
An Efficient Algorithm for the LCS
Problem

Longest Common Subsequence Problem

• The longest common subsequence problem, also called
the LCS problem is a special case of the similarity
problem.

• Definition: Given a string S of length n , a subsequence is
a string such that
for some .

• A substring is a subset of S which are located
contiguously but in a subsequence the characters are not
necessarily contiguous but they are in order from left to
right.

• Thus a substring is a subsequence but the converse is not
true.

)()....()(21 kiSiSiS kiiii  3211

nk 

Longest Common Subsequence

• Definition: The longest common
subsequence or LCS of two strings S1 and S2
is the longest subsequence common between
two strings.

S1 : A -- A T -- G G C C -- A T A n=10
S2: A T A T A A T T C T A T -- m=12

The LCS is AATCAT. The length of the LCS is 6.
The solution is not unique for all pair of strings. Consider the pair (ATTA, ATAT).
The solutions are ATT, ATA. In general, for arbitrary pair of strings, there may
exist many solutions.

LCS Problem

• The LCS can be found by dynamic programming
formulation. Since it is using the general dynamic
programming algorithm its complexity is O(nm) .

• A longest substring problem, on the other hand has a
O(n+m) solution. Subsequences are much more complex
than substrings.

• Can we do better for the LCS problem? We will see …

LCS for S1 and S2

• The optimal alignment is shown above. Note the alignment shows
three insert (dark), one delete (green) and three substitution or
replacement operations (blue), which gives an edit distance of 7.

• But, the 3 replacement operations can be realized by 3 insert and 3
delete operations because a replacement is equivalent to first
delete the character and then insert a character in its place like:

S1 : A -- A T -- G G C C -- A T A n=10
S2: A T A T A A T T C T A T -- m=12

G -- G -- C --
-- A -- T -- T

Edit Distance and LCS are related

• if we give a cost of 2 for replace operation and
cost of 1 for both insert and delete operations,
the minimum edit distance D can be
computed in terms of the length L of LCS as:

• For the above example, n=10, m=12, L=6. So,
D=10 (6 insert and 4 delete).

LnmD 2

Direct Computation of LCS by Dynamic
Programming

• More efficient although the asymptotic complexity remains
the same, O(nm).

• Let L denote The equations are given below without proof
(which is simple).

• Again, if we leave suitable back pointers in the matrix,
trace(s) can be derived for the LCS.

)()(..)]........,1(),1,(max[),(

)()(................).........1,1(1),(

0),0(

0)0,(

0)0,0(

21

21

jSiSjiLjiLjiL

jSiSjiLjiL

jL

iL

L











Edit Graph for LCS Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0

A T C T G A T C
0 1 2 3 4 5 6 7 8

є

T G C A T A C
A T C T G A T C

T G C A T A C
A T C T G A T C

є

- T G C A T - A – C
A T - C - T G A T C

- - - T G C A T A C
A T C T G - A T - C

D=n+m-2L
D=7+8-2*5=5

A Faster Algorithm for LCS

• An algorithm that is asymptotically better than O(nm) for
determining LCS.

• Implies that for special cases of edit distance, there exist
more efficient algorithm.

• Definition:
– Let π be a set of n integers, not necessarily distinct.

• Definition:
– An increasing subsequence(IS) of π is a subsequence of π whose

values are strictly increasing from left to right.

• Example: π=(5,3,4,4, 9,6,2,1,8,7,10). IS=(3,4,6,8,10),
(5,9,10)

• Definition:

– A longest increasing subsequence(LIS) of π is an IS
π of maximum length.

• Definition:

– A decreasing subsequence (DS) of π is a non-
increasing subsequence f π from left to right.

• Example: DS=(5,4,4,3,2,1).

• Definition:
– A cover is a set of disjoint DS of π that covers or

contains all elements of π. The size of the cover c
equals the number of DS in the cover.

• Example: π=(5,3,4,9,6,2,1,8,7) Cover:{
(5,3,2,1),(4),(9,6),(8,7)}. c=#of DS=4.

• Definition:
– A smallest cover (SC) is a cover with a minimum

value of c.

Determine LIS and SC simultaneously in
O(nlogn)

• Lemma:

– If I is an IS of π with length equal to the size of a
cover C of π, then I is a LIS of π and C is the
smallest cover of size c.

Proof

• If I is an increasing sequence, it cannot contain more than one element
from a decreasing sequence.

• This means that no increasing subsequence can have size more than
the size of any cover C, that is, if

a maximum of one element from each can participate in any increasing
sequence.

• Thus, an IS derived from this decomposition can have a maximum
length of |C |=c. Conversely, C must be the smallest. If not, let c’ be the
length of a cover C’ such that |C’|=< c i.e., if we derive IS from C, it
must contain more than one element from one of the decreasing
sequence of C’, which is not possible. Hence C has to be of smallest
size.

cCCCC 21

Construction of a cover

• Greedy algorithm to derive a cover:

– Starting from the left of π, examine each
successive number in π.

– Append the current number at the left-most
subsequence derived so far if it is possible do that
maintaining the decreasing sequence property.

– If not start a new decreasing subsequence
beginning with the current element.

– Proceed until π is exhausted.

Example

• π=(5,3,4,9,6,2,1,8,7,10)

• D1=(5,3,2,1), D2=(4), D3=(9,6), D4=(8,7),
D4=(10)

• The algorithm has O (n2) complexity. We will
present an O (n logn) algorithm.

An Efficient Algorithm for Constructing the
Cover

• We use a data structure which is a list containing the last
number of each of the decreasing sequence that is being
constructed.

• The list is always sorted in increasing order. An identifier
indicating which list the number belongs to also included.

Procedure Decreasing Sequence Cover

Input: π= , the list of input numbers.

Output: the set of decreasing sequences Di constituting
the cover.

).........,(,21 nxxx

O(n logn) Algorithm

• Initialize: i←1; Di=(x1); L=(x1, i) ; j←1;
• For i=2 to n do

– Search the x-fields of L to find the first x-value such that
xi < x. ….takes O(logn) time.

– If such a value exists, then insert x at the end in the list Di
and set xi←x in L… This step takes constant time.

– If such a value does not exist in L, then set j←j+1. insert in
L a new element (x,j) and start a new decreasing
sequence Dj=(x)

End

• Lemma:

– At any point in the execution of the algorithm the list L is sorted
in increasing order with respect to x-values as well as with
respect to identifier value.

• In fact two separate lists will be better from practical
implementation point of view.

• Theorem:

– The greedy cover can be constructed taking O(nlogn) time. A
longest increasing sequence and a smallest cover thus can be
constructed using O(nlogn) time.

Example: π=(5,3,4,9,6,2,1,8,7,10)
i=1 x1=5 L={(5,1)} D1=(5)

2 3 {(3,1)} (5,3)
3 4 {(3,1),(4,2)} (5,3) D2=(4)
4 9 {(3,1),(4,2),(9,3)} (5,3) (4) D3=(9)
5 6 {(3,1),(4,2),(6,3)} (5,3) (4) (9,6)
6 2 {(2,1),(4,2),(6,3) (5,3,2) (4) (9,6)
7 1 {(1,1),(4,2),(6,3)} (5,3,2,1) (4) (9,6)
8 8 {(1,1),(4,2),(6,3),(8,4)} (5,3,2,1) (4) (9,6) D4=(8)
9 7 {(1,1),(4,2),(6,3),(7,4)} (5,3,2,1) (4) (9,6) D4=(8,7)

10 10 {(1,1),(4,2),(6,3),(7,4),(10,5)} (5,3,2,1) (4) (9,6) D4=(8,7) D5=(10)

The x-component of the list, if separated, will look like
the following during execution:
(5),(3),(3,4), (3,4,9), (3,4,6), (2,4,6),(1,4,6), (1,4,6,8),
(1,4,6,8),(1,4,6,7), (1,4,6,7,10)

Reduction of LIS problem to LCS problem

• Definition:

– Given sequences S1 and S2, let r(i) be the number
of occurrence of the ith character of S1 in S2.

(position index in sequence S2:) 1 2 3 4 5 6
Example:S1=a b a c x and S2= b a a b c a
Then, r(1)=3, r(2)=2, r(3)=3, r(4)=1, r(5)=0 .

Definition: list(x)

• Definition:

– for each distinct character x in S1, define list(x) to
be the positions of x in S2 in decreasing order.

• Example: list(a)= (6,3,2); list(b)=(4,1),
list(c)=(5), list(x)=φ (empty sequence).

Definition: Π (S1,S2)

• Definition: Let Π (S1,S2) be a sequence
obtained by concatenating list(si) for i=1,2,…,n
where n is the length of S1 and si is the ith
symbol of S1.

• Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5).

Theorem

• Theorem:

– Every increasing sequence I of Π (S1,S2) specifies an equal
length common subsequence of S1 and S2 and vice versa. Thus
a longest common subsequence LCS of S1 and S2 corresponds
to a longest increasing sequence of Π (S1,S2).

• Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5). The possible
longest increasing sequences used as indices to access
the characters in S2 yield the LCS as: (1,2,5)= b a c,
(2,3,5)=a a c, (3,4,6)= a b a for S1=a b a c x and S2= b a a
b c a.

