
Comparing biological sequences:
sequence alignment

Motivation

The biological motivation for studying this
problem comes from the fact that high
degree of similarity of bimolecular
sequences usually implies significant
structural and functional similarity.
Generally, such comparisons involves
aligning sectionsof the two sequences in a
way that exposes similarities between
them.

Motivation

• The sequence similarity is also relevant in the context of
understanding the molecular basis of evolution.

• It is well known that the closely related organisms have high
similarity between their genomes.

• Study of conserved sequences among the organisms reveal
past speciation and the structure of ancestral family trees and
the role of mutation in the evolution of these trees.

• Studying similarities within the individual organisms in a
species might also reveal whether certain individuals are
prone to inherited diseases.

• There are many other examples from biology that illustrates
the use of sequence similarity.

Alignment Example

• Consider the alignment between two protein sequences v and
w (monkey sematotropin and its precursor in rainbow trout) .

• v: L E P V Q F L R S V F A N S L - V Y G T S Y S

• w: E Y P S Q T L - - I I S N S L M V - R N A - N

• The aligned pairs of symbols are written one above the other.

Symbols in one sequence that is not aligned with symbols in

the other are written opposing the symbol „-‟. For example,

„RS‟ in sequence v constitutes a gap of two symbols. To

maximize similarity of two sequences, we want to find

alignments that have few gaps and align symbols that are

identical or whose functions are highly similar.

Alignment Example

The dual perspective is to consider sequence v evolve into

sequence w and we seek alignments with minimum distance

or intuitively minimum number of evolutionary operations that

converts v to w. In this perspective, an aligned symbol of w is

substituted for its corresponding symbol in v, an unaligned

symbol (that is, aligned with „-‟ symbol) of v is deleted and

an unaligned symbol of w is inserted.

In the example, symbol „E‟ of w is substituted for „L‟ of v,

and the symbols „RS‟ in v constitute a deletion gap. Similarly,

the symbol „M‟ in w constitutes an insertion gap of one

symbol. The symbol „-‟ is also referred to as an „indel‟ standing

for either insertion or deletion.

DNA Sequence Comparison: First Success
Story

• Finding sequence similarities with genes of
known function is a common approach to
infer a newly sequenced gene’s function

• In 1984 Russell Doolittle and colleagues
found similarities between cancer-causing
oncogene (v-sys in Simian Sarcoma Virus) and
normal growth factor (PDGF) gene

Other Examples

• The first successful sequencing of the genome of a living organism in
1995 of the bacterium Haemophilus influenza rd (Fleishmann et al,
1995).

• After that, researchers identified 1743 sites as prospective gene sites.
• In order to determine whether these sites are actually involved in

protein synthesis, the coding regions were translated into amino acid
sequences using the genetic code.

• The resulting amino acid sequences were then compared with a
protein database that contains for each known protein the
corresponding amino acid sequences.

• The search identified about 1007 close matches. Since the protein
database annotated with functions, the close matches allowed coming
up with strong conjectures about the functions of these genes.

• Identifying the similarity between ATP binding ion channels
and the Cystic Fibrosis gene led to a modern hypothesis of CF.

8

Evolution at the DNA level

…ACGGTGCAGTTACCA…

…AC----CAGTCCACCA…

Mutation

SEQUENCE EDITS

REARRANGEMENTS

Deletion

Inversion

Translocation

Duplication

9

Evolutionary Rates

OK

OK

OK

X

X

Still OK?

next generation

Sequence Similarity
In these notes, we will talk about
sequence similarity or alignment of two
sequences. The sequences we are
concerned with are DNA over the
alphabet ∑=(A,C,T,G), RNA over the
alphabet ∑=(A,C,U,G) or amino acid
sequences (20 symbols) making up a
protein molecule.

Goal of Sequence Alignment

• The goal of sequence alignment is to discover
the possible evolution of sequences without
actual knowledge of the evolutionary events.

• Naturally, the alignment with minimum
number of operations involving minimum
energy may be the Nature’s choice. This
transformation, as we will see, soon
corresponds to edit distance between the
sequences.

Alignment of Two Sequences

We will discuss the similarity algorithms with respect to .
DNA , RNA or protein sequences. The three basic
operations that take place in nature:

• A deletion operation, D.

• A replacement or substitution operation, R.

• An insertion operation, I.

Edit Operations

The two operations insertion and deletion are sometimes referred to as
an indel operation when the direction of transformation is not known.

If the two characters are identical, it is called a match.

A simplified model of change in DNA sequence during evolution is to
assume that substitution or indel events might have happened at any
location in the sequence. Such events are also referred to as mutation
of a DNA sequence.

(A replacement or substitution operation can be conceived of a delete
operation followed by an insert operation. Thus the edit distance can be
expressed only in terms of insert and delete operations. But. In the
context of biological operations, substitution must be recognized as a
distinct operation.)

The sequence of edit operations to transform a sequence v to another
sequence w is called the edit transcript

Edit Distance
Levenshtein (1966) introduced edit distance
between two strings as the minimum number of
elementary operations (insertions, deletions, and
substitutions) to transform one string into the
other

d(v,w) = MIN number of elementary operations

to transform v w

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Hamming distance:

d(v, w)=8
Computing Hamming distance

is a trivial task.

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:

d(v, w)=8 d(v, w)=2
Computing Hamming distance Computing edit distance

is a trivial task is a non-trivial task

W = TATATATA-

Just one shift

Make it all line up

V = - ATATATAT

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Edit distance
may compare
i-th letter of v with
j-th letter of w

Edit Distance vs Hamming Distance

V = ATATATAT

W = TATATATA

Hamming distance: Edit distance:

d(v, w)=8 d(v, w)=2
(one insertion and one deletion)

How to find what j goes with what i ???

W = TATATATA

V = - ATATATAT

Hamming distance
always compares
i-th letter of v with
i-th letter of w

Edit distance
may compare
i-th letter of v with
j-th letter of w

Edit Distance: Example

TGCATAT ATCCGAT in 5 steps

TGCATAT (delete last T)

TGCATA (delete last A)

TGCAT (insert A at front)

ATGCAT (substitute C for 3rd G)

ATCCAT (insert G before last A)

ATCCGAT (Done)

Edit Distance: Example (cont’d)

TGCATAT ATCCGAT in 4 steps

-TGCATAT (insert A at front)

ATGCATAT (delete 6th T)

ATGCATA- (substitute G for 5th A)

ATGCGTA (substitute C for 3rd G)

ATCCGAT (Done)

Can it be done in 3 steps???

Alignment

• Given a sequence ATAGCCAT and
assume that a sequence of operations
(R,D,I) have taken place as follows:

R D I

ATAGCCAT ATAGTCAT AAGTC--AT

ATAGTCAT A--AGTCAT AAGTCTAT

 Biologists call these operations “alignment”
and represent them by writing the two
sequences, one over the other.

The Basic Operations

• If a and b are two distinct symbols, then the operations
can be denoted by the ordered pair in any vertical
column of the alignment as

R=(a,b), D=(a,-) and I=(-,b),

where „– „denote a null sequence or character.

• Obviously, (-,-) is a useless operation aligning null
sequence with null sequence.

• Symbols pair that are identical in a vertical column
represents matched symbols and sometime an operation
M (match) is defined for this situation.

Alignment Example

• For this example, the combined effect of the three
operations can be captured by the alignment

ATAGCC-AT
A-AGTCTAT

 In the evolutionary history, the accumulated changes may
obscure the exact sequence of operations.

 E.g., the same final sequence may be obtained by the
alignment that needs 5, rather than 3 operations:

ATAGCCAT-
A-AGTCTAT

Formal Definition: Alignment

• Let v and w be two sequences of length n and

m , respectively , over a finite alphabet ∑. An

alignment maps the strings v and w into strings

v’ and w’ respectively, that may contain indel

(“-”) characters such that

v’= w’

and removal of all indel characters leaves v and

w intact. Let l= length of the alignment

Number of Alignments

• It is clear that . The case l=n+m
occurs when the alignment corresponds to deleting all

characters in v followed by insertion of all characters of w.

• Let f(i,j) denote the number of alignments of one sequence of
i letters with another of j letters. Then, it has been proved

that

• For n=1000, f(1000,1000)= alignments! The number of
elementary particles in the universe is about

, and Avogadro’s number is .

mnlmn),max(

2
1

12)21(),(
 nmnf n

4.76710

8010 2310

Edit Transcript

• A string over the operation alphabet (R,I,D,M)
of length l that transforms v to w is called an
edit transcript.

• For the alignment:

The edit transcript is: RIMDMDMMI which
converts ATCCGAT to TATCATC.

A-TCCGAT-
TAT-C-ATC

General definition of Edit Distance
The notion of a best alignment requires a more

careful definition of some scoring or optimization

criteria. We define a scoring function δ that

assigns a cost to each possible assigned pair.

Thus, if the sequences are over alphabet Σ, then

δ(a,b): cost for substituting or replacing „a’ in v by „b’ in w

δ(a,-): cost of deleting „a’ from v creating a gap in w.

δ(-,b): cost of inserting „b’ in v creating a gap in v

Thus, δ can be specified by a |Σ|+1 by |Σ|+1 table or

matrix of real numbers. The score of an alignment

between sequences v and w is the sum of the costs of

the aligned pairs in it.

Technical comments on edit distance

• Symmetrical: δ(v,w) = δ(w,v)
– Can “reverse the movie”
– Substitution a→b becomes substitution b→a
– Insertion becomes deletion
– Deletion becomes insertion

• “Parsimony” principle often used in
computational biology
– Simplest explanation for an observation
– minimum number of edits = fewest mutations

Optimal Alignment

• Given the sequences and the edit transcripts, it is easy to find the
alignment for the transcript.

• Alignment and edit transcript are equivalent. The transcript explicitly
shows the mutational events and alignment displays the relationship
between the strings.

• An alignment corresponding to the minimum cost score between the
two strings is called an optimal alignment.

• If the score is expressed in terms of number of substitution, insert or
delete operations, then it is called a minimum edit distance
alignment.

• In the similarity version of the problem, one seeks an alignment with
maximum score where the score matrix gives the similarity values
between the pairs of symbols.

Principle of optimality

• In some optimization problems...

• ...components of a globally optimal solution
are themselves globally optimal

• Thus, we can optimize by recursively
optimizing sub-problems

Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

New York

San Francisco

Boston

Atlanta

Denver

3 h

1 h

3 h

5 h

2 h

6 h

• Want fastest time San Francisco to NY, given:

(1) You must fly via Denver (D), Boston (B) or Atlanta (A)

(2) Fastest times from SF to D, B or A, and

(3) Fastest times from D, B or A to NY.

Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

New York

San Francisco

Boston

Atlanta

Denver

3 h

1 h

3 h

5 h

2 h

6 h

• Answer: find minimum of the three possible routes:

– SF to B + B to NY

– SF to D + D to NY

– SF to A + A to NY

• = min (6 + 1, 2 + 3, 5 + 3) = min (7, 5, 8) = 5.

Courtesy : Bob Edgar, UC Berkeley

Principle of optimality

London

San Francisco

Dublin

Paris

New York5 h

• Now want fastest time to London

• Must fly via New York, Dublin or Paris

• Doesn’t matter how we get to NY, already know best time is 5h

• If we solve same problem for Dublin and Paris, can find the answer in the
same way as for NY

Courtesy : Bob Edgar, UC Berkeley

Dynamic Programming

• Principle of optimality holds

• Solves simpler sub-problems

• Remember the results

• Use recursion to solve the next-biggest
problem

Needleman-Wunsch Algorithm* : Dynamic
Programming Formulation

Our problem is: given two sequences v=a1a2…an and

w=b1b2…bm and a scoring function δ, find an alignment

denoting a set of “evolutionary” operations that converts

the sequence v to w with minimum total cost. A graph

theoretic formulation of the problem is of particular

interest. The edit graph Gv,w is an edge-labeled directed

graph. The vertices of the graph are pairs (i,j) where

i є [0,n] and j є [0,m]. Imagine these vertices arranged

in a n+1 by m+1 grid, as shown in the next slide for the

sequences v=ATGTTAT and w=ATCGTAC. The vertex at

locations (0,0) and (n,m) are called source and sink

nodes. The graph has the following edge set:

*Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins.

J Mol Biol 48(3): 443-53.

Edit Graph (contd.)
1. If i є [1,n] and j є [0,m] then, a deletion edge (i-1,j) →(i,j) denoted (ai,-)

2. 1. If i є [0,n] and j є [1,m] then an insertion edge (i,j-1) →(i,j) denoted (-,bj)

3. 1. If i є [1,n] and j є [1,m] then , a substitution edge (i-1,j-1) →(i,j) denoted (ai,bj)

The next slide shows the edit graph for an example.

The deletion edges are vertical and the insertion edges are horizontal.

Let Vi denote the prefix (a1a2..ai) of v (0 ≤ i ≤ n). For i=0, Vi= є (null sequence).Similarly,

let Wj denote the jth prefix of w, that is, (b1b2…bj) . For j=0, Wj= є (null sequence). A

path in the edit graph spells the alignment obtained by concatenating the edge labels

in the path. Thus, a path from the vertex (0,0) to the vertex (i,j) spells an alignment of

Vi and Wj. A different path spells a different alignment. This can be proved as follows:

An alignment between Vi and Wj must end up with one of the aligned pairs (ai,-), (-,bj)

or (ai,bj). Thus the alignment between Vi and Wj must be one of :

1. Alignment between Vi-1 and Wj concatenated with (ai,-)

2. Alignment between Vi and Wj-1 concatenated with (-,bj)

3. Alignment between Vi-1 and Wj-1 concatenated with (ai,bj)

Thus there is a one-to-one correspondence between paths in the edit graph from

vertex (0,0) to vertex (n,m) and alignments of v and w.

i

j

A

A

-

C

T

-

n

m

Cost Model:

Indel=1

Match=0

Subs=2

Alignment as a Path in the Edit Graph

Every path in the edit
graph corresponds to an
alignment:

Computation of Optimal Alignments

The goal is to compute an optimal alignment(s) of v and w. We

assign weights δ(a,b) to an edge if it is labeled (a,b). Here, either

‘a’ or ‘b‟ could be the character „-‟. Thus, the problem reduces to

finding minimum weight path(s) from vertex (0,0) to vertex (n,m)

in the edit graph as weighted by δ. The edit graph Gv,w is a directed

acyclic graph and it needs to be traversed in topological order to

obtain the minimum weight path in a single pass. The possible

orders are row, column or diagonal orders. We will use row order

sweeping left-to-right within a row. The total cost C(i,j) of the

minimum weight path from vertex (0,0) to the vertex (i,j) is given

by equations given in the next slide.

Computation of Optimal Alignments

),(is" score difference" write

}

}),()1,1(),,(),1(),,()1,(min{),(

do to1for

* / vfrom delete * /)0,()0,1()0,({

do to1for

* / wfrominsert * /),()1,0(),0(

do to1for

0)0,0(

mnC

bajiCvjiCwjiCjiC

mj

aiCiC

ni

bjCjC

mj

C

jiij

i

j

The Recurrence Relation

i-1,ji-1,j-1

i,j-1 i,j

C(i,j) = min

C(i-1,j) + δ(vi,-) Delete
C(i,j-1) + δ(-,wj) Insert
C(i-1,j-1) + δ(vi,wj)

Consider a minimum cost edit transcript for C(i,j). If the last operation of this transcript is an
insert I operation, then the alignment must have been at this point (-, wj) corresponding to
the horizontal arrow in the matrix. If the last operation of this transcript is a delete
operation, then the alignment must have been at this point (vi, -) corresponding to the
vertical arrow in the matrix. Otherwise, the computation must have taken the diagonal
arrow in the matrix which might correspond to either a match or a replacement of vi by wj.

v

w

0

1

0 1

n

m

i

j

C(0,0)=0 when i=0 and j=0

C(0,j)=C(0,j-1)+ δ(-.wj) when i=0, j>0

C(i,0)=C(i-1,0)+ δ(vi,-)when i>0, j=0

0

Edit distance matrix M

G E N E

A

P

E

C(APE,GEN)

C(AP,GENE)

C(AP,GEN)

C(AP.GEN) + 0

C(APE.GEN) + 1
(Insert)

C(AP.GENE) + 1 (Delete)

C(APE,GENE) = min

Recursive Procedure

• The recursive procedure is a top-down approach theoretically. That
is, the computation starts at the lower rightmost point. In practical
implementation, it might need an exponential number of calls.

• We have given a bottom-up tabular computation which is more
efficient.

• To compute the value at any point in the matrix, it is sufficient if we
know the minimum cost alignments of its north, north-west and
west neighbors and the pairs of characters from the two sequences
under consideration.

• After computing the 0th row and the 0th column of the matrix (the
minimum edit distance is simply the index of the row or column if
we are only interested in edit distance), we compute the rest of the
matrix one row at a time consecutively with increasing row indices
or one column at a time consecutively with increasing column
indices.

Time Complexity

• Theorem: The dynamic programming
algorithm computes a minimum cost
alignment in time O(nm).

– Proof. The algorithm needs an (n+1)(m+1) table to
be computed. Any particular entry in the table
involves three additions, one character
comparison operation and one three-way
minimum value computation, all requiring O(1)
time. Hence the total time is O(nm).

Time Complexity

• Theorem: Once the dynamic programming table with
pointers has been computed, an optimal cost alignment
can be found taking O(n+m) time.

– Proof. During the construction of the table, the back pointers to
neighboring cells having minimum cost values can be set up
taking O(nm) storage and time. Then a directed path of back
pointers originating from (n,m) to (0,0) , called a trace, can be
constructed taking only O(n+m) time since at each step the path
must extend to north, west or north-west.

Time Complexity

• Theorem: Every trace from (n,m) to (0,0)
corresponds to an optimal alignment in one-
to-one fashion.

– Proof: Every point in the trace represents a
minimum cost alignment from (0,0) to that point.

3 456

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7
a

b

c

d

b a b c a b cnull

0

7

6

5

4

3

2

1

null

c

a

b

0

7

6

5

4

3

2

1 2 1 2 3 4 5 6

1 2 1 2 3 4 5

2 3 42 12 3

3 4 23 3 4 3

4 34 5 44 5

45 45 4 53

4 45

i

j

v

w

v= - a b c c d a b -
w= b a b c - - a b c

v= - a b c c d a b -
w= b a b - c - a b c

Note, the insertion from w is denoted by a horizontal arrow, a deletion from
v by a vertical arrow and a replacement or match is denoted by a diagonal arrow.
For this example, the there are two possible alignments with ‘gaps’ created for indel
operations.

An example

to illustrate

edit

distance

Computation

Indel cost=1

Match=0

Subs.=2

Another Example

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 ↖1 ↖1 2 3 4 5 ↖6

2 2 ↖1 ↖2 ↖2 3 4 ↖4 5

3 3 2 ↖1 2 ↖3 ↖4 ↖5 ↖4

4 4 3 2 ↖1 2 3 4 5

5 5 ↖4 3 2 ↖2 ↖3 ↖3 4

6 6 5 ↖4 ↖3 ↖3 ↖3 ↖4 ↖3

7 7 6 5 ↖4 ↖3 ↖4 ↖4 4

A T C C G A Tє

T

A

T

C

A

T

C

є

Path

d(i,j) A T C C G A T

0 1 2 3 4 5 6 7

0 0

T 1 1

A 2 ↖1

T 3 ↖1

C 4 ↖1 2 3

A 5 ↖3

T 6 ↖3

C 7 4

Alignment: v T A T C _ _ A T C
w _ A T C C G A T _

Similarity as a Path in the Edit Graph: 2-
dimensional coordinates

0 1 2 2 3 4 5 6 7 7
A T _ G T T A T _
A T C G T _ A _ C

0 1 2 3 4 5 5 6 6 7

(0,0) , (1,1) , (2,2), (2,3),
(3,4), (4,5), (5,5), (6,6),
(7,6), (7,7)

- Corresponding path -

Similarity using Alignments

and represent
indels in v and w with
score 0.

represent matches
with score 1.
• The similarity score of
the alignment path is 5.

Two Paths in the Edit Graph having same
similarity score

Path 1
0122345677

v= AT_GTTAT_
w= ATCGT_A_C

0123455667

Path 2
0122345677

v= AT_GTTAT_
w= ATCG_TA_C

0123445667

Operation-Weight Alignment

• With arbitrary weights, the solution will
correspond to a minimum weighted path
between two points. This allows us to define
more complex alignment problems between
two strings.

• We can assign weights based on operation
(I,D,R, or M), called operation-weight
alignment. The minimum cost solution that
we presented based on cost table is also
known alphabet-weight alignment.

