
Algorithms to compute string
similarity

String Similarity

• Finding differences or edit distance between two
sequences can be alternately formulated as finding
similarity between two sequences.

• Biologists usually prefer using similarity measures to
study relationship between strings.

• Earlier we gave a definition of alignment as follows:

– Definition: Let v and w be two sequences of length n and m ,
respectively , over a finite alphabet ∑. An alignment maps the
strings v and w into strings and that may contain indel (‘-’)
characters such that removal of all indel characters leaves v
and w intact.

Similarity using Dynamic Programming-
Longest Common Subsequence Problem

If we are interested to find an alignment that maximizes S(n,m), the number of matched,

symbols, we can assign a weight of 1 for match and a weight of 0 for both insert

and delete operations. The substitution operation is considered as a delete

followed by an insert operation. The score table δ consists simply of all diagonal

entries to be 1 and rest are 0.The dynamic programming equations

will then look like

),(is" score similarity" write

}

match}),,1(,)1,(max{),(

1)1,1(matchw if

do to1for

* / vfrom delete * / 0)0,({

do to1for

* / wfrominsert * / 0),0(

do to1for

0)0,0(

 j

mnS

jiSjiSjiS

jiSv

mj

iS

ni

jS

mj

S

i

















Dynamic Programming Example

Initialize 1st row and 1st

column to be all zeroes.

Or, to be more precise,
initialize 0th row and 0th

column to be all zeroes.

LCS via Dynamic Programming
:Example

Si,j = Si-1, j-1

max Si-1, j

Si, j-1

value from NW +1, if vi = wj

 value from North (top)

 value from West (left)

Alignment: Backtracking

Arrows show where the score originated
from.

if from the top

if from the left

if vi = wj

Backtracking Example

Find a match in row and column 2.

i=2, j=2,5 is a match (T).
j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1

Backtracking Example

Continuing with the
dynamic programming
algorithm gives this
result.

LCS: Example

A T -- C T G A T C

-- T G C T -- A -- C

elements of v

elements of w

--

A

1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:

positions in w:

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0) (1,0) (2,1) (2,2) (3,3) (3,4) (4,5) (5,5) (6,6) (7,6) (8,7)

Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0

i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a
common
subsequence.

Every diagonal
edge adds an extra
element to
common
subsequence

LCS Problem: Find
a path with
maximum number
of diagonal edges

є
є

Imagine vertical lines for characters of sequence w and horizontal lines for those of v.

This also illustrates an alternate way to represent the “edit graph”.. It is embedded.

V

W

Relationship Between Edit Distance and LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0

A T C T G A T C
0 1 2 3 4 5 6 7 8

є

T G C A T A C

A T C T G A T C

T G C A T A C

A T C T G A T C

є

- T G C A T - A – C

A T - C - T G A T C

- - - T G C A T A C

A T C T G - A T - C

D=n+m-2L

D=7+8-2*5=5

LCS Edit Graph

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0

i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

є
є

+1

+1

+1

+1

+1

Computing LCS
Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max

si-1, j

si, j-1

si-1, j-1 + 1 if vi = wj

(It is the same definition that we presented earlier but shows that LCS has

its own dynamic programming formulation independent of sequence alignment

problem)

Computing LCS (cont’d)

si,j = MAX

si-1,j + 0

si,j -1 + 0

si-1,j -1 + 1, if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

Every Path in the Grid Corresponds to an
Alignment: Another Example

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V
0 1 2 2 3 4

V = A T - G T

| | |

W= A T C G –

0 1 2 3 4 4

LCS Runtime

• It takes O(nm) time to fill in the nxm dynamic
programming matrix.

• Why O(nm)? The pseudocode consists of a
nested “for” loop inside of another “for” loop
to set up a nxm matrix.

Similarity Definition Generalized

• We enlarge the alphabet ∑ to ∑’ including the space symbol ‘-’.
Then for any two characters x and y in ∑’, we define a score or
value obtained by aligning x against y. For a given alignment
of S1 and S2, let S’1 and S’2 denote the strings after the chosen
insertion of spaces. And let k denote the equal length of
these two strings. Then value V of alignment between S’1 and

S’2 is defined as

))(),(('

2

1

'

1 iSiS
k

i






where is the value or score associated with the pair of symbols S’1 (i) and

S’2(i).


Maximization Problem

• In string similarity problems, the value of is
usually set greater than zero for matched
symbols and less than zero for symbol pairs
that do not match or when a symbol is aligned
with a ‘-‘ character.

• This reduces the problem to the problem of
maximization of V for all possible alignments.



Dynamic Programming Solution

• Let be the optimal alignment of
prefixes and

• Basis:

),(jiV

]...1[1 iS]....1[2 jS

0)0,0(

)),(()0,(

))(,(),0(

1

1

1

2















V

kSiV

kSjV

i

k

j

k





Dynamic Programming Solution

• recurrence relation is:

)),(),(()1,1(max[),(21 jSiSjiVjiV  replacement

),),((),1(1  iSjiV  deletion

))](,()1,(2 jSjiV   insertion

The value of the optimal alignment is given by .

Like for the computation of the edit distance, we can use a bottom-up method

to compute the alignment matrix. The complexity is O(nm) since at each point

we perform 3 comparisons, 3 look-up operations and 3 additional operations.

),(mnV

Dynamic Programming Solution

When mismatches are penalized by a constant -μ, indels are penalized by some other
constant -σ and matches are rewarded with +1, the recurrence relation is

 if 1)1,1(

, if)1,1(max[),(

ji

ji

wvjiV

wvjiVjiV



 

match

,),1( jiV deletion

])1,(jiV insertion

The value of the optimal alignment is given by V(n,m) which equals

#matches – μ.#mismatches – σ.#indels

Note, the LCS problem is the Global Alignment problem with μ=0 and σ=0

Like for the computation of the edit distance, we can use a bottom-up method

to compute the alignment matrix. The complexity is O(nm) since at each point

we perform 3 comparisons, 3 look-up operations and 3 additional operations.

mismatch

Maximum similarity path

• By setting up suitable pointers, once the matrix
is computed, we can obtain a trace for the
optimal alignment by constructing any path from
the cell (n,m) to the cell (0,0).

• Also, the problem can be formulated as finding a
maximum weighted path in a weighted
acyclic graph similar to one discussed earlier.
(In general, computing a longest path in arbitrary
graph is NP complete).

Computation time and Storage

• The weights of the edges must correspond to specific
values of s for the pair of symbols. The algorithm takes
O(nm) space.

• This is quite expensive if the sequences are large.

• If one were interested only in the value of the alignment
and not obtaining a trace, this could easily be done by
keeping only the last two rows of the matrix to compute
the next row.

• This will need only O(n+m) space. Is it possible to
reconstruct an alignment using only linear space?

