
Outline

• Scoring Matrices

• Alignment with Affine Gap Penalties

• Local Alignment

• Multiple Alignment

In this part we consider certain generalization of the definition of the concept
of ‘similarity’ leading to scoring matrices that are deterministic or probabilistic.
We will also consider ‘gaps’ in the alignment and also local similarity of a much
smaller length string against a larger string. We then consider alignment of a set
of strings, the set containing more than two strings.

The Basic Problem

A gene or a protein may be related to another gene or protein. “Relatedness” may
mean

1. They are homologous if they shared a common ancestry.

2. They may have common functions.

Analysis of DNA or protein sequences (the sequence of amino acids or “residues”) may
reveal certain domains or “motifs” that are shared among a group of molecules.
Protein alignments give more information than DNA alignments. This is because
certain DNA mutations, particularly at the third location in a codon, do not
change the protein. Such mutations are called silent mutations. Also mutations
in the intron regions of a DNA has practically no effect on the protein. When a
DNA sequence is analyzed, it is common practice to analyze the translated amino
acid sequence.

Protein sequence comparison can identify homologous sequences that originated
from a common ancestor over 1 billion years ago (BYA) whereas DNA sequences
can look back up to 600 MYA (millions of years ago).

But there are situations where the DNA sequence must be identified viz. to locate a
gene or a motif, searching for polymorphism or identifying a cloned CDNA
fragment.

Need to Develop Scoring Matrices

• Two sequences are either homologous or not homologous.
Statements like two sequences are 20% or 50% homologous are
wrong. The only relevant criterion to be homologous is that they
are originated from a common ancestral sequence. But, it is correct
to say that two homologous sequences are 20% or 50% similar if
20% or 50 % of nucleotides or residues are identical (matched). The
cost of substitution of one nucleotide for another nucleotide is set
arbitrarily in models for DNA comparison, but two amino acids may
not “matched” but may still be biochemically or biophysically
related and may command a large similarity score. These are called
conservative substitutions.

• Thus definition of scoring matrices are essential for comparing
amino acid sequences.

Homologous: Orthologous and
Paralogous

• Homologous proteins may be orthologous or paralogous.
Orthologs are homologous sequences in different species
that arose from a common ancestor. For example, humans
and rodents diverged 80 MYA (“millions of years ago”)
when a single ancestral myoglobin gene diverged by
speciation. Orthologs have similar biological function viz.
the myoglobin transport oxygen in both human or rat.

• Genes are often duplicated to produce multiple copies in
the same genome, which often diverge in functions slightly.
Where the homology is the result of gene duplications so
that the copies have descended side by side during the
history of the organism, the genes should be called
paralogous (para=parallel). For example, human α-1 globin
and β globin are paralogous.

Key Issues

• The scoring system to rank alignments

• The algorithm complexity to find the optimal or good
alignments

• Statistical and Biological significance of an alignment score.

Consider the following pairwise alignments (All from same region of the
human alpha globin protein sequence SWISS-PORT data base of proteins. The
middle line shows identical (red) and ‘similar’ (+ sign,blue) meaning
functionally conservative:
a)
HBA_HUMAN : GS A QVK G HGKKVADALTNAV AHVDDMPNALSALSDLHAHKL

G+ +VK + HGKKV A+++++ AH+D+ + + ++++ LS+LH KL
HBB_HUMAN : GN P KVK A HGKKVLG AFSDGLAHLDNL KGTFAT LSELHCDKL

This shows clear similarity of human alpha globin to beta globin.

(b)
HBA_HUMAN : GSAQVKGHGKKVADALTNAVAHV- - - D- - DMPNALSALSDLHAHKL

++ + + ++H+ KV + +A ++ +L+ L+ ++H+ K
LGB2_LUPLU : NNPELQAHAGKVFKLVYEAAIQLQVTGVVVT DATLKNLGSVHVSKG

This shows a biologically meaningful alignment between leghaemoglobin and yellow
lupin. These two sequences are evolutionary related and have same three
Dimensional structure , and function in oxygen binding. Note much fewer match
Characters and ‘gaps’ inserted to maintain alignment

(c)
HBA_HUMAN: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD- - - - LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL - - VAQHTADLLAANAALLDEFPQFKAHQE

A spurious high-scoring alignment to a nematode glutathione S-tranferase homolog
named F11G11.2. The two proteins have totally different structure and function.

How do we differentiate cases like (b) and (c). This calls for a careful definition of the
scoring system that we use to evaluate alignments.

Additive Score Model

We consider the mutations at different sites in a
sequence to be Independent . A “gap” of arbitrary
length considered to be a single mutation.

This assumption is a reasonable approximation for DNA
and protein sequences (although we know that
interactions between the bases play a significant role
for protein structures).

For RNA sequences, this assumption is erroneous since
the base pairing gives rise to long-distance
dependencies due to the folding structures. We leave
out RNA sequences from our discussions.

Substitution Matrices

• Given a pair of aligned sequences, how do we assign a score
that gives relative likely hood that the sequences are related?
Earlier, we discussed the general scoring equations with
respect to DNA and protein sequences using constant cost
parameters such as μ and σ, but their applications to specific
biological context is a bit more involved process. A
convenient way to specify scoring is a matrix called the
Substitution Matrix which is |Σ|+1 by |Σ|+1 matrix giving the
values of δ(a,b) for all possible (a,b) except (-,-). Ideally, the
scores should capture the underlying evolutionary or bio-
chemical properties of the sequences.

Substitution Matrices

Since nucleotides differ very little in biochemical functions, simple
scoring functions are reasonable for DNA sequences. But random
mutations of the nucleotide sequence within a gene may change
the amino acid sequence of the corresponding protein. Some of
these may produce drastic change in the structure and function
of the protein while others do not affect the fitness of the
organism. The amino acids Asn, Asp, Glu, and Ser are the most
mutable amino acids ; Cys and Trp are the least mutable.
Knowledge of the frequency of occurrences of most and least
common evolutionary events allow Biologists to define models
to derive scoring matrices for computing biologically relevant
alignments.

Amino acid similarities

• Leucine (L) and Isoleucine (I) biochemically similar

– High score for subsitution = +2

– But not as high as no change (L,L) or (I,I) = +4

• Leucine (hydrophobic) and Aspartic Acid (D) (hydrophilic)
biochemically different

– Low score for substitution = -4

– Conservative Substitutions: T(Threonine) and S(serine),

– L(Leucine)and V(Valine).

– Basic amino acids: (K,R,H)

– Acidic amino acids : (D,E)

– Hydroxylated amino acids: (S,T)

– Hydrophobic amino acids : (W,F,Y,L,I,V,M,A)

20 amino acids

Proteins

Proteins are polymers, also called polypeptides consisting of a sequence of amino acids. There
are twenty amino acids that are found in proteins.

Hydrophobic Group Hydrophilic Group

A Alanine ala R Arginine arg

C Cysteine cys N Asparagine asn

G Glycine gly D Aspartic acid asp

I Isoleucine ile Q Glutamine gln

L Leucine leu E Glutamic acid glu

M Methionine met H Histidine his

F Phenylalanine phe K Lysine lys

P proline pro S Serine ser

T Trypyophan trp T Threonine thr

Y Tyrosine tyr

V Valine val

Making a Scoring Matrix

• Scoring matrices are created based on
biological evidence.

• Alignments can be thought of as two
sequences that differ due to mutations.

• Some of these mutations have little effect on
the protein’s function, therefore some
penalties, δ(vi , wj), will be less harsh than
others.

Scoring Matrix: Example
A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although R
and K are different
amino acids, they have a
positive score.

• Why? They are both
positively charged amino
acids will not greatly
change function of
protein.

Construction of Scoring Matrix

The entry δ(a,b) in the scoring matrix for proteins usually denotes how often the
amino acid ‘a’ substitutes the amino acid ‘b’ in the alignments of related protein
sequences. The most commonly used scoring matrices point accepted mutation
(PAM) and block substitution matrix (BLOSUM) are created by using this
principle.

Margaret Dayhoff and her team made significant contributions in this field in the
70’s. They published a book Atlas of Protein Sequence and Structure which
listed all protein sequences known in late 70’s along with information about
their structures and functions. They defined an accepted point mutation(APM
–changed to PAM for ease of pronunciation)as a substitution that has been
accepted by natural selection. This happens if
1. A gene undergoes a DNA mutation such that it encodes a different amino acid.
2. The entire species adopts that change as the predominant form of the protein.

Dayhoff,M.O.,Schwartz,R.M. and Orcutt, B. C.,”A model of evolutionarychange in protein “ in
“Atlas of Protein Sequence and Structure”, Vol.5, National Biomedical Research Foundation,
Washington D.C. Pp.89-90, 1978. (Also read pp.178-180 from text by Jones and Pevzner)

Dayhoff’s Method of Construction of Scoring Matrices

Dayhoff and her team used phylogenetic tree analysis
technique s on 1572 changes in 71 groups of
extremely similar proteins. Such analysis allows
comparison of extant amino acid sequences to inferred
ancestral sequences. This approach involved
phylogenetic analysis rather than comparing the two
amino acid sequences directly.

For the PAM 1 matrix, they identified proteins that have
undergone 1% change (that is, 1 accepted point
mutation per 100 amino acid residues). Such
sequences are defined as being one PAM unit diverged.
Such alignments are called the base alignments.

Given a set of base alignments, let

positions aligned of number total

other each against aligned are and acids amino timesof #
),(

ba
baf 

Let f(a)= frequency of amino acid a in all positions from the data set.

)(

),(
),(

af

baf
bag  = probability that an amino acid a mutates into amino acid b within 1 PAM unit

The (a, b) entry of the PAM-1 matrix is defined as log
)()(

),(
log),(

f(b)

g(a,b)

bfaf

baf
ba 

The quantity f(a).f(b) is the joint probability of aligning a with b by chance.

The PAM-n matrix is defined as the result of applying PAM-1 matrix n times. If G is the
20X20 matrix of frequencies g(a,b), then Gn (multiplying this matrix by itself n times)
gives the probability that amino acid a mutates into amino acid b during n PAM units.
The (a,b) entry of the PAM-n matrix is defined as

)(
log

bf

G n

For large n, the resulting PAM matrices often allow one to find related proteins even
when there are practically no matches in the alignment. The underlying DNA sequences
are so diverged that there comparison will not find any statistically significant biological
similarities.

Scoring Two Amino Acid Sequences

• Random model (R): Assumes that every amino acid in the
sequence occurs independently. Thus, the probability of the
two sequences is the product of probabilities of each amino
acid.

where pi and pj denote probabilities of ith and jth symbols in
the two sequences.

• Match model (M) : the aligned pair of bases occur with
a joint probability pij . We can think of pij as the
probability that the residues i and j have been derived
from some unknown original base k in their common
ancestor (k could be same as i and/or j). Thus

ji ppRSSP )|,(21

ijpMSSP) |,(21 

Substitution matrices
The ratio of these two likelihood is known as the odds-ratio

))(
2

),(
1

(iSi

i

SsS 

In order to arrive at an additive scoring system, we take the
sum of logarithm of this ratio, known as the log-odds ratio S:

Where

is the log likelihood of the residue pair occurring as an aligned pair. These scores can
then be arranged as a 20X20 matrix (for protein sequences) with in position
i,j where ai and aj are the ith and jth amino acids.

ji

ij

pp

p

RSSP

MSSP






)|,(

)|,(

21

21

ji

ij

pp

p
s




 log

),(ji aas

PAM10 - see separate posting

The values for pij are called the “target frequencies” and they
indicate the amount of evolutionary change that has taken
place. For example, for a pair of closely related proteins, an
aligned Serine were to change to threonine 5% of the time,
the target frequency for pS,T is 0.05. The quantity pipj

represents probabilities of amino acids I and j occurring by
chance. These frequencies are derived by first calculating
relative mutabilities (how often a residue is going to change
in a short period of evolution) and dividing them by the overall
frequencies of occurrences of these residues.
The less mutable residues are those that play a more
significant role in the function and structure of the protein
(viz. one residue mutation is known to cause cystic fibrosis)
whereas more mutable residues like Asp, Ser, Asn and Gly
have functions in protein that can be easily assumed by other
residues. These phenomena are obviously related to the
genetic code and how the mutations in the triplets of the
reading frame affect the production of protein

BLOSUM

Blocks Substitution Matrix represents a statistical alternative to PAM.
It gives a more accurate measure of differences of distantly related
proteins. It is more effective for searching sequences that contain
relatively sparse regions of close evolutionary relatedness.

PAM assumes that the mutations occur at a constant rate – the same
rate that is observed in the short term. BLOSUM is derived by
observing all amino acid changes from a protein families in an
aligned region without any bias regarding the level of similarity
between the two sequences.

PAM matrices are based on scoring of all amino acid positions, but
BLOSUM matrices are based on conserved positions that occur in
blocks representing the most similar regions of related sequences.

BLOSUM

• Blocks Substitution Matrix

• Scores derived from observations of the

frequencies of substitutions in blocks of local
alignments in related proteins

• Matrix name indicates evolutionary distance

– BLOSUM62 was created using sequences
sharing no more than 62% identity

The Blosum50 Scoring Matrix

The log-odds values have
been scaled and rounded
To the nearest integers for
the purpose of computational
efficiency.

Substitution matrix: BLOSUM62

A C D E

A 4 0 -2 -1

C 0 9 -3 -4

D -2 -3 6 2

E -1 -4 2 5

Identities, e.g. E+E
High scores (main diagonal).

Subsititions, e.g. C+E
score depends on how likely the
two amino acid types are to
substitute for each other.

Matrix is symmetrical

BLOSUM62 -- See separate posting

Optimal Alignment with Gap

• Definition:
– A gap in an alignment between two strings, is a run of

contiguous spaces.

• An insertion or deletion of a character was represented
by a space.

• Each occurrence of such a space character in the
alignment is considered to be a mutation.

• Sometimes a gap of more than one space can be created
by only one mutational or evolutionary event. To handle
this kind of situation, we need to develop a model of
alignment cost function that does not attribute a
negative cost or penalty based on the length of the gap
(which is called a linear model).

Biological Significance of Gap

• Examples of ‘gaps’ in biological context is numerous.
• The case of cDNA is a good biology application.

– In a genome, not all DNA are responsible for the production of
proteins or hormones;

– those that carry these functions are said to be expressed.

• To study this phenomenon, biologists make DNA , called
cDNA, corresponding to mRNA that leaves the nucleolus
to cytoplasm for translation, by replacing uracil (U) in
RNA by thyamine (T) .

• Concatenation of these DNA strands then corresponds to
complement of the exon of the gene, cDNA.

Biological Significance of Gap(contd.)

• If we now sequence the cDNA and compare this with similar DNA in
the chromosomal DNA, we would have obtained a map of
chromosomal genes that are expressed.

• While doing this similarity search, the introns have to be aligned with
long gaps.

• Recall a gene may be distributed over several segments with
interleaving introns. If we used our scoring scheme for similarity search
here, we would have penalized heavily our total score for the
alignment (since gap will translate into a set of contiguous delete
operations) and the similarity of the cDNA with some segment of
chromosomal DNA would be missed.

• The alignment that best reflect the relationship consists of a few
regions of strong similarity interspersed with long regions of gaps.

Linear Gap Penalty

• Gaps subtract a value from the objective score

• Simplest design: “linear” penalties

• a fixed parameter (h) multiplied by length of
gap

“h” for “gap extension”

h = 4 (fixed penalty)

• Subtract e for every “-” in the alignment

L A K E
I - - E

(L,I) = 2 (E,E) = 62h = –8

= -1

Computing Maximum Objective Score

E
E

E
-

-
E

V(GEN,AP) V(GEN,APE) V(GENE,AP)

V(GEN,AP) + B(E,E) V(GEN,APE) - h V(GENE,AP) - h

max Score(GENE,APE) = ?

BLOSUM62 score is 5

Gap penalty

Problem with linear gap penalties
GRB2_CHICK ...SVKFGN----D-VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK ...SVKFGND-----VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

• These alignments have same objective score with linear penalties

• But lower alignment is more biologically reasonable

– One gap instead of two = one insertion / deletion event instead
of two

Affine Gap Penalties
• Prefer fewer gaps (parsimony: fewer insert /

delete events)

• Gap Penalty= gap(k) = g + hk

g = “gap open” or “per-gap” penalty, typical g = 9

h = “gap extension” penalty, typical h = 2

k = gap length (number of consecutive “-” symbols)

GRB2_CHICK ...SVKFGN----D-VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

GRB2_CHICK ...SVKFGND-----VQQFKV...

SRC_RSVSR ...SIRDWDDMKGDHVKHYKI...

gap penalty
= -2g – 5h = -28

gap penalty
= -g – 5h= -19

Goto’s Algorithm
Ref: E.W.Myers and W. Miller, “Optimal Alignments in Linear Space”, CABIOS,

Vol.4,No.1, 1988, pp.11-17 (posted in this website)

The alignment problem is often formulated as
maximizing similarity score rather than minimizing
difference score. Earlier, we discussed the
replacement cost as δ(a,b) with δ(a,a)=0 in the
context of difference score. For similarity, a bonus
score σ(a,b) is added for every aligned pair (a,b) and
a gap penalty gap(k) is subtracted for every k symbol
gap. We also know that if we have the minimum cost
solution, we can transform it to a solution of
maximum similarity.

Definitions

• Recall Ai denote the i-symbol prefix a1a2…ai of n-symbol
sequence A=a1a2…an and Bj denote the j-symbol prefix
b1b2…bj of the sequence B=b1b2…bm. Define

• C(i,j)= minimum cost of conversion of Ai→Bj

• D(i,j)= minimum cost of conversion of Ai→Bj that deletes ai

• I(i,j)= minimum cost of conversion of Ai→Bj that inserts bj

If i=0, D(i,j) is not defined since A0 is a null string and deleting a
null symbol does not make any sense. Similarly, I(i,j) for j=0 is
not defined since we cannot insert a null symbol. Taking these
boundary conditions into account, the recurrence relations to
obtain C(i,j) is given in the next slide.

For i,j>o, the first line is obvious because the alignment must end with
a delete, insert or a replacement operation.

For i=0 and j>1, C(i,j)=gap(j) , since A0→Bj corresponds to alignment
- - - a1a2..an

b1b2…bjbj +1 … bm

For i>1 and j=0, C(i,j)=gap(i) , since Ai→B0 corresponds to
a1a2..ai ai+1ai+2..an

- - - bj +1 … bm

For i=j=0, C(i,j)=0, since A0→B0 corresponds to an empty alignment.

Recurrence Relations for C(i,j)

0 and 0 0

0 and 0)(

0 and 0)(

0 and 0)],()1,1(),,(),,([min









j iif

j iifigap

j iifjgap

jiifbajiCjiIjiD ji

),(jiC

Consider i>0 and j>0. Possible scenarios for minimum cost conversion of Ai to
Bj that deletes ai are shown. This justifies 1st line for D(I,j) below.

For i=0 and j>0, D(0,j) corresponds to A0 →Bj . As we noted earlier, if i=0, D(i,j)
is not defined since A0 is a null string and deleting a null symbol does not
make any sense. So, we are free to pick the function D(0,j) for i=0 and j>0.
Since the alignment starts with a “delete”, we define D(0,j)=C(0,j)+g.

We need not compute D(i,0) for i >=0 since other quantities do not depend
on these values.

Thus, we can write

Recurrence Relation for D(i,j)

ai
ai-1

bj
-- --

ai-1
--

-- ai
bj --

ai-1 ai

--bj
Gap already exists: D(i-1,j)+h New gap created: C(i-1,j)+g+h

0 and 0for), 0(

0 and 0for]) , 1(),, 1([min





jigjC

jihgjiCjiD
D(i,j)=

Recurrence Relation for D(i,j) (contd.)

For the case i=1, an optimal Conversion of A1 to Bj ending

with a delete, must convert A0 to Bj and then delete a1. Thus,

by substituting which yields:

This shows that it was okay to define
so that the recursion terminates properly.

-b1b2bj--
- -- --a1

)1(),0(),1(gapjCjD 

gjCjD ),0(),0(

]),0(,),0([min]) , 0(),, 0([min hgjCgjChgjCjD 

gjCjD ),0(),0(

• I is handled like D. Thus, if we define I(i,0)=
C(i,0)+g for i>0 and ignore I(0,j) for j>=0, then

The recurrence relations C,D and I can be used
to write an algorithm as presented in the
paper cited earlier.

Recurrence Relation for I(i,j)

0 and 0for)0, (

0 and 0for])1 , (),1, ([min





jigiC

jihgjiCjiI
I(i,j)=

An Example

v=AGTAC w=AAG

Cost Model: δ(a,b)=1 if a is not equal to b and with δ(a,a)=0
gap(k)= g + hk= 2+0.5k where g is gap open penalty .

We know that for i=0, j>0 C(0,j)=gap(j) for converting A0 →Bj

Now, D(0,j) is not defined since an alignment that ends with
deleting a null symbol does not make any sense. We are free
to define D(0,j). It is “convenient “ to define D(0,j) as

0 jfor),0(),0( gjCjD . Thus, g(j)),0(),0( gapgjCjD . This yields
 4.5 2 0.5 2 g) 1 ()1 ,0( gapD

 5 2 1 2 g) 2 ()2 ,0( gapD

 5.5 2 1.5 2 g) 3 ()3 ,0( gapD

We need not compute D(0,0),D(1,0), D(2,0),D(3,0),D(4,0) and D(5,0)
Since they are not needed in any computation step.

Similarly, since I(i,0)= C(i,0)+g for i>0 , we can write
I(i,0)= C(i,0)+g= gap(i) + g and obtain

 4.5 2 0.5 2 g) 1 ()0 ,1( gapI

 5 2 1 2 g) 2 ()0 ,2( gapI

 5.5 2 1.5 2 g) 3 ()0 ,3( gapI

 6 2 2 2 g) 4 ()0 , 4( gapI

 6.5 2 2.5 2 g) 5 ()0 ,5( gapI

*

*

*

**

* *** *

0 1 2 3 0 1 2 3 0 1 2 3

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

4.5

4.5

6

5.5

5

5.5

6.5

5

D I C

g(j)),0(),0( gapgjCjD I(i,0)= C(i,0)+g= gap(i) + g C(0, j)=gap(j)
C(i,0)=gap(i)

0 2.5 3

3

2.5

3.5

3.5

4

4.5

*

*

*

**

* *** *

0 1 2 3 0 1 2 3

0

1

2

3

4

5

0

1

2

3

4

5

4.5

4.5

6

5.5

5

5.5

6.5

5

D I

) 0 1, (]) , 1(),, 1([min  jihgjiCjiD

) 1 , 0 (

])1 , (),1, ([min





ji

hgjiCjiI

5

5.5

6 5 2.5 3

*

*

*

*

*

**

* *** *

0 1 2 3 0 1 2 3

0

1

2

3

4

5

0

1

2

3

4

5

4.5

4.5

6

5.5

5

5.5

6.5

5

5

5.5

6 5 2.5 3

Now, we can compute the first row of C(1,j) using the general formula :

0 1 2 3

0 2.5 3

3

2.5

3.5

3.5

4

4.5

0 and 0)],()1,1(),,(),,([min  jiifbajiCjiIjiD ji

0 2.5 3

*

Thus the computation proceeds as follows:
1. Compute 0-th row and 0-th column of matrices D, I, C
2. Compute the 1st rows of D and I
3. Compute the 1st row of C
4. Compute the 2nd row of D and I
5. Compute the 2nd row of C

Repeat until you finish computation of the last rows of D, I, C

*

*

*

**

* *** *

0 1 2 3 0 1 2 3

0

1

2

3

4

5

0

1

2

3

4

5

4.5

4.5

6

5.5

5

5.5

6.5

5

5

5.5

6 5 2.5 3

0 1 2 3

0 2.5 3

3

2.5

3.5

3.5

4

4.5

0 2.5 3

D I C

2.5 5 5.5

3 3.5 2

3.5 4 4.5

4* 4.5 5

5.5 5 3.5

6 5.5 6

6.5

7

6

6.5

5.5

7

2.5 1 2.5

3

3.5

4

3.5

3

4.5

2

4.5

4

0

1

2

3

4

5

Global alignment (Summary)

• Global alignment

– all letters from both sequences

• Objective score: substitution matrix + affine
gap penalties

• Three cost matrices C,D,I

• Three trace-back matrices (if alignment
needed as well.)

• Convert to dual problem to get similarity.

Needleman-Wunsch Algorithm

• Global alignment by dynamic programming
often called “the Needleman-Wunsch
algorithm”
– Needleman, S.B. and Wunsch, C.D. (1970) A

general method applicable to the search for
similarities in the amino acid sequence of two
proteins. J Mol Biol 48(3): 443-53.

– Paper describes an algorithm with fixed gap
penalty (independent of length)

– First application of dynamic programming to
biological sequences

Local Alignments: Smith- Waterman
Algorithm

• A particularly interesting variant of similarity search is local
alignment or similarity.

• Suppose we have two long DNA sequences in which there is a
particularly interesting subsequence representing a gene that
are common between the sequences.
– Doing a global alignment or similarity search will not be able to

identify this because there may be a lot of dissimilarity in the rest of
the sequence which yield a low value for similarity and a large value of
edit distance, none of which say anything about this interesting region.

• If the regions of highly similar local alignment are small, they
might get lost in the context of global alignment.

• If we need to detect similarity between two protein
sequences which are highly diverged but share a common
conserved evolutionary sequence in a particular domain,
doing a global alignment or similarity search does not help
much.

Local Alignments: Why?

• Two genes in different species may be similar
over short conserved regions and dissimilar
over remaining regions.

• Example:
– Homeobox genes have a short region called

the homeodomain that is highly conserved
between species.

– A global alignment would not find the
homeodomain because it would try to align
the ENTIRE sequence

Local alignment
• Often called “the Smith-Waterman algorithm”

– Smith, T.F. and Waterman, M.S. (1981) Identification of
common molecular subsequences. J Mol Biol 147(1): 195-
7.

– Introduces the critical “all prefixes of all suffixes” trick.

• Surprisingly, only small modification of global case will yield
an algorithm for local alignment

– Many more local alignments than global alignments

– Prior to Smith-Waterman paper, algorithms were much
slower

Local vs. Global Alignment

• The Global Alignment Problem tries to find the
longest path between vertices (0,0) and (n,m) in
the edit graph.

• The Local Alignment Problem tries to find the
longest path among paths between arbitrary
vertices (i,j) and (i’, j’) in the edit graph.

• In the edit graph with negatively-scored edges,
Local Alignment may score higher than Global
Alignment

Local vs. Global Alignment (cont’d)

 Global Alignment

 Local Alignment—better alignment to find
conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” Global
Alignment to get Local

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” Global
Alignment to get Local

Local Alignment: Example

Local Alignment: Example

Local Alignment: Example

Local Alignment: Example

Local Alignment: Example

Local Alignment: Running Time

The Local Alignment Problem

• Goal: Find the best local alignment between
two strings

• Input : Strings v, w and scoring matrix δ

• Output : Alignment of substrings of v and w
whose alignment score is maximum among all
possible alignment of all possible substrings

The Problem with Exhaustive
Algorithm

• An obvious exhaustive algorithm is to enumerate all the
substrings of S1 and S2 and execute a dynamic
programming algorithm on each pair.

– There are O(n2m2) such pairs.

• For one string, a substring is defined by two positions the
string which can be chosen in O(n2) and O(m2) ways for
S1 and S2, respectively.

• For each pair, dynamic programming takes O(nm) time.
Thus, the complexity of such an approach is O(n3m3) .

Problem Formulation

The algorithm is essentially a minor modification in the dynamic
programming equations for the global alignment with two
differences:

1. In each cell in the dynamic programming matrix, an extra
possibility is added to allow the value to be 0 if all other
options lead to a negative value for that cell. Essentially, it
means starting a new computation if the best alignment
gives a negative value. This also implies that the first row
and column are set to value 0 at the beginning of the
computation.

2. The new alignment can end anywhere in the matrix not
necessarily at point (n,m) in the matrix. Whenever a local
maxima is encountered. The trace back starts and it ends
when it meets the first 0 in the path.

Local Alignment: Free Rides

Vertex (0,0)

The dashed edges represent the free rides from (0,0) to every other node.

Yeah, a free ride!

Algorithm to find value of optimal V(i,j)

• The algorithm is very similar to the algorithm to
determine maximum similarity of two strings.

• Use again recurrence relations.

• Make reasonable assumptions about insert and delete
operations as and , respectively.

• Since the optimal suffix to align with an empty suffix is a
string of length zero, we can write the basis as:

V(i,0)=0

V(0,j)=0

0),( x 0),(x

The Recurrence Realtion

• For i>0 and j>0, the recurrence relations are:

),(),(()1,1(,0max[),(21 jSiSjiVjiV 

),),((),1(1  iSjiV 

))](,()1,(2 jSjiV  

Example

Let S = ABCLDEL and T = LLLCDE, a match score +2, and a
mismatch or space score -1. Initialization step:

j

i

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

є L L L C D E

A

B

C

L

D

L

E

є

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1

2

3

4

5

6

7

є L L L C D E

є

A

B

C

L

D

E

L

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0 2 2 2 1 1 4

0 0 0 0 2 5

1 1 1 1 3 2

2 2 2 1 1 0

0 0 0 2 1 0

Example: Let S = ABCLDEL and T = LLLCDE, a match score +2, and a
mismatch or space score -1.

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1

2

3

4

5

6

7

є L L L C D E

є

A

B

C

L

D

E

L

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

0

0

0

0 2 2 2 1 1 4

0 0 0 0 2 5

1 1 1 1 3 2

2 2 2 1 1 0

0 0 0 2 1 0

The value of optimal alignment is V(6,6) = 5. We can construct optimal alignments
by retracing from any maximum entry to any zero entry:

The Optimal Local Alignment

• The optimal local alignments corresponding to these
paths are:

L - D E

L C D E

C L D E

C - D E

Space Complexity

• It is easy to see that the time complexity of the algorithm
is O(nm) , as in the general case of dynamic
programming.

• The algorithm takes O(nm) space. This is quite expensive
if the sequences are large.

• If one were interested only in the value of the alignment
and not obtaining a trace, this could easily be done by
keeping only the last two rows of the matrix to compute
the next row.

• This will need only O(n+m) space.
• Is it possible to reconstruct an alignment using only

linear space?

i-1,j

i-1,j-1 i,j-1

i,j

Saving space

Current row depends only
on previous row and current row

Need only store two rows to
compute score of best alignment
= O(L) space, where L denotes
number of cells in a row or column
whichever is minimum.

(Can it done with space for one row
or column only?).

Compute matrix left-to-right
and top-to-bottom

This row no longer needed

Trace-back in O(L) space

• Trace-back is harder

• Myers-Miller algorithm

– Myers, E.W. and Miller, W. (1988) Optimal
alignments in linear space. Comput Appl Biosci
4(1): 11-7.

• Repeatedly divides similarity matrix in half

Faster speed

• Speed improvements require approximation

– give up guarantee that an objective score is
optimized

• Global alignment: k-difference

• Local and global alignment: seeds

Freely available source code

• FASTA package
– align: Myers-Miller global alignment

– lalign: Smith-Waterman local alignment

– fasta: fast database search by k-mer matching and d.
p. extension

• BLAST (NCBI)
– Fast database search

– Seeds by “neighborhood” method

– Match seeds by lookup in pre-computed index

– Extend seeds by d. p. with score threshold

Multiple Alignment

Outline

• Dynamic Programming in 3-D
• Progressive Alignment
• Profile Progressive Alignment (ClustalW)
• Scoring Multiple Alignments
• Entropy
• Sum of Pairs Alignment

Multiple Alignment versus Pairwise Alignment

• Up until now we have only

tried to align two sequences.

http://www.aldeaeducativa.com/small/venter.jpg
http://images.google.com/imgres?imgurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/baboon.GIF&imgrefurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/&h=512&w=512&sz=258&tbnid=jKpgkJ-c2OYJ:&tbnh=128&tbnw=128&start=13&prev=/images?q=baboon&hl=en&lr=&sa=N

Multiple Alignment versus Pairwise Alignment

• Up until now we have only

tried to align two sequences.

• What about more than two?

And what for?

http://www.aldeaeducativa.com/small/venter.jpg
http://images.google.com/imgres?imgurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/baboon.GIF&imgrefurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/&h=512&w=512&sz=258&tbnid=jKpgkJ-c2OYJ:&tbnh=128&tbnw=128&start=13&prev=/images?q=baboon&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://news.bbc.co.uk/olmedia/1765000/images/_1768316_tiger2.jpg&imgrefurl=http://ai-o-artista.blogspot.com/&h=300&w=300&sz=14&tbnid=bjq3xD6A-2AJ:&tbnh=111&tbnw=111&start=6&prev=/images?q=tiger&hl=en&lr=&sa=G
http://images.google.com/imgres?imgurl=http://www.nature.com/news/2004/041206/images/chicken.jpg&imgrefurl=http://www.nature.com/news/2004/041206/full/041206-8.html&h=166&w=180&sz=25&tbnid=TbBpwwkh5PQJ:&tbnh=88&tbnw=95&start=16&prev=/images?q=chicken&hl=en&lr=&sa=G

Multiple Alignment versus Pairwise Alignment

• Up until now we have only

tried to align two sequences.

• What about more than two?

And what for?

• A faint similarity between two

sequences becomes significant

if present in many

• Multiple alignments can reveal

subtle similarities that pairwise

alignments do not reveal

http://www.aldeaeducativa.com/small/venter.jpg
http://images.google.com/imgres?imgurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/baboon.GIF&imgrefurl=http://show.docjava.com:8086/book/dsp/data/images/gifs/&h=512&w=512&sz=258&tbnid=jKpgkJ-c2OYJ:&tbnh=128&tbnw=128&start=13&prev=/images?q=baboon&hl=en&lr=&sa=N
http://images.google.com/imgres?imgurl=http://news.bbc.co.uk/olmedia/1765000/images/_1768316_tiger2.jpg&imgrefurl=http://ai-o-artista.blogspot.com/&h=300&w=300&sz=14&tbnid=bjq3xD6A-2AJ:&tbnh=111&tbnw=111&start=6&prev=/images?q=tiger&hl=en&lr=&sa=G
http://images.google.com/imgres?imgurl=http://www.nature.com/news/2004/041206/images/chicken.jpg&imgrefurl=http://www.nature.com/news/2004/041206/full/041206-8.html&h=166&w=180&sz=25&tbnid=TbBpwwkh5PQJ:&tbnh=88&tbnw=95&start=16&prev=/images?q=chicken&hl=en&lr=&sa=G

Multiple Sequence Alignment

• Generalization of two sequence similarity problem, the
problem of determining the similarity among multiple
sequences.

• The purpose is to discover ‘faint but widely dispersed’
common sequences which might represent biologically
important information.

• These common sequences might reveal evolutionary
history, conserved motifs in the genome of divergent
species, common chemical structure that give rise to
similar folding or 3-D structures of proteins giving rise to
similar functions.

• An example is the notion of protein family
which is a collection of proteins having
– similar 3-D structure,
– similar functions,
– and similar evolutionary history.

• If a new protein is discovered and if one is
interested in classifying which family it
belongs, comparison with individual members
in the family might produce conflicting or
confusing results.

Multiple Alignment of Several Amino Acid
Sequences of Globin Proteins

• The example below shows how common features are
dispersed faintly among a group of proteins which may not be
apparent when two sequences in the family are compared.

• The abbreviations on the left denote the organisms that the
globin sequences are from. The sequences are displayed in
several rows since they are longer than a page can
accommodate. Columns containing highly similar residues in
regions of known secondary structures are marked by “v” and
columns with identical residues are marked by *. Two residues
are considered similar if they are from any one of the folowing
classes: (F,Y), (M,L,I,V), (A,G),(T,S),(Q,N),(K,R) and (E,D).

An Example of Multiple Alignment

Example of Multiple Alignment (contd.)

Example of Multiple Alignment (contd.)

Family Membership

If the faint similarity of the members in the
family can be represented by what is called a
‘consensus sequence’, it will be more efficient
to find an alignment of the new protein with
this consensus sequence to determine
whether it belongs to this family.

Definition

Given a set of multiple sequences

a (global) alignment maps them to sequences

that may contain spaces, where

and the removal of all spaces from

kSSS ,...., 21

kSSS ''

2

'

1 ,....,

|,|,....|||| ''

2

'

1 kSSS 

.1for intact, leaves
'

kiSS ii 

Multiple Alignment

• Although the generalization of definition from two
sequences to multiple sequences seems straightforward,
it is not that obvious how to score or assign value to a
multiple alignment.

• There are various scoring methods such as sum-of –pairs
(SP) functions, consensus functions, and tree functions.

• For the sake of mathematical ease, SP functions have
been widely used and good approximation algorithms
have also been developed.

Multiple Alignment Methods

1. Exact Approach to Multiple Sequence Alignment
2. Greedy Approach
3. Progressive Sequence Alignment
4. Center Star Algorithm

Other Approaches
5. Consistency Based Approach
6. Structure Based Approach

Exact Approach

• Alignment of 2 sequences is represented as a
2-row matrix

• In a similar way, we represent alignment of 3 sequences
as a 3-row matrix

A T _ G C G _
A _ C G T _ A
A T C A C _ A

• Score: more conserved columns, better alignment

Alignments = Paths in 3-D Edit Graph

 Align 3 sequences: ATGC, AATC,ATGC

A A T -- C

A -- T G C

-- A T G C

Alignment Paths

0 1 1 2 3 4

A A T -- C

A -- T G C

-- A T G C

x coordinate

Alignment Paths

 Align the following 3 sequences:

ATGC, AATC,ATGC
0 1 1 2 3 4

0 1 2 3 3 4

A A T -- C

A -- T G C

-- A T G C

•

x coordinate

y coordinate

Alignment Paths

0 1 1 2 3 4

0 1 2 3 3 4

A A T -- C

A -- T G C

0 0 1 2 3 4

-- A T G C

• Resulting path in (x,y,z) space:

(0,0,0)(1,1,0)(1,2,1) (2,3,2) (3,3,3) (4,4,4)

x coordinate

y coordinate

z coordinate

Aligning Three Sequences
• Same strategy as aligning

two sequences

• Use a 3-D “Manhattan
Cube”, with each axis
representing a sequence to
align

• For global alignments, go
from source to sink

source

sink

2-D vs 3-D Alignment Grid

V

W

2-D edit graph

3-D edit graph

Optimize SP for N sequences

• Similarity matrices become N-dimensional

• E.g., for 3 sequences it will be cubes.

M[i,j,k] =
score of best alignment of
first i letters in A
first j letters in B
first k letters in C

i

j

k

3-D cell versus 2-D Cell

In 3-D, 7 edges in each
unit cube

In 2-D, 3 edges in each
unit square

Architecture of 3-D Alignment Cell

(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)

Multiple Alignment: Dynamic Programming

• si,j,k = max

• (x, y, z) is an entry in the 3-D scoring matrix

si-1,j-1,k-1 + (vi, wj, uk)

si-1,j-1,k +  (vi, wj, _)

si-1,j,k-1 +  (vi, _, uk)

si,j-1,k-1 +  (_, wj, uk)

si-1,j,k +  (vi, _ , _)

si,j-1,k +  (_, wj, _)

si,j,k-1 +  (_, _, uk)

cube diagonal: no indels

face diagonal: one indel

edge diagonal:
two indels

Multiple Alignment: Running Time

• For 3 sequences of length n, the run time is O(7mnp)
or O(n3) if all sequences have same length n.

• For k sequences, build a k-dimensional edit graph, with
run time (2k-1)(nk) or O(2knk)

• Conclusion: dynamic programming approach for
alignment between two sequences is easily extended
to k sequences but it is impractical due to exponential
running time

• It will be a difficult task to define score matrices with
real biological significance. See later sum-of-pairs
score.

Very slow

• Time and space is O(nk)

• Is NP-complete

– Wang, L. and Jiang, T. (1994), “On the complexity
of multiple sequence alignment” J Comput Biol
1(4): 337-48.

• Totally impractical for most biologically
interesting problems

• Faster methods needed

An Objective Scoring Function of
Multiple Alignment

• Objective score: Sum-of-pairs (SP)

• Sum of objective score for alignment of each
pair of sequences

SEQVENCE
SDQVE-CR
TEQVEACESP()=

SEQVENCE
SDQVE-CR

Score() +

SEQVENCE
TEQVEACE

Score() +

SDQVE-CR
TEQVEACE

Score()

Multiple Alignment Induces Pairwise
Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG

y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG

Reverse Problem: Constructing Multiple
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG

y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG

can we construct a multiple alignment that induces

them?

Reverse Problem: Constructing Multiple
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG

y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG

can we construct a multiple alignment that induces

them?

NOT ALWAYS

Pairwise alignments may be inconsistent

Combining Optimal
Pairwise Alignments into
Multiple Alignment:

Can combine pairwise
alignments into multiple
alignment

Can not combine
pairwise alignments
into multiple alignment

Inferring Multiple Alignment from
Pairwise Alignments

• From an optimal multiple alignment, we can
infer pairwise alignments between all pairs of
sequences, but they are not necessarily
optimal

• It is difficult to infer a ``good” multiple
alignment from optimal pairwise alignments
between all sequences

Multiple Alignment: Greedy Approach

• Choose most similar pair of strings and align.

• Choose the next sequence that gives maximum score with the
existing sequences and insert this sequence with possible
insertion of additional space characters. Repeat.

• This is a heuristic greedy method

Greedy Approach: Example

• Consider these 4 sequences

s1 GATTCA
s2 GTCTGA
s3 GATATT
s4 GTCAGC

Greedy Approach: Example (cont’d)

• There are = 6 possible alignments

• Cost Model: sub -1, indel -1 and match 1









2

4

s2 GTCTGA
s4 GTCAGC (score = 2)

s1 GAT-TCA
s2 G-TCTGA (score = 1)

s1 GAT-TCA
s3 GATAT-T (score = 1)

s1 GATTCA--
s4 G—T-CAGC(score = 0)

s2 G-TCTGA
s3 GATAT-T (score = -1)

s3 GAT-ATT
s4 G-TCAGC (score = -1)

Greedy Approach: Example (cont’d)

s2 and s4 are closest; combine:

s2 GTCTGA
s4 GTCAGC

Now take the alignment with max score from
(s1,s2) and (s1,s4), which is (s1,s2) and add s4 in it
with inserted gaps if necessary. Now, find the best
alignment between s3 and (s1,s2,s4) which is (s1,s3)

s1 GAT-TCA
s2 G-TCTGA
s4 G-TCAGC

s1 GAT-TCA
s3 GATAT-T

s1 GAT-TCA
S3 GATAT-T
s2 G-TCTGA
s4 G-TCAGC

Now, add s3 to the existing alignment with s1.Fortunately,
here we do not need to insert additional space characters
for s2 or s4

Progressive Alignment

• Progressive alignment is a variation of greedy
algorithm with a somewhat more intelligent strategy
for choosing the order of alignments.

• Progressive alignment works well for close
sequences, but deteriorates for distant sequences

– Gaps in consensus string are permanent

– Use profiles to compare sequences

ClustalW

• Popular multiple alignment tool today

• ‘W’ stands for ‘weighted’ (different parts of
alignment are weighted differently).

• Three-step process

1.) Construct pairwise alignments

2.) Build Guide Tree

3.) Progressive Alignment guided by the tree

Percent Sequence Identity

• The extent to which two nucleotide or amino
acid sequences are invariant

A C C T G A G – A G
A C G T G – G C A G

70% identical

mismatch
indel

Step 1: Pairwise Alignment

• Aligns each sequence again each other giving
a similarity matrix

• Similarity = exact matches / sequence length
(percent identity)

v1 v2 v3 v4
v1 -

v2 .17 -

v3 .87 .28 -

v4 .59 .33 .62 -
(.17 means 17 % identical)

Step 2: Guide Tree

•Create Guide Tree using the similarity matrix

•ClustalW uses the neighbor-joining method

•Guide tree roughly reflects evolutionary
relations

Step 2: Guide Tree (cont’d)

v1
v3

v4

v2

Calculate:
v1,3 = alignment (v1, v3)
v1,3,4 = alignment((v1,3),v4)
v1,2,3,4 = alignment((v1,3,4),v2)

v1 v2 v3 v4
v1 -

v2 .17 -

v3 .87 .28 -

v4 .59 .33 .62 -

Step 3: Progressive Alignment

• Start by aligning the two most similar sequences

• Following the guide tree, add in the next sequences,
aligning to the existing alignment

• Insert gaps as necessary

FOS_RAT PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD

FOS_MOUSE PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD

FOS_CHICK SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD

FOSB_MOUSE PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ

FOSB_HUMAN PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ

. . : ** . :.. *:.* * . * **:

Dots(less conservative substitution), colon(conservative substitution)
and stars(exact match) show how well-conserved a column is.

Multiple Alignments: Scoring

• Number of matches (multiple longest
common subsequence score)

• Entropy score

• Sum of pairs (SP-Score)

Multiple LCS Score

• A column is a “match” if all the letters in the
column are the same

• Only good for very similar sequences

AAA
AAA
AAT
ATC

Entropy

• Define frequencies for the occurrence of each letter in each
column of multiple alignment

– pA = 1, pT=pG=pC=0 (1st column)

– pA = 0.75, pT = 0.25, pG=pC=0 (2nd column)

– pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column)

• Compute entropy of each column





CGTAX

XX pp
,,,

log

AAA
AAA
AAT
ATC

Entropy: Example

0





















A

A

A

A

entropy

2)2
4

1
(4

4

1
log

4

1
























C

G

T

A

entropy

Best case

Worst case

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum
of entropies of its columns:

X

TGCAX

X pp log
cols. ,,,

 




Entropy of an Alignment: Example

column entropy:
-(pAlogpA + pClogpC + pGlogpG + pTlogpT)

•Column 1 = -[1*log(1) + 0*log0 + 0*log0 +0*log0]

= 0

•Column 2 = -[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0]

= -[(1/4)*(-2) + (3/4)*(-.415)] = +0.811

•Column 3 = -[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4) +(1/4)*log(1/4)]

= 4* -[(1/4)*(-2)] = +2.0

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

A A A

A C C

A C G

A C T

Multiple Alignment Induces Pairwise
Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG

y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG

Sum of Pairs Score(SP-Score)

• Consider pairwise alignment of sequences

ai and aj

imposed by a multiple alignment of k sequences

• Denote the score of this suboptimal (not necessarily

optimal) pairwise alignment as

s*(ai, aj)

• Sum up the pairwise scores for a multiple alignment:

s(a1,…,ak) = Σi,j s*(ai, aj)

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a1,a2,a3,a4:

s(a1…a4) = s*(ai,aj) = s*(a1,a2) + s*(a1,a3)
+ s*(a1,a4) + s*(a2,a3)
+ s*(a2,a4) + s*(a3,a4)

SP-Score: Example

a1

.
ak

ATG-C-AAT
A-G-CATAT
ATCCCATTT


ji

jik aaSaaS
,

*

1),()...(








2

n
Pairs of Sequences

A

A A

11

1

G

C G

1m

m

Score=3 Score = 1 – 2m

Column 1 Column 3

s s*(

To calculate each column:

Center Star Alignment Algorithm

• Gusfield proposed this algorithm, called
Center Star Alignment Algorithm . It can be
proved that the SP values are less than twice
the optimal value. We sketch this algorithm
now.

Center Star Alignment Algorithm

• We make the following assumptions:

– s(x,x)=0, for all characters x.

– Symmetric: , for all characters
x and y.

– Triangle inequality:
, for all characters x, y and z.

• We have used the symbol to denote the
edit distance or minimum global alignment
distance of S1 and S2.

),(),(xysyxs 

),(),(),(yzszxsyxs 

),(21 SSD

Algorithm

The input is a set Γ of k strings.

1. First find S1ε Γ that minimizes . This can be done by
running the dynamic programming algorithm on each of
the pairs of sequences in Γ.
 Note this S1 is not necessarily the first string specified in the

input set Γ. Call the remaining sequences in Γ to be S2,S3,….,Sk.

2. Now add these strings S2,S3,…,Sk one at a time to a
multiple alignment that so far has only one sequence
viz. S1. Suppose are already aligned as










2

k

).........,(1,21 iSSS

).........,('

1

'

2

'

1 iSSS

3. To add Si, run the dynamic programming
algorithm again on S1’ and Si to produce S1’’
and Si’.

4. Then adjust by adding spaces to
those columns where spaces were added to
get S1’’ from S1’.

5. Replace S1’ by S1’’.

'

1

'

2 iSS

Example

• Γ=(AGTGC, ATC, ATTC, ATC, AGC)

• Step1. S1 is ATC (any one of them) since the edit distance
between ATC and ATC is zero.
– For all other pair the edit distance is more than 0. Call the

remaining set S2=ATTC, S3=ATC, S4=AGAGC and S5=AGC.

• Step2 and 3: Add S2=ATTC. The alignment between S1’
and S2 is:

S1’’= A T -- C

S2’ = A T T C

• Step4 and 5: We only have one S1’ which is now replaced
by S1’’= A T -- C.
– To add ATC , the new alignment is

S1’’= A T -- C

S3’ = A T -- C

• Since no extra space has been inserted in S1’’, we don’t
have to do anything. So the alignment at this point look
like.

A T -- C

A T T C

A T -- C

• Next we add S4=AGTGC. The alignment is now
A – T – C

A G T GC

• Now, we have introduced a ‘–‘ in the second column of
S1’= S1’’. So the new multiple alignment have to be
“adjusted” giving

A – T – C

A -- T T C

A – T – C

A G T G C

• Finally, we have to add S5=AGC. Since the latest S1’= S1’’=
A – T – C, S5=AGC can be aligned in two different ways by
putting G aligned with any one of the spaces for S1’.

• Thus, one of the solutions is
A – T – C

A --T T C

A – T – C

A G T G C

A G -- -- C

Time Complexity

• Theorem:

– The algorithm just described above has a time
complexity O(k2n2), where k is the number of
sequences and each sequence has a maximum
length of n.

– It can be proved that the total SP cost of the
solution obtained by the above algorithm is not
worse than the twice the optimal cost.

Multiple Alignment: History

1975 Sankoff
Formulated multiple alignment problem and gave dynamic programming
solution

1988 Carrillo-Lipman
Branch and Bound approach for MSA

1990 Feng-Doolittle
Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW
Most popular multiple alignment program

1998 Morgenstern et al.-DIALIGN
Segment-based multiple alignment

2000 Notredame-Higgins-Heringa-T-coffee
Using the library of pairwise alignments

2004 MUSCLE

