
Vol.4, no .1 . 1988
Pages 1 1 - 1 7

Optimal alignments in linear space

Eugene W.Myers1'2 and Webb Miller2

Abstract

Space, not time, is often the limiting factor when computing
optimal sequence alignments, and a number of recent papers
in the biology literature have proposed space-saving strategies.
However, a 1975 computer science paper by Hirschberg
presented a method that is superior to the new proposals, both
in theory and in practice. The goal of this paper is to give
Hirschberg's idea the visibility it deserves by developing a
linear-space version ofGotoh's algorithm, which accommodates
affine gap penalties. A portable C-software package implement-
ing this algorithm is available on the BIONET free of charge.

Introduction

Consider the following problem. Given sequences A =
a{a2...aM and B = b\b2...bN, find a set of 'evolutionary opera-
tions' that converts A to B and minimizes the sum of the opera-
tions' costs. The allowed operations are (i) replace one symbol
by another, (ii) delete k consecutive symbols, or (iii) insert k
consecutive symbols. In addition, the problem statement re-
quires that every symbol of A must be either replaced or deleted.
Replacement costs are specified by a table, w, where w(a,b)
gives the cost of replacing a by b. Note that a symbol of A
is effectively left unedited if it is replaced by itself at no cost,
i.e. w(a,a) = 0. Two non-negative constants, g and h, specify
an affine function, gap{k) = g + hk, for the cost of a ^-symbol
indel (insertion or deletion). Informally, opening up a gap costs
g and each symbol in the gap costs h.

The problem is often formulated as maximizing the similari-
ty score of an alignment, rather than minimizing the difference
score of a conversion. A bonus a(a,b) is added for every aligned
pair (a,b) and a 'gap penalty' q + rk is subtracted for every
fc-symbol gap. This formulation is converted to a difference
problem by the transformations

w(a,b) = ffmax - a{a,b) for all pairs (a,b)

8 = q
h = r + '/2(Tmax

1 Department of Computer Science. University of Arizona, Tucson, AZ85721.
USA

Department of Computer Science, The Pennsylvania State University, Univer-
sity Park, PA 16802. USA

where amax = maX(a y^a{a,b) (Smith et al., 1981). Thus, to
produce an alignment that maximizes the similarity score, first
apply these transformations and then run the program describ-
ed in this paper with the resulting w, g and h. If the minimum
conversion score is C, then the corresponding maximum align-
ment score is xh(M + iV)crmax — C.

Gotoh (1982) gave an algorithm that solves such problems
in 0(MN) time. If only the minimum cost is desired, then it
is easy to implement the algorithm in 0(/V) space, where N can
be taken as the shorter sequence length. If one also desires a
set of operations attaining the minimum cost, then straightfor-
ward implementations need 0(MN) space. In practice, this space
requirement often limits the method's applicability, and several
papers (Taylor, 1984; Watanabe et al., 1985; Altschul and
Erickson, 1986; Gotoh, 1986, 1987) have presented strategies
that reduce space consumption by constant factors. These papers
fail to note that Hirschberg (1975) showed how to produce an
optima] conversion or alignment in O(M) space. When only a
single optimal alignment of A and B is desired, Hirschberg's
approach is superior to the others. For example, in one
megabyte of memory, our program based on Hirschberg's
method can align two sequences of length 62 500. Altschul and
Erickson (1986) propose keeping 7 bits for each of MN entries,
so the limit for their method is 77V2 < 8 X 106, or N < 1070.
Moreover, any program that packs and unpacks bits or uses
disk storage is doomed to be slow and, probably, non-portable.

O(MN)-space methods permit the construction of all optimal
alignments. However, the number of alignments that attain the
minimum cost is often astronomical, in part because a brute
force enumeration lists many arrangements whose differences
are insignificant to the user. Moreover, when one is searching
for a particular 'biologically meaningful' arrangement, it may
be necessary to consider slightly sub-optimal alignments (Water-
man, 1983; Waterman and Byers, 1985). One alternative to
explicitly constructing all optimal alignments is to modify our
linear-space program to produce 'left-most' and 'right-most'
optimal alignments that delineate the range of possibilities. In
any case, it is important to understand that a single optimal align-
ment can be found in far less space than is needed to record
'traceback' information for finding all optimal alignments.

Hirschberg's original presentation treats a simpler alignment
problem, known as the longest common subsequence problem,
where w(a,b) = 1 if a ^ b, w(a,a) = 0, and gap{k) = k.
However, the approach is quite general. To the best of our

© IRL Press Limiled, Oxford, England 11

E.W.Myers and W.Miller

knowledge, any sequence comparison algorithm whose 'cost-
only' version runs in O(N) space can be adapted to produce
an optimal alignment in O(N) space. For example, Myers (1986)
accomplished this for a 'greedy' alignment algorithm that is
quite different from the traditional dynamic programming ap-
proach. Miller and Myers (1988) applied Hirschberg's techni-
que to a concave gap penalty algorithm that subsumes Gotoh's
algorithm as a special case.

In this note we apply Hirschberg's technique to Gotoh's
algorithm. Limiting consideration to a relatively simple method
yields a simple and novel development that we hope will bring
Hirschberg's idea to a wider audience. Moreover, for affine
indel costs, the more general concave-weights software (Miller
and Myers, 1988) runs 3.0 times slower and uses 3.5 times
more space than the program described in this paper.

System and methods

C software implementing the algorithm was written and tested
on a Vax 11/780 running 4.3 BSD Unix. The program is port-
able: setting an appropriate compilation constant adapts the soft-
ware to a machine with a different memory capacity. The only
requirement is an ANSI-standard C compiler and accompany-
ing standard I/O library.

The Algorithm

Computing the cost in linear space

Let Aj denote the /-symbol prefix a,a2-••«, of A and let B,
denote b\b2...bj. Define

QiJ) = minimum cost of a conversion of A,- to Bj

D(iJ) = minimum cost of a conversion of /), to B that deletes a,-

l(i,j) = minimum cost of a conversion of A/ to B. that inserts £>•

Note that D(i,j) is properly defined only when / > 0, and /(/,/)
only fory > 0. Gotoh (1982) showed how to compute the C,
D and / matrices in 0{MN) time. Below we present Gotoh's
method, where we have treated the boundary conditions careful-
ly by defining D(0,j) and /(/,0) appropriately.

The values C(iJ) satisfy the recurrence relations:

QiJ) =

min\D(

gap(j)

gap(i)

0

niahbj)\ if i > Oand; > 0

if / = 0 and j > 0

if i > 0 and; = 0 [*]

if / = 0 and j = 0

For ij > 0, an optimal conversion of A-, to Bj ends with either
(i) a delete, (ii) an insert or (iii) the replacement of a, by bj.
Thus, the first line above follows readily. Fory > 0, an op-
timal conversion of Ao (the empty sequence) to Bj must insert

ally symbols, so C(0,j) = gap(j) and the second line follows.
The remaining two lines follow similarly. In the recurrence,
and in Figures 1A and IB, certain lines are starred because
they are subsequently modified.

As noted earlier, we are free to pick a definition of D(0,J).
It is convenient to set D(0,j) = C(0,j) + g fory > 0. More-
over, we need not compute D(i,0) for / > 0, since other quan-
tities do not depend on these values. Then

(m\n\D(i-\,j). C(i-l.j) + g\ + h if i > 0 and; > 0

~[C(0,J) + g if / = 0 and; > 0

If / > 1, then extending an optimal conversion of /4,_, to Bj
so that it deletes a, adds g 4- h to its cost, or h if it ends by
deleting a,-_,. This reasoning confirms the first line for /' >
1. For the case where i = 1, an optimal conversion of At to
Bj ending with a delete must convert Ao to Bj and then delete
a\. Thus, D(l,j) = C(0,j) + gap{\), which is exactly the
assignment implied by the recurrence because D(0,j) = C(0,/)

+ g-
/ is handled like D. Thus, if we define /(/,0) = C(/,0) 4-

g for / > 0 and ignore 1(0, j) fory > 0, then

/ /,;-D, Qij-\) +

+ g

+ h if / > 0 and ;' > 0

if / > 0 and ; = 0

The recurrence relations of C, D and / lead to the algorithm
of Figure 1 A, which uses a variable t that runs through the se-
quence of values gap(l), gap(2),

Values in the (th rows of C and D depend only on values
in rows / and i—l, while values in the ;th row of/depend only
on values in row /. This means that a handful of row-sized vec-
tors are adequate to compute successive rows. In fact, with a
little care, two vectors suffice: if CC and DD contain the (/'-1)st
rows of C and D, then the /th rows may be computed by over-
writing values for the (/— l)st rows in a left-to-right sweep with
the aid of three scalars, e, c and s. Specifically, if ij > 0,
then immediately before C(iJ), D(i,j) and /(/,/) are assigned
to CC(j), DD(j) and e respectively, we have:

CC(k) =

DD(A-) =

(/,*) if k < j
(/-I.A) if * > j

(i.k) if k < j
(i-l.k) if k > ;

e = /(/,;-1)
c = QiJ-I)

s = Qi-lJ-\)

With this loop-invariant condition in mind, the O(N) space cost-
only variation of Figure IB is readily understood.

Example J. Let w(a,b) = 1 if a =£ b, w(a,a) = 0 and gap(k)
= 2 4- 0.5k. The unique optimal conversion of agtac to aag

12

Optimal alignments in linear space

A arrays C[0..M,0.Jv], D[0.JW,0.JV], /[0..M.0JV]
scalar /

C(0,0)<-0

for y <- 1 to N do

{ C(0J) < - (< - / + h

<-t + g

for ; <- 1 to M do

{
C(i,0) «- r «- f + /i
/(i,0) <- r +g
for y <- 1 to JV do

{ /(«.;) <- min {/(i,y-l), C(,,y-1) + « } + h
£>(;,;)<-min {/>(<-!,y). C(i-l.y) + g } +h

C(i,j) <- min {D(i,j),I(iJ), C(.--l.y-l)

B vectors CC[0.JV], DD [O.JV]

scalars e, c, s, /

CC(0) <- 0

for y <- 1 to N do

{ c e o) < - « < - / + / >
DD(j)<r- I +g

}

[*] » < - *
for i <— 1 to Af do

(s <- CC(0)

CC(0) « - c « - » « - r + A

for y «— 1 to TV do

{ e *— min {e, c + g } + h

DD(J) <- min {DD(j), CC(j) + g } + h
c <— min [DD(j), e, s + w(a;,bj)}
s <- CCU)
CC(J) *- c

write "cost is" CQA.N)

Fig. I. (A) Gotoh's algorithm.

deletes gt and replaces c by g, for a total cost of 4. When ap-
plied to these two sequences, the algorithm of Figure 1A com-
putes the values in Table I. Entries denoted '*' are undefined.

In place of the three arrays, the algorithm of Figure IB keeps
only a vector for C, a vector for D and scalars for I(iJ— 1),
C(i,j- 1) and C(i—lJ—l). At the top of the inner loop when
; = 5 andy = 2, the contents of CC and DD are the values
enclosed in boxes in Table I, while the contents of e, c and
s are circled.

Delivering a conversion in linear space

Hirschberg (1975) presented a recursive divide-and-conquer
algorithm for delivering a longest common subsequence in linear
space. Generalizing his specific treatment, the central idea is
to find the 'midpoint' of an optimal conversion using a 'for-
ward' and a 'reverse' application of the linear space cost-only
variation. Then an optimal conversion can be delivered by recur-
sively determining optimal conversions on both sides of this
midpoint.

Suppose M > 1 and A/ > 0. Let i* = [M/2\, so row /* pro-
perly bisects the C matrix. In a forward phase, the linear space
cost-only algorithm is applied to the strings Ap and B, resulting
in vectors CC and DD satisfying:

CC(j) = minimum cosl of a conversion of /!,» to B-

DD(j) = minimum cost of a conversion of Ait to Bj that ends with a delete

Fig. 1.

Table I
and aag

C

0.0
2.5
3.0
3.5
4.0
4.5 „

ccC

(B)

write

O(N) space

Arrays

2.5
0.0
2.5

(3

>

3.0
2.5
1.0
3.5
3.0

'4.5
s

cost is CC (AT)

cost-only version.

C, D and / computed by Figure

3.5
3.0
2.5
2.0
4.5
4.0

D

* 4.5 5.0
* 5.0 5.5
* 2.5 5.0
* 3.0 3.5
* 3.5 / 4 . 0
* 4.0 /i.5
DD

5.5
6.0
5.5
5.0
4.5
5.0

1A for

1

4.5
5.0
5.5

] 6.0
6.5

sequences agtac

5.0
5.5
6.0
6.5

^o)
e~2

*
2.5
5.0
5.5
6.0
6.5

*
3.0
3.5
6.0
5.5
7.0

Let rev(A) denote the reverse of A, i.e. aM aM^x...ah and let
A]denote the suffix ai+]ai+2...aM of A. (Recall that A, =
a]a2...ai.) Define rev(B) and Bj similarly. Note that
rev(rev(A)M_j) = Aj. In a reverse phase, the linear space cost-
only algorithm is applied to rev(/i)M_,* and rev(B), with a new
pair of vectors, RR and 55, filling the roles of CC and DD.
Upon completion, RR(j) is the minimum cost of a conversion
of rev{A)M_j* to rev(B)j and SS(J) is the minimum cost of a
conversion of rev(/l)M_,» to rev(B)j that ends with a delete. But
the reverse of a conversion of rev(A)M_t to rev(B)N_j is a con-
version of A]to BJ. Thus, the resulting vectors satisfy:

RR(N-j) = minimum cost of a conversion of Af» to BJ

SS(N—J) = minimum cost of a conversion of Af» to Bjthat begins with a delete

Recall that the algorithm of Figure IB does not compute DD(0)

13

E.W.Myers and W.Miller

and 55(0), which are needed below. This is easily rectified by
observing that DD(0) = CC(0) and 55(0) = RR(0).

Given the vectors above, the midpoint of an optimal conver-
sion can be found using the following observation. For any con-
version of A to B, there exists ay € [0,/V] such that the
conversion is the concatenation of either (1) a conversion of
Aj* to Bj and a conversion of Af* to Bjor (2) a conversion of
Aj* to Bj ending with a delete and a conversion of Af* to Bj
beginning with a delete, in which case the deletions bracketing
the concatenation point must be coalesced into a single opera-
tion. For fixedy, the minimum cost of a type 1 conversion with
midpoint (i*J) is CC(j)+RR(N-j), i.e. the minimum cost of
a conversion of A/* to B. plus the minimum cost of a conver-
sion of A'* to Bj. Similarly, the minimum cost of a type 2 con-
version is DD(j) + SS(N—J) - g, where g is subtracted because
bracketing deletes are coalesced into a single operation, i.e.
gap{x+y) = gap(x) + gapiy) - g. Thus, the optimal cost of
converting A to B is

min,e ,0.̂ 1 min(CC(y) + RR(N-j),DD(J) 4- SS(N-j) -g) \

If the minimum is attained aty*, then (i*J*) is an optimal mid-
point for the problem. When several values attain the minimum,
the method of breaking ties determines whether the 'left-most'
or 'right-most' optimal alignment is selected.

Given an optimal midpoint (i*J*), an optimal conversion can
then be delivered by (i) recursively finding an optimal conver-
sion of Aj* to Bj*. (ii) recursively finding an optimal conver-
sion of A-* to Bj,, and (iii) concatenating these two partial
conversions, being sure to coalesce bracketing deletes in the
type 2 case. The splitting of the comparison problem for A and
B into two smaller problems is pictured in Figure 2. The outer
rectangle is the M X Af C-matrix for A and B. The singly hat-
ched rectangles depict the sub-problems whose solutions are
to be concatenated, and the doubly hatched rectangles depict
sub-sub-problems. The dashed line indicates the eventual op-
timal alignment.

With type 2 midpoints, one must further constrain the first
recursive call to conversions that end with a delete, and the
second to conversions that begin with a delete. For example,
the second sub-problem may have a script not beginning with
a delete that is better when considered in isolation. However,
since an initial delete is not charged the gap initialization penalty
g for type 2 midpoints, a conversion beginning with a delete
is actually superior when concatenated with the conversion for
the first sub-problem. Considering sub-sub-problems, it
becomes apparent that, in general, a recursive call may be re-
quired to consider only conversions that begin with, end with,
or both begin and end with a delete.

The most elegant solution for type 2 midpoints is to split the
problem into three parts: (i) an optimal conversion of /!,•*_ i to
Bj*, where final deletes are not charged the gap initialization
penalty g, (ii) deletion of a,rfj,«+|, and (iii) an optimal conver-

Fig. 2. Splitting the problem into sub-problems.

sion of Aj*+] to Bj*, where initial deletes are not charged g.
For a cost-only problem where initial deletes are not charged
for gap initialization, it suffices to simply subtract g from the
starred line in the recurrence for C given in the previous sub-
section. This is equivalent to setting / to 0, as opposed to g,
in the starred lines of Figure 1A and B. Thus, in the forward
phase, CC and DD are computed with this slight alteration if
initial gaps are not to be penalized g. Because the latter half
of a conversion is computed in the reverse phase, it suffices
to use the same alteration when computing RR and 55 on the
reversed sequences in order to not penalize final gaps. To im-
plement these conditional alterations, the algorithm diff in Figure
3 has parameters tb and te that are used to initialize t in the
starred lines for the forward and reverse phases. The caller
passes g if initial/final deletes are to be charged for gap initializa-
tion, and 0 otherwise.

The recursion's boundary cases, N = 0 and M < 1, are
handled by exhaustive examination of all possible optimal con-
versions. When N = 0, the only possibility is to delete A. When
M = 0, the only possibility is to insert B. When M = 1, an
optimal conversion is the least costly of (i) inserting B and
deleting A = a, or (ii) inserting By_|, replacing a, by bJt and
inserting BJ, for some j 6 [1 ,N]. Conversion (i) costs gap{ 1)
+ gap{N) if initial and final deletes are charged a gap initializa-
tion penalty, but costs only h + gap{N) otherwise. Also, the
order of the insertion and deletion must be reversed if only in-
itial deletes are not charged a gap penalty.

Figure 3 outlines a linear space alignment algorithm that
writes an optimal conversion. To simplify the presentation,

14

Optimal alignments in linear space

shared vectors CC[O.JVf], DD [O.M], RR [O.JV], 55[0.JV]

procedure DWF(A,B,M,N)
{ diff(A,B.M,N,g,g)}

recursive procedure diff(A ,B,M,N,tb,te)

(UN =0then
{ if M > 0 then write "delete A " }

else if M = 0 then
write "insert B"

else if M = 1 then

write conversion of cost min ((min(tb ,te}t-h yi-gap {N), min {gap (j-1 (<» I A}+gap(N-j))}

else

{ i* <- |M/2J
Compute CC and I>D in a forward phase, replacing [*] of Fig. IB with "t *-tb ".
Compute RR and 55 in a reverse phase, replacing [*] of Fig. IB with "t<-te".
Find j*e[0,N] minimizing min(CC(j)+RR(N-j),DD(j) + SS(N-j)-g)
if («*,/•) is type 1 then

>,'*, j*.ib,g)
J.M-i*,N-j*,g,te)

else
(&B(Ai._l,Br ,i* -l,f,tb,0)

write "delete a^a^+i"
1;I+1 ,BJ.,M -i* - l.N-j*,O,te)

Fig. 3. Skeleton of Gotoh's algorithm in O(N) space.

delete operations bracketing a type 2 midpoint are not coalesc-
ed. Our software package rectifies this deficiency by buffering
the last operation to be written and coalescing it with the next
as necessary.

Example 2. Given the cost and sequences of example 1, the
algorithm of Figure 3 first applies diff to sequences agtac and
aag, where M = 4, N = 3 and /* = 2. The computed vectors
are

CC: 3.0 2.5 1.0 2.5

RR: 3.5 4.0 3.5 2.0

DD: 3.0 2.5 5.0 5.5

SS: 3.5 4.0 3.5 6.0

There are eight possible ways to divide the problem, i.e. two
types of midpoints for eachy E [0,N]. The corresponding costs

are

7=0 j=\ j=2 7=3

type 1 midpoint 5.0 6.0 5.0 6.0

type 2 midpoint 7.0 4.0 7.0 7.0

The optimum choice from among the eight possibilities is
a type 2 midpoint at j * = 1. This corresponds to combining
(i) a minimum-cost conversion of A,* = ag to B, = a that ends

with a delete and (ii) a minimum-cost conversion of AJ* = tac
to Bj = ag that begins with a delete. Combining the two
scripts and adjusting the sum of their costs to account for the
fact that only one gap initialization penalty is required, gives
the cost DD(\) + 55(2) - 2 = 4.

The problem is thus decomposed into the problems of op-
timally converting At = a to Bt = a, deleting a2a3 = gt, and
optimally converting A\ = ac to B] = ag. These two required
optimal subconversions are generated by recursive calls to diff.
For the first call, M = N = 1 and the final 'boundary case'
of diff produces the script of cost gap(0) + w(a,a) + gap(0)
= 0, i.e. replacement of a by a. The second call divides the
conversion of ac to ag into a conversion of a to a followed
by a conversion of a to g, each of which is generated by a third-
level call to diff with M = N = 1.

Performance. The algorithm uses O{N + log M) space: O(N)
for the globally shared vectors and O(log M) for the implicit
activation stack needed for no more than [log M]+1 levels of
recursion. The time required is approximately twice that for
the cost-only version. There exist constants IT and T such that
the time taken in the body of diff for an M x N problem is
not more than ir(M + N) for the boundary cases and TMN for
the recursive cases. It follows by induction that the total time

15

E.W.Myers and W.Miller

taken in the worst case, including recursive calls, is not more
than (2 - \IM)TMN + ir(M + N). This result can be understood
informally by examining Figure 2. The body of the top-level
call takes TMN time, the total time spent in the bodies of the
two sub-problems is VirMN, the total time spent in the bodies
of the four sub-sub-problems is 'ATMN, and so on. Thus, the
cumulative time is (1 + Vi + '4 +...)TMN < 2TMN. A similar
induction shows that the total time taken in expectation is
(2—2/M)TMN + ir(M + N). The small difference between ex-
pected and worst-case time explains the surprisingly uniform
time performance observed in practice. That is, for sequences
of a given length, the algorithm's running time is virtually in-
dependent of the specific characters in the sequences.

Implementation

Our software package's dominate storage requirements are (i)
4yV words for the vectors CC, DD, RR and 55, (ii) M + N
words for an optimal conversion, (iii) 16 kilowords for the table,
w, of replacement costs, and (iv) M + N bytes for the sequences
A and B. Only the storage for the vectors is part of the package,
per se. The other three storage components are declared in the
user program and are largely avoidable. Operations converting
A to B could be printed immediately, as in Figure 3. We store
them to provide a more flexible user interface. The 128 X 128
table w need only be a X a, where a is the alphabet size. A
and B could be compressed; with DNA sequences, for exam-
ple, only 2(M + N) bits are necessary.

The following table gives maximum lengths for sequences
that can be aligned in a given amount of memory. The linear-
space algorithm is compared with the TMN-bh approach of
Altschul and Erickson (1986). Values are tabulated both without
and with M + N words for storing the generated operations,
and we assume that 1 word = 4 bytes = 32 bits. In practice,
figures for the linear-space algorithm are lowered slightly by
the <?(log M) space for the recursion stack (Table II).

The software's time requirement is modest. Our Vax 11/780
running 4.3 BSD Unix needs an average of 153MN micro-
seconds to align sequences of lengths M and N. Statistics that
are easier to interpret, and relatively machine-insensitive, can
be determined by comparison with a 'standard' program. We
chose the following straightforward implementation of the
classic dynamic programming algorithm for the case where
gap{k) = hk (Wagner and Fischer, 1974). To facilitate corn-
Table II.

Available memory
(in bytes)

Linear space
(ops not stored)

Linear space
(ops stored)

Altschul and
Erickson

64 K
128 K
256 K
1000 K

4000
8000

16 000
62 500

2666
5333

10 666
41 666

270
382
540
1069

parative testing, the procedure arguments match the software
interface described below. Our linear-space software's execu-
tion time exceeds that of the simple program by the factor 1.84.

ftiefine NMAX 400

float C[NMAX + I][NMAX + 1);

float DIFF(A.B.M.N.W.G.H.S) char A(]. B[); int M. N; float W||| 128], G. H: int S||:

| register int i. j :

register float c. d. e;

C|0||0| = 0.:

for (j = 1: j < = N; j + +)

C|O]|j) = C[O](j-l] + H;

for (i = I; i < = M: i + +)

I C[i][0] = C[i-l][0] + H;

for (j = I; j < = N; j + +)

I c = C[i - I] [j - I] + W|A[i]]|B|jl|;

d = C[i-I]LJ] + H;

c = C[i][j-1] + H:

if (d < c) c = d;

if (e < c) c = e;

C|i][j] = c;

I

I

return C|MJ[N];

The software package consists of three C files. The file
linear, h gives complete interface information and several global
definitions, linear.c contains the implementation, per se, to-
gether with a procedure to display alignments, and sample.c
provides a sample user program. Following standard C con-
ventions, the user program should include linear, h and should
be compiled and linked with linear, c. The remainder of this
section describes the interface.

#define NMAX < integer>
NMAX is a compilation constant giving the maximum input
sequence length. It is to be adjusted according to available
memory.

float DIFF(A,B,M,N,W,G,H,S)
int M,N; char A[], B[]; float W[][128], G,H; int S[];

DIFFcompares sequence A[1...M] with sequence B[l...N]
and returns the minimum conversion cost. Costs are deter-
mined by the parameters W, G and H. H^128][128] is an
array giving replacement costs for each pair of ASCII
characters, e.g. H^'a'H'fe'] is the cost of replacing 'a' by
'b\ Be sure to set H^'a'H'a'] to zero if exact matches are
to accrue no cost. The cost of a ^-symbol indel is the affine
function G + H k.
DIFF also has the side-effect of placing an encoding of an
optimal conversion in an integer array S[0...M+N-1] sup-
plied by the caller. The sequence of integers 5[0], 5[1], S[2],

16

Optimal alignments in linear space

... gives the editing operations in a left-to-right conversion
where integers encode operations as follows:

0 = > replace
—k=> delete k symbols
+k = > insert k symbols.

The script is guaranteed to have the properties: (i) inserts
are never followed by inserts; (ii) deletes are never follow-
ed by deletes or inserts; (iii) a replacement followed by a
&-indel is always preferred to a /:-indel followed by a replace-
ment if both have the same cost.
DIFF returns —1.0 if NMAX is not large enough.

int DISPLAY(A,B,M,N,S) int M,N; char A[], B[]; int S[];
DISPLA Y places on the standard output a display of the align-
ment implied by the conversion S computed in the call
DIFF(A,B,M,N,?,?,?,S). For example:

ggcgt (I cat accggcgagga ct agagat cccagat gcagcct cgat a
I . M M II M i l l M i l l _ _ I ! I ! t M i l l

"

g cgt I cataaccggcgaggt acct agacal t cccagagc gcct cgat a

50

taggaagaa tc agcaacgal cggcat g

Ml'
tggacagaaatcgagcaacga cgac tg

Discussion

This paper develops a linear-space algorithm for producing opti-
mal sequence alignments with affine gap costs. It is superior
in theory and practice to other approaches. By avoiding the use
of secondary storage and bit operations, it yields fast and por-
table software.

The underlying divide-and-conquer strategy, taken from a
1975 paper of Hirschberg, is quite general. Many, perhaps all,
cost-only alignment algorithms yield an alignment-delivering
variation with identical asymptotic time and space complexities.
When applied to certain other alignment algorithms, the space
requirement becomes sublinear (Myers, 1986), linear (Wagner
and Fischer, 1974; Masek and Paterson, 1980), or linear in
expectation (Miller and Myers, 1988). Occasionally, the varia-
tion is not space-efficient, as with the method of Waterman et
al. (1976), whose cost-only version needs 0{MN) space.

In practice, employing the strategy at most doubles the time
and space requirements of the cost-only version. Indeed, with
greedy methods (Fickett, 1984; Ukkonen, 1985, Section 3;
Miller and Myers, 1985; Myers, 1986), the midpoint computa-
tion is twice as efficient as a one-pass cost-only computation,
implying that the time overhead of the divide-and-conquer ap-
proach is negligible.

Acknowledgments

Stephen Altschul, David Lipman, and the referee made suggestions that im-
proved the presentation of this paper. The work of E.W.M. was supported in
part by NSF Grant DCR-8511455.

References

Altschul,S. and Erickson.B.W. (1986) Optimal sequence alignments using af-
fine gap costs. Bull. Math. Biol., 48. 606-616.

FicketU.W. (1984) Fast optimal alignment. Nucleic Acids Res.. 12. 175-179.
Gotoh.O. (1982) An improved algorithm for matching biological sequences.

J. Mol. Biol.. 162. 705-708.
Gotoh.O. (1986) Alignment of three biological sequences with an efficient

traceback procedure. J. Vieor. Biol.. 121, 327-337.
Gotoh.O. (1987) Pattern matching of biological sequences with limited storage.

CABIOS. 3, 17-20.
Hirschberg,D.S. (1975) A linear space algorithm for computing longest com-

mon subsequences. Commun. Assoc. Comput. Mach.. 18, 341-343.
Masek,W.J. and Paterson.M.S. (1980) A faster algorithm for computing string-

edit distances. J. Comput. System Sci., 20, 18—31.
Miller,W. and Myers,E.W. (1985) A file comparison program. Software—

Practice and Experience, 15, 1025—1040.
Miller.W. and Myers,E.W. (1988) Sequence comparison with concave weighing

functions. Bull. Math. Biol., in press.
Myers,E.W. (1986) An 0(ND) difference algorithm and its variations.

Algorithmica, 1, 251-266.
Smith.T.F., Waterman,M.S. and Fitch,W.M. (1981) Comparative biosequence

metrics. J. Mol. Evoi, 18, 38-46.
Taylor,P. (1984) A fast homology program for aligning biological sequences.

Nucleic Acids Res., 12, 447-455.
Ukkonen,E. (1985) Algorithms for approximate string matching. Information

and Control, 64, 100-118.
Wagner,R.A. and Fischer.M.J. (1974) The string-to-string correction problem.

J. ACM, 21, 168-173.
Watanabe.K., Urano.Y. and Tamaoki.T. (1985) Optimal alignments of biological

sequences on a microcomputer. CABIOS, 1, 83 — 87.
Waterman.M.S. (1983) Sequence alignment in the neighborhood of the optimum.

Proc. Natl. Acad. Sci. USA, 80, 3123-3124.
Waterman.M.S. and Byers,T.H. (1985) A dynamic programming algorithm

to find all solutions in a neighborhood of the optimum. Math. Biosciences,
77, 179-188.

Waterman,M.S. Smith.T.F. and Beyer.W.A. (1976) Some biological sequence
metrics. Adv. Math.. 20. 367-387.

Received on October 14, 1987; accepted on December 19. 1987

Circle No. 8 on Reader Enquiry Card

17

