Algorithms to compute string similarity

String Similarity

- Finding differences or edit distance between two sequences can be alternately formulated as finding similarity between two sequences.
- Biologists usually prefer using similarity measures to study relationship between strings.
- Earlier we gave a definition of alignment as follows:
- Definition: Let v and w be two sequences of length n and m, respectively, over a finite alphabet \sum. An alignment maps the strings v and w into strings and that may contain indel ('-') characters such that removal of all indel characters leaves v and w intact.

Similarity using Dynamic ProgrammingLongest Common Subsequence Problem

If we are interested to find an alignment that maximizes $S(n, m)$, the number of matchec symbols, we can assign a weight of 1 for match and a weight of 0 for both insert and delete operations. The substitution operation is considered as a delete followed by an insert operation. The score table δ consists simply of all diagonal entries to be 1 and rest are 0 .The dynamic programming equations
will then look like

$$
\begin{aligned}
& S(0,0) \leftarrow 0 \\
& \text { for } j=1 \text { to } m \text { do } \\
& S(0, j) \leftarrow 0 \\
& \text { for } i=1 \text { to } n \text { do } / * \text { insert from } \mathrm{w} / * \\
& \left\{\begin{array}{l}
S(i, 0) \leftarrow 0 \quad / * \text { delete from } \mathrm{v} / * \\
\text { for } j=1 \text { to } m \text { do } \\
\quad \text { if } v_{i}=\mathrm{w}_{\mathrm{j}} \operatorname{match}=S(i-1, j-1)+1 \\
\quad S(i, j) \leftarrow \max \{S(i, j-1), S(i-1, j), \text { match }\} \\
\} \\
\text { write"similarity score is" } S(n, m)
\end{array}\right.
\end{aligned}
$$

Dynamic Programming Example

w A

Initialize $1^{\text {st }}$ row and $1^{\text {st }}$ column to be all zeroes.

Or, to be more precise, initialize $O^{\text {th }}$ row and $O^{\text {th }}$ column to be all zeroes.

LCS via Dynamic Programming :Example

Alignment: Backtracking

Arrows

 $\unlhd_{\text {show }}$ where the score originated from.\dagger if from the top

- if from the left
if $v_{i}=w_{j}$

Backtracking Example

w \&
G (5) T G G

Find a match in row and column 2.
$i=2, j=2,5$ is a match (T).
$j=2, i=4,5,7$ is a match (T).
Since $v_{i}=w_{j,} s_{i, j}=s_{i-1, j-1}+1$

$$
\begin{aligned}
& s_{2,2}=\left[s_{1,1}=1\right]+1 \\
& s_{2,5}=\left[s_{1,4}=1\right]+1 \\
& s_{4,2}=\left[s_{3,1}=1\right]+1 \\
& s_{5,2}=\left[s_{4,1}=1\right]+1 \\
& s_{7,2}=\left[s_{6,1}=1\right]+1
\end{aligned}
$$

Backtracking Example

Continuing with the dynamic programming algorithm gives this result.

LCS: Example

elements of v
elements of w
j coords:
$(0,0) \rightarrow(1,0) \rightarrow(2,1) \rightarrow(2,2) \rightarrow(3,3) \rightarrow(3,4) \rightarrow(4,5) \rightarrow(5,5) \rightarrow(6,6) \rightarrow(7,6) \rightarrow(8,7)$

$$
\text { positions in v: } \quad 2<3<4<6<8
$$

Matches shown in red

$$
\text { positions in } w: \quad 1<3<5<6<7
$$

Every common subsequence is a path in 2-D grid

Edit Graph for LCS Problem

Imagine vertical lines for characters of sequence w and horizontal lines for those of v. This also illustrates an alternate way to represent the "edit graph".. It is embedded.

Relationship Between Edit Distance and LCS Problem

LCS Edit Graph

Computing LCS

Let $\boldsymbol{v}_{i}=$ prefix of \boldsymbol{v} of length $i: \quad v_{1} \ldots v_{i}$
and $\boldsymbol{w}_{j}=$ prefix of \boldsymbol{w} of length $j: w_{1} \ldots w_{j}$
The length of $\operatorname{LCS}\left(\boldsymbol{v}_{i}, \boldsymbol{w}_{j}\right)$ is computed by:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j} \\
s_{i, j-1} \\
s_{i-1, j-1}+1 \text { if } v_{i}=w_{j}
\end{array}\right.
$$

(It is the same definition that we presented earlier but shows that LCS has its own dynamic programming formulation independent of sequence alignment problem)

Computing LCS (cont'd)

$$
s_{i, j}=\operatorname{MAX}\left\{\begin{array}{l}
s_{i-1, j}+0 \\
s_{i, j-1}+0 \\
s_{i-1, j-1}+1, \quad \text { if } v_{i}=w_{j}
\end{array}\right.
$$

Every Path in the Grid Corresponds to an Alignment: Another Example

LCS Runtime

- It takes $\mathrm{O}(n m)$ time to fill in the $n x m$ dynamic programming matrix.
- Why $\mathrm{O}(\mathrm{nm})$? The pseudocode consists of a nested "for" loop inside of another "for" loop to set up a nxm matrix.

Similarity Definition Generalized

- We enlarge the alphabet \sum to Σ ' including the space symbol ' - '. Then for any two characters x and y in \sum^{\prime}, we define a score or value obtained by aligning x against y. For a given alignment of $S 1$ and $S 2$, let S_{1}^{\prime} and $S^{\prime}{ }_{2}$ denote the strings after the chosen insertion of spaces. And let k denote the equal length of these two strings. Then value V of alignment between $S^{\prime}{ }_{1}$ and $S^{\prime}{ }_{2}$ is defined as

$$
\sum_{i=1}^{k} \delta\left(S_{1}^{\prime}(i), S_{2}^{\prime}(i)\right)
$$

where δ is the value or score associated with the pair of symbols S_{1}^{\prime} (i) and $S_{2}^{\prime}(\mathrm{i})$.

Maximization Problem

- In string similarity problems, the value of δ is usually set greater than zero for matched symbols and less than zero for symbol pairs that do not match or when a symbol is aligned with a "-‘ character.
- This reduces the problem to the problem of maximization of V for all possible alignments.

Dynamic Programming Solution

- Let $V(i, j)$ be the optimal alignment of prefixes $S_{1}[1 . . . i]$ and $S_{2}[1 \ldots j]$.
- Basis:

$$
\begin{aligned}
& V(0, j)=\sum_{k=1}^{j} \delta\left(-, S_{2}(k)\right) \\
& V(i, 0)=\sum_{k=1}^{i} \delta\left(S_{1}(k),-\right) \\
& V(0,0)=0
\end{aligned}
$$

Dynamic Programming Solution

- recurrence relation is:

$$
\begin{array}{rlll}
V(i, j)=\max \left[V(i-1, j-1)+\delta\left(S_{1}(i), S_{2}(j)\right),\right. & \longleftarrow & \text { replacement } \\
V(i-1, j)+\delta\left(S_{1}(i),-\right), & \longleftarrow & \text { deletion } \\
\left.V(i, j-1)+\delta\left(-, S_{2}(j)\right)\right] & \longleftarrow & \text { insertion }
\end{array}
$$

The value of the optimal alignment is given by $V(n, m)$

Like for the computation of the edit distance, we can use a bottom-up method to compute the alignment matrix. The complexity is $O(n m)$ since at each point we perform 3 comparisons, 3 look-up operations and 3 additional operations.

Dynamic Programming Solution

When mismatches are penalized by a constant $-\mu$, indels are penalized by some other constant $-\sigma$ and matches are rewarded with +1 , the recurrence relation is

$$
\begin{array}{ccc}
V(i, j)=\max \left[V(i-1, j-1)-\mu \text { if } v_{i} \neq w_{j},\right. & \longleftarrow & \text { mismatch } \\
V(i-1, j-1)+1 \text { if } v_{i}=w_{j} & \longleftarrow & \text { match } \\
V(i-1, j)-\sigma, & \longleftarrow & \text { deletion } \\
V(i, j-1)-\sigma] & \longleftarrow & \text { insertion }
\end{array}
$$

The value of the optimal alignment is given by $V(n, m)$ which equals \#matches - μ.\#mismatches - σ.\#indels
Note, the LCS problem is the Global Alignment problem with $\mu=0$ and $\sigma=0$
Like for the computation of the edit distance, we can use a bottom-up method to compute the alignment matrix. The complexity is $O(n m)$ since at each point we perform 3 comparisons, 3 look-up operations and 3 additional operations.

Maximum similarity path

- By setting up suitable pointers, once the matrix is computed, we can obtain a trace for the optimal alignment by constructing any path from the cell (n, m) to the cell $(0,0)$.
- Also, the problem can be formulated as finding a maximum weighted path in a weighted acyclic graph similar to one discussed earlier. (In general, computing a longest path in arbitrary graph is NP complete).

Computation time and Storage

- The weights of the edges must correspond to specific values of s for the pair of symbols. The algorithm takes $O(\mathrm{~nm})$ space.
- This is quite expensive if the sequences are large.
- If one were interested only in the value of the alignment and not obtaining a trace, this could easily be done by keeping only the last two rows of the matrix to compute the next row.
- This will need only $O(n+m)$ space. Is it possible to reconstruct an alignment using only linear space?

