasonable approximation for DNA and protein sequences (although we know that interactions between the bases play a significant role for protein structures).
For RNA sequences, this assumption is erroneous since the base pairing gives rise to long-distance dependencies due to the folding structures. We leave out RNA sequences from our discussions.

Substitution Matrices

- Given a pair of aligned sequences, how do we assign a score that gives relative likely hood that the sequences are related?
Earlier, we discussed the general scoring equations with respect to DNA and protein sequences using constant cost parameters such as μ and σ, but their applications to specific biological context is a bit more involved process. A convenient way to specify scoring is a matrix called the Substitution Matrix which is $|\Sigma|+1$ by $|\Sigma|+1$ matrix giving the values of $\delta(a, b)$ for all possible (a, b) except (,--). Ideally, the scores should capture the underlying evolutionary or biochemical properties of the sequences.

Substitution Matrices

Since nucleotides differ very little in biochemical functions, simple scoring functions are reasonable for DNA sequences. But random mutations of the nucleotide sequence within a gene may change the amino acid sequence of the corresponding protein. Some of these may produce drastic change in the structure and function of the protein while others do not affect the fitness of the organism. The amino acids Asn, Asp, Glu, and Ser are the most mutable amino acids ; Cys and Trp are the least mutable. Knowledge of the frequency of occurrences of most and least common evolutionary events allow Biologists to define models to derive scoring matrices for computing biologically relevant alignments.

Amino acid similarities

- Leucine (L) and Isoleucine (I) biochemically similar
- High score for subsitution $=+2$
- But not as high as no change (L, L) or (I, I) = +4
- Leucine (hydrophobic) and Aspartic Acid (D) (hydrophilic) biochemically different
- Low score for substitution $=-4$
- Conservative Substitutions: T(Threonine) and S(serine),
- L(Leucine) and V(Valine).
- Basic amino acids: (K,R,H)
- Acidic amino acids : (D,E)
- Hydroxylated amino acids: (S,T)
- Hydrophobic amino acids : (W,F,Y,L,I,V,M,A)

20 amino acids

	 Phenydalanin	 ne Tryptophan	COO_{3}^{-} $\mathrm{H}^{+}-\mathrm{CO}_{-}^{-H}$ H Glycine G COO^{-}	
				 Tyrosine Y
				 Histidine H

Proteins

Proteins are polymers, also called polypeptides consisting of a sequence of amino acids. There are twenty amino acids that are found in proteins.

Hydrophobic Group Hydrophilic Group

A	Alanine	ala	R	Arginine	arg
C	Cysteine	cys	N	Asparagine	asn
G	Glycine	gly	D	Aspartic acid	asp
I	Isoleucine	ile	Q	Glutamine	gln
L	Leucine	leu	E	Glutamic acid	glu
M	Methionine	met	H	Histidine	his
F	Phenylalanine phe	K	Lysine	lys	
P	proline	pro	S	Serine	ser
T	Trypyophan	trp	T	Threonine	thr
Y	Tyrosine	tyr			
V	Valine	val			

Making a Scoring Matrix

- Scoring matrices are created based on biological evidence.
- Alignments can be thought of as two sequences that differ due to mutations.
- Some of these mutations have little effect on the protein's function, therefore some penalties, $\delta\left(v_{i}, w_{j}\right)$, will be less harsh than others.

Scoring Matrix: Example

	A	R	N	R
A	5	-2	-1	-1
R	-	7	-1	3
N	-	-	7	0
K	-	-	-	6

AKRANR

KAAANK
$-1+(-1)+(-2)+5+7+3=11$

- Notice that although R and K are different amino acids, they have a positive score.
- Why? They are both positively charged amino acids \rightarrow will not greatly change function of protein.

Construction of Scoring Matrix

The entry $\delta(\mathrm{a}, \mathrm{b})$ in the scoring matrix for proteins usually denotes how often the amino acid ' a ' substitutes the amino acid ' b ' in the alignments of related protein sequences. The most commonly used scoring matrices point accepted mutation (PAM) and block substitution matrix (BLOSUM) are created by using this principle.

Margaret Dayhoff and her team made significant contributions in this field in the 70's. They published a book Atlas of Protein Sequence and Structure which listed all protein sequences known in late 70's along with information about their structures and functions. They defined an accepted point mutation(APM -changed to PAM for ease of pronunciation)as a substitution that has been accepted by natural selection. This happens if

1. A gene undergoes a DNA mutation such that it encodes a different amino acid.
2. The entire species adopts that change as the predominant form of the protein.

Dayhoff,M.O.,Schwartz,R.M. and Orcutt, B. C.,"A model of evolutionarychange in protein "in "Atlas of Protein Sequence and Structure", Vol.5, National Biomedical Research Foundation, Washington D.C. Pp.89-90, 1978. (Also read pp.178-180 from text by Jones and Pevzner)

Dayhoff's Method of Construction of Scoring Matrices

Dayhoff and her team used phylogenetic tree analysis technique s on 1572 changes in 71 groups of extremely similar proteins. Such analysis allows comparison of extant amino acid sequences to inferred ancestral sequences. This approach involved phylogenetic analysis rather than comparing the two amino acid sequences directly.
For the PAM 1 matrix, they identified proteins that have undergone 1% change (that is, 1 accepted point mutation per 100 amino acid residues). Such sequences are defined as being one PAM unit diverged. Such alignments are called the base alignments.

Given a set of base alignments, let

Let $f(a)=$ frequency of amino acid a in all positions from the data set.
$g(a, b)=\frac{f(a, b)}{f(a)}=$ probability that an amino acid a mutates into amino acid b within 1 PAM unit
The (a, b) entry of the PAM-1 matrix is defined as $\quad \delta(a, b)=\log \frac{f(a, b)}{f(a) f(b)}=\log \frac{g(a, b)}{f(b)}$
The quantity $f(a) . f(b)$ is the joint probability of aligning a with b by chance.
The PAM-n matrix is defined as the result of applying PAM-1 matrix n times. If G is the 20X20 matrix of frequencies $g(a, b)$, then G^{n} (multiplying this matrix by itself n times) gives the probability that amino acid a mutates into amino acid b during n PAM units. The (a, b) entry of the PAM-n matrix is defined as $\log \frac{G^{n}}{f(b)}$

For large n, the resulting PAM matrices often allow one to find related proteins even when there are practically no matches in the alignment. The underlying DNA sequences are so diverged that there comparison will not find any statistically significant biological similarities.

Scoring Two Amino Acid Sequences

- Random model (R): Assumes that every amino acid in the sequence occurs independently. Thus, the probability of the two sequences is the product of probabilities of each amino acid.

$$
P\left(S_{1}, S_{2} \mid R\right)=\Pi p_{i} \Pi p_{j}
$$

where p_{i} and p_{j} denote probabilities of ith and jth symbols in the two sequences.

- Match model (M) : the aligned pair of bases occur with a joint probability $p_{i j}$. We can think of $p_{i j}$ as the probability that the residues i and j have been derived from some unknown original base k in their common ancestor (k could be same as i and/or j). Thus

$$
P\left(S_{1}, S_{2} \mid M\right)=\Pi p_{i j}
$$

Substitution matrices

The ratio of these two likelihood is known as the odds-ratio

$$
\frac{P\left(S_{1}, S_{2} \mid M\right)}{P\left(S_{1}, S_{2} \mid R\right)}=\frac{\Pi p_{i j}}{\Pi p_{i} p_{j}}
$$

In order to arrive at an additive scoring system, we take the sum of logarithm of this ratio, known as the log-odds ratio S :

$$
S=\sum_{i} s\left(S_{1}(i), S_{2}(i)\right)
$$

Where $\quad s=\log \frac{\Pi p_{i j}}{\Pi p_{i} \Pi p_{j}}$
is the log likelihood of the residue pair occurring as an aligned pair. These scores can then be arranged as a 20×20 matrix (for protein sequences) with $s\left(a_{i}, a_{j}\right)$ in position i, j where a_{i} and a_{j} are the i th and j th amino acids.
PAM10 - see separate posting

The values for $p_{i j}$ are called the "target frequencies" and they indicate the amount of evolutionary change that has taken place. For example, for a pair of closely related proteins, an aligned Serine were to change to threonine 5% of the time, the target frequency for $p_{S, T}$ is 0.05 . The quantity $p_{i} p_{j}$ represents probabilities of amino acids I and j occurring by chance. These frequencies are derived by first calculating relative mutabilities (how often a residue is going to change in a short period of evolution) and dividing them by the overall frequencies of occurrences of these residues.
The less mutable residues are those that play a more significant role in the function and structure of the protein (viz. one residue mutation is known to cause cystic fibrosis) whereas more mutable residues like Asp, Ser, Asn and Gly have functions in protein that can be easily assumed by other residues. These phenomena are obviously related to the genetic code and how the mutations in the triplets of the reading frame affect the production of protein

Table 2-6 PAM-250 Matrix in "Log Odds" Form (Ratios expressed as base 10 logarithms)

C	12																			
5	O	2																		
T	-2	1	3																	
P	-3	1	O	6																
A	-2	1	1	1	2															
G	-3	1	0	-1	1	5														
N	-4	1	0	-1	0	0	2				\cdots									
D	-5	0	0	-1	0	1	2	4												
E	-5	0	0	-1	0	0	1	3	4		-									
Q	-5	-1	-1	0	0	-1	1	2	2	4										
H	-3	-1	-1	0	-1	-2	2	1	1	3	6									
\boldsymbol{R}	-4	0	-1	0	-2	-3	0	-1	-1	1	2	8								
K	-5	0	0	-1	-1	-2	1	0	0	1	0	3	5							
M	-5	-2	-1	-2	-1	-3	-2	-3	-2	-1	-2	0	0	6						
I	-2	-1	0	-2	-1	-3	-2	-2	-2	-2	-2	-2	-2	2	5					
L	-8	-3	-2	-3	-2	-4	-3	-4	-3	-2	-2	-3	-3	4	2	8				
V	-2	-1	O	-1	0	-1	-2	-2	-2	-2	-2	-2	-2	2	4	2	4			
F	-4	-3	-3	-5	-4	-5	-4	-6	-5	-5	-2	-4	-5	O	1	2	-1	9		
Y	0	-3	-3	-5	-3	-5	-2	-4	-4	-4	O	-4	-4	-2	-1	-1	-2	7	10	
W	-8	-2	-5	-6	-6	-7	-4	-7	-7	-5	-3	2	-3	-4	-5	-2	-6	0	O	17
	C	5	T	P	A	G	N	D	E	Q	-	\boldsymbol{R}	K	M	I	L	V	F	Y	W

BLOSUM

Blocks Substitution Matrix represents a statistical alternative to PAM. It gives a more accurate measure of differences of distantly related proteins. It is more effective for searching sequences that contain relatively sparse regions of close evolutionary relatedness.
PAM assumes that the mutations occur at a constant rate - the same rate that is observed in the short term. BLOSUM is derived by observing all amino acid changes from a protein families in an aligned region without any bias regarding the level of similarity between the two sequences.
PAM matrices are based on scoring of all amino acid positions, but BLOSUM matrices are based on conserved positions that occur in blocks representing the most similar regions of related sequences.

BLOSUM

- Blocks Substitution Matrix
- Scores derived from observations of the frequencies of substitutions in blocks of local alignments in related proteins
- Matrix name indicates evolutionary distance
- BLOSUM62 was created using sequences sharing no more than 62\% identity

The Blosum50 Scoring Matrix

	A	R	N	D	C	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	\mathbf{X}	
A	5	-2	- -1	-2		-1	-1	-1	0	-2	-1	-2	-1	-1	-3	-1	1	0	-3	-2	0	-2	-1	-1	-5
R	-2	7	7 -1	-2		-4	1	0	-3	0	-4	-3	3	-2	-3	-3	-1	-1	-3	-1	-3	-1	0	-1	-5
N	-1	-1	17	2	-2	-2	0	0	0	1	-3	-4	0	-2	-4	-2	1	0	-4	-2	-3	4	0	-1	-5
D	-2	-2	2	8	-4	-4	0	2	-1	-1	-4	-4	-1	-4	-5	-1	0	-1	-5	-3	-4	5	1	-1	-5
C	-1	-4	- 2	-4		13	-3	-3	-3	-3	-2	-2	-3	-2	-2	-4	-1	-1	-5	-3	-1	-3	-3	-2	-5
Q	-1	1	0	0	-3	-3	7	2	-2	1	-3	-2	2	0	-4	-1	0	-1	-1	-1	-3	0	4	-1	-5
E	-1	0	0	0	-3	-3	2	6	-3	0	-4	-3	1	-2	-3	-1	-1	-1	-3	-2	-3	1	5	1	5
G	0	-3	0	-1		-3	-2	-3	8	-2	-4	-4	-2	-3	-4	-2	0	-2	-3	-3	-4	-1	-2	-2	5
H	-2	0	1	-1		-3	1	0	-2	10	-4	-3	0	-1	-1	-2	-1	-2	-3	2	-4	0	0	-1	5
I	-1	-4	- -3	-3		-2	-3	-4	-4	-4	5	2	-3	2	0	-3	-3	-1	-3	-1	4	-4	-3	1	-5
L	-2	-3	-3 -4	4-4		-2	-2	-3	-4	-3	2	5	-3	3	1	-4	-3	-1	-2	-1	1	-4	-3	-1	-5
K	-1	3	30	-1		-3	2	1	-2	0	-3	-3	6	-2	-4	-1	0	-1	-3	-2	-3	0	1	1	-5
M	-1	-2	-2	-4		-2	0	-2	-3	-1	2	3	-2	7	0	-3	-2	-1	-1	0	1	-3	-1	-1	5
F	-3	-3	-4	$4-5$		-2	-4	-3	-4	-1	0	1	-4	0	8	-4	-3	-2	1	4	-1	-4	-4	-2	-5
P	-1	-3	-3	-		-4	-1	-1	-2	-2	-3	-4	-1	-3	-4	10	-1	-1	-4	-3	-3	2	-1	2	-5
S	1	-1	11	0	-1	-1	0	-1	0	-1	-3	-3	0	-2	-3	-1	5	2	-4	-2	-2	0	0	-1	-5
T	0	-1	10	-1		-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	2	5	-3	-2	0	0	-1	0	5
W	-3	-3	-3	4 -5		-5	-1	-3	-3	-3	-3	-2	-3	-1	1	-4	-4	-3	15	2	-3	-5	-2	-3	-5
Y	-2	-1	$1{ }^{-2}$	- -3		-3	-1	-2	-3	2	-1	-1	-2	0	4	-3	-2	-2	2	8	-1	-3	-2	-1	-5
V	0	-3	-3	-3		-1	-3	-3	-4	-4	4	1	-3	1	-1	-3	-2	0	-3	-1	5	-4	-3	-1	5
B	-2	-1	14	5	-3	-3	0	1	-1	0	-4	-4	0	-3	-4	-2	0	0	-5	-3	-4	5	2	-1	-5
Z	-1	0	0	- 1	-3	-3	4	5	-2	0	-3	-3	1	-1	-4	-1	0	-1	-2	-2	-3	2	5	-1	-5
\mathbf{X}	-1	-1	$1{ }^{-1}$	-1 -1		-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-1	0	-3	-1	-1	-1	-1	-1	-5
*	-5	-5	$5 \longdiv { - 5 }$	$5 \longdiv { - 5 }$		-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	1

The log-odds values have been scaled and rounded To the nearest integers for the purpose of computational efficiency.

Substitution matrix: BLOSUM62

Matrix is symmetrical

BLOSUM62 -- See separate posting

Optimal Alignment with Gap

- Definition:
- A gap in an alignment between two strings, is a run of contiguous spaces.
- An insertion or deletion of a character was represented by a space.
- Each occurrence of such a space character in the alignment is considered to be a mutation.
- Sometimes a gap of more than one space can be created by only one mutational or evolutionary event. To handle this kind of situation, we need to develop a model of alignment cost function that does not attribute a negative cost or penalty based on the length of the gap (which is called a linear model).

Biological Significance of Gap

- Examples of 'gaps' in biological context is numerous.
- The case of cDNA is a good biology application.
- In a genome, not all DNA are responsible for the production of proteins or hormones;
- those that carry these functions are said to be expressed.
- To study this phenomenon, biologists make DNA , called cDNA, corresponding to mRNA that leaves the nucleolus to cytoplasm for translation, by replacing uracil (U) in RNA by thyamine (T) .
- Concatenation of these DNA strands then corresponds to complement of the exon of the gene, cDNA.

Biological Significance of Gap(contd.)

- If we now sequence the cDNA and compare this with similar DNA in the chromosomal DNA, we would have obtained a map of chromosomal genes that are expressed.
- While doing this similarity search, the introns have to be aligned with long gaps.
- Recall a gene may be distributed over several segments with interleaving introns. If we used our scoring scheme for similarity search here, we would have penalized heavily our total score for the alignment (since gap will translate into a set of contiguous delete operations) and the similarity of the cDNA with some segment of chromosomal DNA would be missed.
- The alignment that best reflect the relationship consists of a few regions of strong similarity interspersed with long regions of gaps.

Linear Gap Penalty

- Gaps subtract a value from the objective score
- Simplest design: "linear" penalties
- a fixed parameter (h) multiplied by length of

$$
\begin{aligned}
& \text { gap } \\
& \text { " } h \text { " for "gap extension" } \\
& h=4 \text { (fixed penalty) }
\end{aligned}
$$

- Subtract e for every "-" in the alignment

Computing Maximum Objective Score

max Score(GENE,APE) = ?

Problem with linear gap penalties

$$
\begin{array}{ll}
\text { GRB2_CHICK } & \ldots . S V K F G N---D V Q Q F K V . . . \\
\text { SRC_RSVSR } & \ldots . S I R D W D D M K G D H V K H Y K I . . . \\
\text { GRB2_CHICK } & \ldots . S V K F G N D---V Q Q F K V . . . \\
\text { SRC_RSVSR } & . . . S I R D W D D M K G D H V K Y K I . . .
\end{array}
$$

- These alignments have same objective score with linear penalties
- But lower alignment is more biologically reasonable
- One gap instead of two = one insertion / deletion event instead of two

Affine Gap Penalties

- Prefer fewer gaps (parsimony: fewer insert / delete events)
- Gap Penalty= gap $(k)=g+h k$
$g=$ "gap open" or "per-gap" penalty, typical $g=9$
$h=$ "gap extension" penalty, typical $h=2$
$k=$ gap length (number of consecutive "-" symbols)

GRB2_CHICK
. . . SVKFGN----D-VQQFKV . . .

$$
\begin{aligned}
& \text { gap penalty } \\
& \quad=-2 g-5 h=-28
\end{aligned}
$$

GRB2_CHICK
...SVKFGND-----VQQFKV...

$$
\begin{aligned}
& \text { gap penalty } \\
& \quad=-g-5 h=-19
\end{aligned}
$$

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

Goto's Algorithm

Ref: E.W.Myers and W. Miller, "Optimal Alignments in Linear Space", CABIOS, Vol.4,No.1, 1988, pp.11-17 (posted in this website)

The alignment problem is often formulated as maximizing similarity score rather than minimizing difference score. Earlier, we discussed the replacement cost as $\delta(a, b)$ with $\delta(a, a)=0$ in the context of difference score. For similarity, a bonus score $\sigma(a, b)$ is added for every aligned pair (a, b) and a gap penalty $\operatorname{gap}(k)$ is subtracted for every k symbol gap. We also know that if we have the minimum cost solution, we can transform it to a solution of maximum similarity.

Definitions

- Recall A_{i} denote the i-symbol prefix $\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{i}}$ of n-symbol sequence $A=a_{1} a_{2} \ldots a_{n}$ and B_{j} denote the j-symbol prefix $b_{1} b_{2} \ldots b_{j}$ of the sequence $B=b_{1} b_{2} \ldots b_{m}$. Define
- $C(i, j)=$ minimum cost of conversion of $A_{i} \rightarrow B_{j}$
- $D(i, j)=$ minimum cost of conversion of $A_{i} \rightarrow B_{j}$ that deletes a_{i}
- $I(i, j)=$ minimum cost of conversion of $A_{i} \rightarrow B_{j}$ that inserts b_{j}

If $i=0, D(i, j)$ is not defined since A_{0} is a null string and deleting a null symbol does not make any sense. Similarly, $I(i, j)$ for $j=0$ is not defined since we cannot insert a null symbol. Taking these boundary conditions into account, the recurrence relations to obtain $C(i, j)$ is given in the next slide.

Recurrence Relations for $C(i, j)$

$C(i, j)=\begin{array}{ll}\overrightarrow{\min }\left[D(i, j), I(i, j), C(i-1, j-1)+\delta\left(a_{i}, b_{j}\right)\right] & \text { if } i>0 \text { and } j>0 \\ g a p(j) & \text { if } i=0 \text { and } j>0 \\ g a p(i) & \text { if } i>0 \text { and } j=0 \\ 0 & \text { if } i=0 \text { and } j=0\end{array}$
For $\mathrm{i}, \mathrm{j}>0$, the first line is obvious because the alignment must end with a delete, insert or a replacement operation.
For $\mathrm{i}=0$ and $\mathrm{j}>1, C(i, j)=g a p(j)$, since $\mathrm{A}_{0} \rightarrow \mathrm{~B}_{\mathrm{j}}$ corresponds to alignment

$$
\begin{array}{lll}
-a_{1} a_{2} . . a_{n} \\
b_{1} b_{2} \ldots b_{j} b_{j+1} & \cdots & b_{m}
\end{array}
$$

For $i>1$ and $j=0, C(i, j)=g a p(i)$, since $A_{i} \rightarrow B_{0}$ corresponds to

$$
\begin{aligned}
& a_{1} a_{2} . . a_{i} a_{i+1} a_{i+2} \cdot . a_{n} \\
& -\quad-b_{j+1}
\end{aligned} \ldots . b_{m}
$$

For $\mathrm{i}=\mathrm{j}=0, C(i, j)=0$, since $\mathrm{A}_{0} \rightarrow \mathrm{~B}_{0}$ corresponds to an empty alignment.

Recurrence Relation for $D(i, j)$

Consider $i>0$ and $j>0$. Possible scenarios for minimum cost conversion of A_{i} to B_{j} that deletes a_{i} are shown. This justifies $1^{\text {st }}$ line for $\mathrm{D}(1, \mathrm{j})$ below.

Gap already exists: $D(i-1, j)+h$

New gap created: $C(i-1, j)+\mathrm{g}+h$

For $i=0$ and $j>0, D(0, j)$ corresponds to $A_{0} \rightarrow B_{i}$. As we noted earlier, if $i=0, D(i, j)$ is not defined since A_{0} is a null string and deleting a null symbol does not make any sense. So, we are free to pick the function $D(0, j)$ for $i=0$ and $j>0$.
Since the alignment starts with a "delete", we define $D(0, j)=C(0, j)+g$.
We need not compute $D(i, 0)$ for $i>=0$ since other quantities do not depend on these values.
Thus, we can write

$$
D(i, j)=\xlongequal{\substack{\min \\
C}(0, j-1, j), C(i-1, j)+g]+h \text { for } i>0 \text { and } j>0} \begin{aligned}
& \text { for } i=0 \text { and } j>0
\end{aligned}
$$

Recurrence Relation for $D(i, j)$ (contd.)

For the case $\mathrm{i}=1$, an optimal Conversion of A_{1} to B_{j} ending

$$
\begin{array}{|l|}
\hline----a_{1} \\
\hline b_{1} b_{2} b_{j}-- \\
\hline
\end{array}
$$

with a delete, must convert A_{0} to B_{j} and then delete a_{1}. Thus,
$\min [D(0, j), C(0, j)+g]+h=\min [C(0, j)+g, C(0, j)+g]+h$
by substituting $\quad D(0, j)=C(0, j)+g \quad$ which yields:

$$
D(1, j)=C(0, j)+\operatorname{gap}(1)
$$

This shows that it was okay to define $D(0, j)=C(0, j)+g$ so that the recursion terminates properly.

Recurrence Relation for $I(i, j)$

- I is handled like D. Thus, if we define $l(i, 0)=$ $C(i, 0)+g$ for $i>0$ and ignore $I(0, j)$ for $j>=0$, then
$I(i, j)=\begin{aligned} & \begin{array}{l}\min [I(i, j-1), C(i, j-1)+g]+h \\ \text { for } \quad i>0 \\ C \\ C\end{array}(i, 0)+g r \\ & \text { for } \quad i>0 \text { and } j>0\end{aligned}$
The recurrence relations C, D and I can be used to write an algorithm as presented in the paper cited earlier.

An Example

$$
v=A G T A C \quad w=A A G
$$

Cost Model: $\delta(a, b)=1$ if a is not equal to b and with $\delta(a, a)=0$ $\operatorname{gap}(k)=g+h k=2+0.5 k$ where g is gap open penalty . We know that for $i=0, j>0 \quad C(0, j)=g a p(j)$ for converting $A_{0} \rightarrow B_{j}$ Now, $D(0, j)$ is not defined since an alignment that ends with deleting a null symbol does not make any sense. We are free to define $D(0, j)$. It is "convenient " to define $D(0, j)$ as

$$
\begin{aligned}
D(0, j)= & C(0, j)+g \text { for } \mathrm{j}>0 . \text { Thus, } \quad D(0, j)=C(0, j)+g=\operatorname{gap}(\mathrm{j})+\mathrm{g} . \text { This yields } \\
& D(0,1)=\operatorname{gap}(1)+\mathrm{g}=2+0.5+2=4.5 \\
& D(0,2)=\operatorname{gap}(2)+\mathrm{g}=2+1+2=5 \\
& D(0,3)=\operatorname{gap}(3)+\mathrm{g}=2+1.5+2=5.5
\end{aligned}
$$

We need not compute $D(0,0), D(1,0), D(2,0), D(3,0), D(4,0)$ and $D(5,0)$

Similarly, since $l(i, 0)=C(i, 0)+g$ for $i>0$, we can write $l(i, 0)=C(i, 0)+g=g a p(i)+g$ and obtain

$$
\begin{aligned}
& I(1,0)=\operatorname{gap}(1)+\mathrm{g}=2+0.5+2=4.5 \\
& I(2,0)=\operatorname{gap}(2)+\mathrm{g}=2+1+2=5 \\
& I(3,0)=\operatorname{gap}(3)+\mathrm{g}=2+1.5+2=5.5 \\
& I(4,0)=\operatorname{gap}(4)+\mathrm{g}=2+2+2=6 \\
& I(5,0)=\operatorname{gap}(5)+\mathrm{g}=2+2.5+2=6.5
\end{aligned}
$$

D					1					C					
	0	1	23		0		1	23		0		1	23		3
0	*	4.5	5	5.5	0	*	*	*	*	0	0	2.5	3	3.5	
1	*				1	4.5				1	2.5				
2	*				2	5				2	3				
3	*				3	5.5				3	3.5				
4	*				4	6				4	4				
5	*				5	6.5				5	4.5				
$D(0, j)=C(0, j)+g=$ gap $(\mathrm{j})+\mathrm{g} \quad \quad l(i, 0)=C(i, 0)+g=\operatorname{gap}(i)+g$										$\begin{aligned} & C(0, j)=\operatorname{gap}(j) \\ & C(i, 0)=\operatorname{gap}(i) \end{aligned}$					
0	*	4.5	5	5.5		*	*	*	*						
1	*	5	5.5	6		4.5	5	2.5	3						
2	*					5				$\min [I(i, j-1), C(i, j-1)+g]+h$					
3	*				3	5.5									
4	*					6				$(i>0, j=1)$					
5	*					6.5									

$\min [D(i-1, j), C(i-1, j)+g]+h(i=1, j>0)$

	0	1	2	3
0	*	4.5	5	5.5
1	*	5	5.5	6
2	*			
3	*			
4	*			
5	*			

	0		23	
0	*	*	*	*
1	4.5	5	2.5	3
2	5			
3	5.5			
4	6			
5	6.5			

Now, we can compute the first row of $C(1, j)$ using the general formula : $\min \left[D(i, j), I(i, j), C(i-1, j-1)+\delta\left(a_{i}, b_{j}\right)\right] \quad$ if $i>0$ and $j>0$
$\begin{array}{llll}0 & 1 & 2\end{array}$

0	2.5	3	3.5
2.5	0	2.5	3
3			
3.5			
4			
4.5			

	0	1	2	3
0	*	*	*	*
1	4.5	5	2.5	3
2	5	5.5	5	3.5
3	5.5	6	5.5	6
4	6	6.5	6	5.5
5	6.5	7	6.5	7
I				

0	0	2.5	3	3.5
1	2.5	0	2.5	3
2	3	2.5	1	2.5
3	3.5	3	3.5	2
	4	3.5	3	4.5
	4.5	4	4.5	4
C				

Thus the computation proceeds as follows:

1. Compute 0 -th row and 0 -th column of matrices D, I, C
2. Compute the $1^{\text {st }}$ rows of D and I
3. Compute the $1^{\text {st }}$ row of C
4. Compute the $2^{\text {nd }}$ row of D and I
5. Compute the 2 nd row of C

Repeat until you finish computation of the last rows of D, I, C

Global alignment (Summary)

- Global alignment
- all letters from both sequences
- Objective score: substitution matrix + affine gap penalties
- Three cost matrices C, D, I
- Three trace-back matrices (if alignment needed as well.)
- Convert to dual problem to get similarity.

Needleman-Wunsch Algorithm

- Global alignment by dynamic programming often called "the Needleman-Wunsch algorithm"
- Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3): 443-53.
- Paper describes an algorithm with fixed gap penalty (independent of length)
- First application of dynamic programming to biological sequences

Local Alignments: Smith- Waterman Algorithm

- A particularly interesting variant of similarity search is local alignment or similarity.
- Suppose we have two long DNA sequences in which there is a particularly interesting subsequence representing a gene that are common between the sequences.
- Doing a global alignment or similarity search will not be able to identify this because there may be a lot of dissimilarity in the rest of the sequence which yield a low value for similarity and a large value of edit distance, none of which say anything about this interesting region.
- If the regions of highly similar local alignment are small, they might get lost in the context of global alignment.
- If we need to detect similarity between two protein sequences which are highly diverged but share a common conserved evolutionary sequence in a particular domain, doing a global alignment or similarity search does not help much.

Local Alignments: Why?

- Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions.
- Example:
- Homeobox genes have a short region called the homeodomain that is highly conserved between species.
- A global alignment would not find the homeodomain because it would try to align the ENTIRE sequence

Local alignment

- Often called "the Smith-Waterman algorithm"
- Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences. J Mol Biol 147(1): 1957.
- Introduces the critical "all prefixes of all suffixes" trick.
- Surprisingly, only small modification of global case will yield an algorithm for local alignment
- Many more local alignments than global alignments
- Prior to Smith-Waterman paper, algorithms were much slower

Local vs. Global Alignment

- The Global Alignment Problem tries to find the longest path between vertices $(0,0)$ and (n, m) in the edit graph.
- The Local Alignment Problem tries to find the longest path among paths between arbitrary vertices (i, j) and (i^{\prime}, j^{\prime}) in the edit graph.
- In the edit graph with negatively-scored edges, Local Alignment may score higher than Global Alignment

Local vs. Global Alignment (cont'd)

- Global Alignment

- Local Alignment—better alignment to find conserved segment
tccCAGTTATGTCAGgggacacgagcatgcagagac |||||||||||
aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Local Alignment: Running Time

The Local Alignment Problem

- Goal: Find the best local alignment between two strings
- Input : Strings v, w and scoring matrix δ
- Output : Alignment of substrings of \mathbf{v} and \mathbf{w} whose alignment score is maximum among all possible alignment of all possible substrings

The Problem with Exhaustive Algorithm

- An obvious exhaustive algorithm is to enumerate all the substrings of S1 and S2 and execute a dynamic programming algorithm on each pair.
- There are $O\left(n^{2} m^{2}\right)$ such pairs.
- For one string, a substring is defined by two positions the string which can be chosen in $O\left(n^{2}\right)$ and $O\left(m^{2}\right)$ ways for S1 and S2, respectively.
- For each pair, dynamic programming takes $O(n m)$ time. Thus, the complexity of such an approach is $O\left(n^{3} m^{3}\right)$.

Problem Formulation

The algorithm is essentially a minor modification in the dynamic programming equations for the global alignment with two differences:

1. In each cell in the dynamic programming matrix, an extra possibility is added to allow the value to be 0 if all other options lead to a negative value for that cell. Essentially, it means starting a new computation if the best alignment gives a negative value. This also implies that the first row and column are set to value 0 at the beginning of the computation.
2. The new alignment can end anywhere in the matrix not necessarily at point (n, m) in the matrix. Whenever a local maxima is encountered. The trace back starts and it ends when it meets the first 0 in the path.

Local Alignment: Free Rides

The dashed edges represent the free rides from $(0,0)$ to every other node.

Algorithm to find value of optimal $V(i, j)$

- The algorithm is very similar to the algorithm to determine maximum similarity of two strings.
- Use again recurrence relations.
- Make reasonable assumptions about insert and delete operations as $\delta(-, x) \leq 0$ and $\delta(x,-) \leq 0$, respectively.
- Since the optimal suffix to align with an empty suffix is a string of length zero, we can write the basis as:

$$
\begin{aligned}
& V(i, 0)=0 \\
& V(0, j)=0
\end{aligned}
$$

The Recurrence Realtion

- For $i>0$ and $j>0$, the recurrence relations are:

$$
\begin{aligned}
V(i, j)= & \max \left[0, V(i-1, j-1)+\delta\left(S_{1}(i), S_{2}(j),\right.\right. \\
& V(i-1, j)+\delta\left(S_{1}(i),-\right), \\
& \left.V(i, j-1)+\delta\left(-, S_{2}(j)\right)\right]
\end{aligned}
$$

Example

 Let $\mathrm{S}=\mathrm{ABCLDEL}$ and $\mathrm{T}=\operatorname{LLLCDE}$, a match score +2 , and a mismatch or space score -1. Initialization step:

Example: Let $\mathrm{S}=\mathrm{ABCLDEL}$ and $\mathrm{T}=\operatorname{LLLCDE}$, a match score +2 , and a mismatch or space score -1.

		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	0	0	0
B	2	0	0	0	0	0	0	0
C								
	3	0	0	0	0	2	1	0
L	4	0	2	2	2	1	1	0
D	5	0	1	1	1	1	3	2
	6	0	0	0	0	0	2	5
L	7	0	2	2	2	1	1	4

The value of optimal alignment is $V(6,6)=5$. We can construct optimal alignments by retracing from any maximum entry to any zero entry:

		0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
A	1	0	0	0	0	0	0	0
B	2	0	0	0	0	0	0	0
C	3	0	0	0	0	$2 \uparrow$	1	0
L	4	0	2	2	2	1	1	0
D	5	0	1	1	1	1	3	2
	6	0	0	0	0	0	2	5
	7	0	2	2	2	1	1	4

The Optimal Local Alignment

- The optimal local alignments corresponding to these paths are:

C	L	D	E
C	-	D	E

L	-	D	E
L	C	D	E

Space Complexity

- It is easy to see that the time complexity of the algorithm is $O(n m)$, as in the general case of dynamic programming.
- The algorithm takes $O(\mathrm{~nm})$ space. This is quite expensive if the sequences are large.
- If one were interested only in the value of the alignment and not obtaining a trace, this could easily be done by keeping only the last two rows of the matrix to compute the next row.
- This will need only $O(n+m)$ space.
- Is it possible to reconstruct an alignment using only linear space?

Saving space

Compute matrix left-to-right and top-to-bottom

This row no longer needed

Current row depends only on previous row and current row

Need only store two rows to compute score of best alignment $=O(L)$ space, where L denotes number of cells in a row or column whichever is minimum.
(Can it done with space for one row or column only?).

Trace-back in O(L) space

- Trace-back is harder
- Myers-Miller algorithm
- Myers, E.W. and Miller, W. (1988) Optimal alignments in linear space. Comput Appl Biosci 4(1): 11-7.
- Repeatedly divides similarity matrix in half

Faster speed

- Speed improvements require approximation - give up guarantee that an objective score is optimized
- Global alignment: k-difference
- Local and global alignment: seeds

Freely available source code

- FASTA package
- align: Myers-Miller global alignment
- lalign: Smith-Waterman local alignment
- fasta: fast database search by k-mer matching and d.
p. extension
- BLAST (NCBI)
- Fast database search
- Seeds by "neighborhood" method
- Match seeds by lookup in pre-computed index
- Extend seeds by d. p. with score threshold

Multiple Alignment

Outline

- Dynamic Programming in 3-D
- Progressive Alignment
- Profile Progressive Alignment (ClustalW)
- Scoring Multiple Alignments
- Entropy
- Sum of Pairs Alignment

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Multiple Sequence Alignment

- Generalization of two sequence similarity problem, the problem of determining the similarity among multiple sequences.
- The purpose is to discover 'faint but widely dispersed' common sequences which might represent biologically important information.
- These common sequences might reveal evolutionary history, conserved motifs in the genome of divergent species, common chemical structure that give rise to similar folding or 3-D structures of proteins giving rise to similar functions.
- An example is the notion of protein family which is a collection of proteins having
- similar 3-D structure,
- similar functions,
- and similar evolutionary history.
- If a new protein is discovered and if one is interested in classifying which family it belongs, comparison with individual members in the family might produce conflicting or confusing results.

Multiple Alignment of Several Amino Acid Sequences of Globin Proteins

- The example below shows how common features are dispersed faintly among a group of proteins which may not be apparent when two sequences in the family are compared.
- The abbreviations on the left denote the organisms that the globin sequences are from. The sequences are displayed in several rows since they are longer than a page can accommodate. Columns containing highly similar residues in regions of known secondary structures are marked by " v " and columns with identical residues are marked by *. Two residues are considered similar if they are from any one of the folowing classes: $(F, Y),(M, L, I, V),(A, G),(T, S),(Q, N),(K, R)$ and (E, D).

An Example of Multiple Alignment

VVVVV

HUMA VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF DLSH GS
HAOR MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTTKTYFSHF DLSH GS
HADK VLSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHF DLSH GS
HBHUHBOR
VHLTPEEKSAVTALWGKVVHLSGGEKSAVTNLWGKVHBDKMYHU
MYORIGLOBGPUGNI
GPYLGGZLB VHWTAEEKOLITGLWGKV NVADCGAEALARLLIVYPWTQRFFASFGNLSSPTAILGN
GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEEDEMKAS GLSDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETLEKFDKFKGLKTEDEMKAS SPLTADEASLVQSSWK AVSHNEVEILAAVFAAYPDIQNKFSQFA1GKDLASIKDT ALTEKQEALLKQSWEVLKQNIPAHSLRLFALIIEAAPESKYVFSFLKDSNEIPE NN GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQ NN MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLF DMGRQESL

Example of Multiple Alignment (contd.)

VVYVV

HUMA	AQVKGHGKRVADALTNAV	AHVDCM	PNALSALSDLHAHKLRVDPVNEKLLS
HAOR	AQIKAHGKKVADALSTAA	GHPDDM	DSALSALSDLHAHKLRVDPVNFKLLA
HADK	AQIKAHGKKVVAAALVEAV	NHVDDI	AGALSKLSDLHAQKLEVDPVIEFKFLG
HBHU	PKVKAHGKKVLGAFSDGL	AHLDNL	KGTFATLSELACDKLEVDPENE
HBOR	PKVKAHGAKVLTSFGDAL	KNLDDL	KGTPARLSELHCD
HBDK	PMVRAHGKRVLTSFGDAV	KNLDNI	KNTPAQLSELHCDKLHVDPENFRLLG
MYHU	EDLKKHGATVLTALGGIL	KKKGGH	EAEIKPLAQSHATKHKIPVKYLEEIS
MYOR	ADLKKHGGEVLTALGNIL	KKKGOH	EAELKPLAQSHATKHKISIKFLEYIS
IGI.OB	GAFATHATRTVSFLSEVI	SGNTSNAAAV	NSLUSKLGDDHKARGVSAAQ1PGEPR
GPUCNI	PKLKAHAAVIFKTICESA	TELRQKGHAV	NTLKRLGSIH LKNKITDPHP
GPYL	PDLQAHAGKVFKLTYEAA	IQLEVNGAV	DATLKSLGSVHVSKGVVDA
GGZLB	EQPKALAMTVLAAAQNI	ENLPAI	LPAVKKIAVKHC QAGVAAAHYP

Example of Multiple Alignment (contd.)

HUMA
HAOR
HADK
HBHU
HBOR
HBDK
MYHU
MYOR
IGLOB
GPUGNI
GPYL
GGZLB

HCLLVTLAAHLPAEFTPAVHASLDKFLAASVSTVLTSKYR
HCILVVLARHCPGEFTPSAHAAMDKFLSKVATVLTSKYR
HCFLVVVAIHHPAALTPEVHASLDKFMCAVGAVLTAKYR
NVLVCVLAHEEGKEFTPPVQAAYQKVVAGVANALAHKYH
NVLIVVLARHESKDFSPEVQAANQKLVSGVAHALGHKYH
DILITVLAAHETKDFTPECQAAWQKLVRVVAHALARKYH
ECIIQULQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG
EAITHVLQSKHSADFGADAQAAMGKALELFRNDMAAKYKEFGFQG
TALVAYLQANVS WGDNVAAAWNKALIDNTFAIVVPRL
GALLGTIKEAIKENWSDEMGQAWLEAYNQLVATIKAEMKE EAILKTIKEVVGDKWSEELNTAWIIAYDELAIIIRKEMKDAA
QELLGAIKEVLGDAATDDILDANGKAYGVIADVFIQVEADLYAQAVE

Family Membership

If the faint similarity of the members in the family can be represented by what is called a 'consensus sequence', it will be more efficient to find an alignment of the new protein with this consensus sequence to determine whether it belongs to this family.

Definition

Given a set of multiple sequences $S_{1}, S_{2}, \ldots . S_{k}$ a (global) alignment maps them to sequences $S_{1}^{\prime}, S_{2}^{\prime}, \ldots . S_{k}^{\prime}$ that may contain spaces, where $\left|S_{1}^{\prime}\right|=\left|S_{2}^{\prime}\right|=, \ldots=\left|S_{k}^{\prime}\right|$, and the removal of all spaces from S_{i}^{\prime} leaves S_{i} intact, for $1 \leq i \leq k$.

Multiple Alignment

- Although the generalization of definition from two sequences to multiple sequences seems straightforward, it is not that obvious how to score or assign value to a multiple alignment.
- There are various scoring methods such as sum-of -pairs (SP) functions, consensus functions, and tree functions.
- For the sake of mathematical ease, SP functions have been widely used and good approximation algorithms have also been developed.

Multiple Alignment Methods

1. Exact Approach to Multiple Sequence Alignment
2. Greedy Approach
3. Progressive Sequence Alignment
4. Center Star Algorithm

Other Approaches
5. Consistency Based Approach
6. Structure Based Approach

Exact Approach

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

- Score: more conserved columns, better alignment

Alignments = Paths in 3-D Edit Graph

- Align 3 sequences: ATGC, AATC,ATGC

Alignment Paths

0	1	1	2	3	4
	A	--	T	G	C

x coordinate

Alignment Paths

- Align the following 3 sequences: ATGC, AATC,ATGC

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C

	--	A	T	G	C

Alignment Paths

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C
0	0	1	2	3	4
	--	A	T	G	C

x coordinate
y coordinate
z coordinate

- Resulting path in (x, y, z) space:

$$
(0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)
$$

Aligning Three Sequences
 source

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

sink

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

Optimize SP for N sequences

- Similarity matrices become N-dimensional
- E.g., for 3 sequences it will be cubes.

$M[i, j, k]=$
score of best alignment of first i letters in A
first j letters in B first k letters in C

3-D cell versus 2-D Cell

In 2-D, 3 edges in each unit square

In 3-D, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

- $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is O ($7 m n n$) or $\mathrm{O}\left(n^{3}\right)$ if all sequences have same length n.
- For \boldsymbol{k} sequences, build a \boldsymbol{k}-dimensional edit graph, with run time $\left(2^{k}-1\right)\left(\boldsymbol{n}^{k}\right)$ or $0\left(2^{k} \boldsymbol{n}^{k}\right)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time
- It will be a difficult task to define score matrices with real biological significance. See later sum-of-pairs score.

Very slow

- Time and space is $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Is NP-complete
- Wang, L. and Jiang, T. (1994), "On the complexity of multiple sequence alignment" J Comput Biol 1(4): 337-48.
- Totally impractical for most biologically interesting problems
- Faster methods needed

An Objective Scoring Function of Multiple Alignment

- Objective score: Sum-of-pairs (SP)
- Sum of objective score for alignment of each pair of sequences

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

$$
\begin{array}{ll}
\mathrm{x}: & \text { AC-GCGG-C } \\
\mathrm{y}: & \text { AC-GC-GAG } \\
\mathrm{z}: & \text { GCCGC-GAG }
\end{array}
$$

Induces:

$$
\begin{array}{ll}
\mathrm{x}: ~ A C G C G G-C ; ~ & \mathrm{x}: ~ A C-G C G G-C ; ~ y: ~ A C-G C G A G ~ \\
\mathrm{y}: ~ A C G C-G A C ; ~ & \mathrm{z}: \text { GCCGC-GAG; } \mathrm{z}: \text { GCCGCGAG }
\end{array}
$$

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given $\mathbf{3}$ arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given $\mathbf{3}$ arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

> NOT ALWAYS

Pairwise alignments may be inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment:

Can combine pairwise alignments into multiple alignment

(a) Compotible pairvise aligenments

(b) Incompatible pairwise aligemments

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and align.
- Choose the next sequence that gives maximum score with the existing sequences and insert this sequence with possible insertion of additional space characters. Repeat.
- This is a heuristic greedy method

Greedy Approach: Example

- Consider these 4 sequences
s1 GATTCA
s2 GTCTGA
s3 GATATT
s4 GTCAGC

Greedy Approach: Example (cont'd)

There are $\binom{4}{2}=6$ possible alignments
Cost Model: sub -1, indel -1 and match 1

s2	GTCTGA	s1	GATTCA--
s4	GTCAGC (score $=2$)	s4	$\mathrm{G}-\mathrm{T}-\mathrm{CAGC}($ score $=0)$
s1	GAT-TCA	s2	G-TCTGA
s2	G-TCTGA (score = 1)	s3	GATAT-T (score $=-1$)
s1	GAT-TCA	s3	GAT-ATT
s3	GATAT-T (score = 1)	s4	G-TCAGC (score $=-1$)

Greedy Approach: Example (cont'd)

s_{2} and s_{4} are closest; combine:
$\left.\begin{array}{ll}s 2 & \text { GTCTGA } \\ s 4 & \text { GTCAGC }\end{array}\right]$

$$
\left.\begin{array}{ll}
s 1 & \text { GAT-TCA } \\
\text { s2 } & \text { GTCTGA } \\
s 4 & \text { G-TCAGC }
\end{array}\right] \begin{array}{ll}
s 1 & \text { GAT-TCA } \\
\text { s3 } & \text { GATAT-T } \\
\text { s2 } & \text { G-TCTAA } \\
& s 4
\end{array}
$$

Now take the alignment with max score from $(s 1, s 2)$ and ($s 1, s 4$), which is ($s 1, s 2$) and add $s 4$ in it with inserted gaps if necessary. Now, find the best alignment between $s 3$ and ($s 1, s 2, s 4$) which is $(s 1, s 3)$

$$
\begin{array}{ll}
s 1 \\
s 3 & \text { GAT-TCA } \\
\text { GATAT-T. }
\end{array}
$$

Now, add s3 to the existing alignment with s1.Fortunately, here we do not need to insert additional space characters for s2 or s4

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
- Gaps in consensus string are permanent
- Use profiles to compare sequences

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
1.) Construct pairwise alignments
2.) Build Guide Tree
3.) Progressive Alignment guided by the tree

Percent Sequence Identity

- The extent to which two nucleotide or amino acid sequences are invariant

70\% identical

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

	V_{1}	v_{2}	v_{3}	v_{4}
	-			
v_{2}	.17	-		
v_{3}	.87	.28	-	
v_{4}	.59	.33	.62	-

(. 17 means 17% identical)

Step 2: Guide Tree

-Create Guide Tree using the similarity matrix
-ClustalW uses the neighbor-joining method
-Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Ca1culate:

$$
\begin{array}{ll}
v_{1,3} & =\text { alignment }\left(v_{1}, v_{3}\right) \\
v_{1,3,4} & =\operatorname{alignment}\left(\left(v_{1,3}\right), v_{4}\right) \\
v_{1,2,3,4} & =\operatorname{alignment}\left(\left(v_{1,3,4}\right), v_{2}\right)
\end{array}
$$

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

```
FOS_RAT
FOS_MOUSE
FOS_CHICK
FOSB_MOUSE
FOSB_HUMAN
```

```
PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD
SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD
PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP------------------------
PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP----------------------LPFQ
```

Dots(less conservative substitution), colon(conservative substitution) and stars(exact match) show how well-conserved a column is.

Multiple Alignments: Scoring

- Number of matches (multiple longest common subsequence score)
- Entropy score
- Sum of pairs (SP-Score)

Multiple LCS Score

- A column is a "match" if all the letters in the column are the same

AAA
AAA
AAT
ATC

- Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment

$$
\begin{aligned}
& -\mathrm{p}_{\mathrm{A}}=1, \mathrm{p}_{\mathrm{T}}=\mathrm{p}_{\mathrm{G}}=\mathrm{p}_{\mathrm{C}}=0\left(1^{\text {st }} \text { column }\right) \\
& -\mathrm{p}_{\mathrm{A}}=0.75, \mathrm{p}_{\mathrm{T}}=0.25, \mathrm{p}_{\mathrm{G}}=\mathrm{p}_{\mathrm{C}}=0\left(2^{\text {nd }} \text { column }\right) \\
& -\mathrm{p}_{\mathrm{A}}=0.50, \mathrm{p}_{\mathrm{T}}=0.25, \mathrm{p}_{\mathrm{C}}=0.25 \mathrm{p}_{\mathrm{G}}=0\left(3^{\text {rd }} \text { column }\right)
\end{aligned}
$$

- Compute entropy of each column

$$
-\sum_{x=A, T, G, C} p_{X} \log p_{X} \quad \begin{gathered}
\text { AAA } \\
\text { AAA } \\
\text { ATC }
\end{gathered}
$$

Entropy: Example

Worst case entropy $\left(\begin{array}{l}A \\ T \\ G \\ C\end{array}\right)=-\sum \frac{1}{4} \log \frac{1}{4}=-4\left(\frac{1}{4} *-2\right)=2$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$
\sum_{\text {cols. } X=A, C, G, T} \sum_{X}-p_{X} \log p_{X}
$$

Entropy of an Alignment: Example

column entropy:

$-\left(p_{A} \log p_{A}+p_{C} \log p_{C}+p_{C} \log p_{G}+p_{T} \log p_{T}\right)$

A	A	A
A	C	C
A	C	G
A	C	T

$$
\begin{aligned}
\cdot \text { Column } 1 & =-[1 * \log (1)+0 * \log 0+0 * \log 0+0 * \log 0] \\
& =0
\end{aligned}
$$

-Column $2=-[(1 / 4) * \log (1 / 4)+(3 / 4) * \log (3 / 4)+0 * \log 0+0 * \log 0]$

$$
=-[(1 / 4) *(-2)+(3 / 4) *(-.415)]=+0.811
$$

-Column $3=-[(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)]$

$$
=4^{*}-[(1 / 4) *(-2)]=+2.0
$$

- Alignment Entropy $=0+0.811+2.0=+2.811$

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

$$
\begin{array}{ll}
\mathrm{x}: & \mathrm{AC}-\mathrm{GCGG-C} \\
\mathrm{y}: & \mathrm{AC}-\mathrm{GC}-\mathrm{GAG} \\
\mathrm{z}: & \mathrm{GCCGC}-\mathrm{GAG}
\end{array}
$$

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```


Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

$$
a_{i} \text { and } a_{j}
$$

imposed by a multiple alignment of k sequences

- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$
s^{*}\left(a_{j}, a_{j}\right)
$$

- Sum up the pairwise scores for a multiple alignment:

$$
s\left(a_{1}, \ldots, a_{k}\right)=\Sigma_{i, j} s^{*}\left(a_{j}, a_{j}\right)
$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given $a_{1}, a_{2}, a_{3}, a_{4}$:

$$
\begin{aligned}
s\left(a_{1} \ldots a_{4}\right)=\Sigma s^{*}\left(a_{\mathrm{i}}, a_{\mathrm{j}}\right)= & s^{*}\left(a_{1}, a_{2}\right)+s^{*}\left(a_{1}, a_{3}\right) \\
& +s^{*}\left(a_{1}, a_{4}\right)+s^{*}\left(a_{2}, a_{3}\right) \\
& +s^{*}\left(a_{2}, a_{4}\right)+s^{*}\left(a_{3}, a_{4}\right)
\end{aligned}
$$

SP-Score: Example

$$
\begin{array}{cc}
a_{1} & \text { ATG-C-AAT } \\
\cdot & \text { A-G-CATAT } \\
a_{k} & \text { ATCCCATTT }
\end{array}
$$

To calculate each column:

$$
s^{\prime}\left(a_{1} \ldots a_{k}\right)=\sum_{i, j} s^{*}\left(a_{i}, a_{j}\right) \longleftarrow\binom{n}{2} \text { Pairs of Sequences }
$$

Center Star Alignment Algorithm

- Gusfield proposed this algorithm, called Center Star Alignment Algorithm . It can be proved that the SP values are less than twice the optimal value. We sketch this algorithm now.

Center Star Alignment Algorithm

- We make the following assumptions:
$-s(x, x)=0$, for all characters x.
-Symmetric: $s(x, y)=s(y, x)$, for all characters x and y.
-Triangle inequality: $s(x, y) \leq s(x, z)+s(z, y)$, for all characters x, y and z.
- We have used the symbol $D\left(S_{1}, S_{2}\right)$ to denote the edit distance or minimum global alignment distance of S_{1} and S_{2}.

Algorithm

The input is a set「 of k strings.

1. First find $S_{1} \varepsilon \Gamma$ that minimizes. This can be done by running the dynamic programming algorithm on each of the $\binom{k}{2}$ pairs of sequences in Γ.
■ Note this $S 1$ is not necessarily the first string specified in the input set Γ. Call the remaining sequences in Γ to be $S_{2}, S_{3}, \ldots, S_{k}$.
2. Now add these strings $S_{2}, S_{3}, \ldots, S_{k}$ one at a time to a multiple alignment that so far has only one sequence viz. S1. Suppose ($S_{1}, S_{2}, \ldots S_{i-1}$) are already aligned as

$$
\left(S_{1}^{\prime}, S_{2}^{\prime} \ldots \ldots \ldots . . S_{i-1}^{\prime}\right)
$$

3. To add S_{i}, run the dynamic programming algorithm again on $S_{1}{ }^{\prime}$ and S_{i} to produce $S_{1}{ }^{\prime \prime}$ and S_{i}^{\prime}.
4. Then adjust $S_{2}^{\prime} \ldots \ldots S_{i-1}^{\prime}$ by adding spaces to those columns where spaces were added to get $S_{1}{ }^{\prime \prime}$ from $S_{1}{ }^{\prime}$.
5. Replace S_{1}^{\prime} by $S_{1}{ }^{\prime \prime}$.

Example

- $\Gamma=($ AGTGC, ATC, ATTC, ATC, AGC)
- Step1. S_{1} is $A T C$ (any one of them) since the edit distance between ATC and ATC is zero.
- For all other pair the edit distance is more than 0 . Call the remaining set $S_{2}=A T T C, S_{3}=A T C, S_{4}=A G A G C$ and $S_{5}=A G C$.
- Step2 and 3: Add S2=ATTC. The alignment between S1' and $S 2$ is:

$$
\begin{aligned}
S 1^{\prime \prime} & =A T-C \\
S 2^{\prime} & =A T T C
\end{aligned}
$$

- Step4 and 5: We only have one $S_{1}{ }^{\prime}$ which is now replaced by $S_{1}{ }^{\prime \prime}=A T$-- C.
- To add ATC , the new alignment is

$$
\begin{aligned}
& S_{1}{ }^{\prime \prime}=A T-C \\
& S_{3}{ }^{\prime}=A T--C
\end{aligned}
$$

- Since no extra space has been inserted in $S_{1}{ }^{\prime \prime}$, we don't have to do anything. So the alignment at this point look like.

$$
\begin{aligned}
& A T-C \\
& A T T C \\
& A T-C
\end{aligned}
$$

- Next we add S4=AGTGC. The alignment is now

$$
\begin{aligned}
& A-T-C \\
& A G T G C
\end{aligned}
$$

- Now, we have introduced a '-' in the second column of $S_{1}{ }^{\prime}=S_{1}{ }^{\prime \prime}$. So the new multiple alignment have to be "adjusted" giving

$$
\begin{aligned}
& A-T-C \\
& A-T T C \\
& A-T-C \\
& A G T G C
\end{aligned}
$$

- Finally, we have to add $S_{5}=A G C$. Since the latest $S_{1}{ }^{\prime}=S_{1}{ }^{\prime \prime}=$ $A-T-C, S_{5}=A G C$ can be aligned in two different ways by putting G aligned with any one of the spaces for $S_{1}{ }^{\prime}$.
- Thus, one of the solutions is

$$
\begin{aligned}
& \quad A-T-C \\
& A--T T C \\
& A-T-C \\
& A G T G C \\
& A G---C
\end{aligned}
$$

Time Complexity

- Theorem:
- The algorithm just described above has a time complexity $O\left(k^{2} n^{2}\right)$, where k is the number of sequences and each sequence has a maximum length of n.
- It can be proved that the total SP cost of the solution obtained by the above algorithm is not worse than the twice the optimal cost.

Multiple Alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave dynamic programming solution
1988 Carrillo-Lipman
Branch and Bound approach for MSA
1990 Feng-Doolittle
Progressive alignment
1994 Thompson-Higgins-Gibson-ClustalW
Most popular multiple alignment program
1998 Morgenstern et al.-DIALIGN
Segment-based multiple alignment
2000 Notredame-Higgins-Heringa-T-coffee
Using the library of pairwise alignments
2004 MUSCLE

