
An Efficient Algorithm for the LCS 
Problem



Longest Common Subsequence Problem

• The longest common subsequence problem, also called 
the LCS problem is a special case of the similarity 
problem. 

• Definition:  Given a string S of length n , a subsequence is 
a string  such that 
for some . 

• A substring is a subset of  S which are located 
contiguously but in a subsequence the characters are not 
necessarily contiguous but they are in order from left to 
right. 

• Thus a substring is a subsequence but the converse is not 
true.
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Longest Common Subsequence

• Definition: The longest  common 
subsequence or LCS of two strings S1 and S2 
is the longest subsequence common between 
two strings.

S1 :   A -- A T -- G     G     C C -- A       T A n=10
S2:    A T     A      T A    A     T     T C T   A       T -- m=12

The LCS is AATCAT. The length of the LCS is 6. 
The solution is not unique for all pair of strings. Consider the pair (ATTA, ATAT).  
The solutions are ATT, ATA. In general, for arbitrary pair of strings, there may 
exist many solutions.



LCS Problem

• The LCS can be found by dynamic programming 
formulation. Since it is using the general dynamic 
programming algorithm its complexity is O(nm) .

• A longest substring problem, on the other hand has a
O(n+m) solution. Subsequences are much more complex 
than substrings. 

• Can we do better for the LCS problem? We will see …



LCS for S1 and S2

• The optimal alignment is shown above.  Note the alignment shows 
three insert (dark), one delete (green) and three substitution or 
replacement operations (blue), which gives an edit distance of 7. 

• But, the 3 replacement operations can be realized by 3 insert and 3
delete operations because a replacement is equivalent to first 
delete the character and then insert a character in its place like:

S1 :   A -- A T -- G     G C C -- A       T A n=10
S2:    A T     A      T A    A T     T C T   A       T -- m=12

G -- G -- C --
-- A    -- T    -- T



Edit  Distance and LCS are related

• if we give a cost of 2 for replace operation and 
cost of 1 for both insert and delete operations, 
the minimum edit distance D can be 
computed in terms of the length L of LCS as:

• For the above example, n=10, m=12, L=6. So, 
D=10 ( 6 insert and 4 delete).

LnmD 2



Direct Computation of LCS by Dynamic 
Programming

• More efficient although the asymptotic complexity remains 
the same, O(nm). 

• Let L denote The equations are given below without proof 
(which is simple).

• Again, if we leave suitable back pointers in the matrix, 
trace(s) can be derived for the LCS.
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Edit Graph for LCS Problem
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A Faster Algorithm for LCS

• An algorithm that is asymptotically better than O(nm)  for 
determining LCS. 

• Implies that for special cases of edit distance, there exist 
more efficient algorithm.

• Definition: 
– Let π be a set of n integers, not necessarily distinct.

• Definition: 
– An increasing subsequence(IS) of π is a subsequence of π whose 

values are strictly increasing from left to right.

• Example: π=(5,3,4,4, 9,6,2,1,8,7,10).  IS=(3,4,6,8,10), 
(5,9,10)



• Definition: 

– A longest increasing subsequence(LIS) of π is an IS
π of maximum length.

• Definition: 

– A decreasing subsequence (DS) of π is a non-
increasing subsequence f π from left to right.

• Example: DS=(5,4,4,3,2,1).



• Definition: 
– A cover is a set of disjoint DS of π that covers or 

contains all elements of π. The size of the cover c
equals the number of DS in the cover.

• Example: π=(5,3,4,9,6,2,1,8,7) Cover:{ 
(5,3,2,1),(4),(9,6),(8,7)}. c=#of DS=4.

• Definition: 
– A smallest cover (SC) is a cover with a minimum 

value of c.



Determine LIS and SC simultaneously in 
O(nlogn)

• Lemma: 

– If I is an IS of π with length equal to the size of a 
cover C of π, then I is a LIS of π and C is the 
smallest cover of size c.



Proof

• If I is an increasing sequence, it cannot contain more than one element 
from a decreasing sequence. 

• This means that no increasing subsequence can have size more than 
the size of any cover C, that is, if

a maximum of one element from each can participate in any increasing 
sequence. 

• Thus, an IS derived from this decomposition can have a maximum 
length of |C |=c. Conversely, C must be the smallest. If not, let c’ be the 
length of a cover C’ such that |C’|=< c i.e., if we derive IS from C, it 
must contain more than one element from one of the decreasing 
sequence of C’, which is not possible. Hence C has to be of smallest 
size.
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Construction of a cover

• Greedy algorithm to derive a cover:

– Starting from the left of π, examine each 
successive number in π. 

– Append the current number at the left-most 
subsequence derived so far if it is possible do that 
maintaining the decreasing sequence property. 

– If not start a new decreasing subsequence 
beginning with the current element. 

– Proceed until π is exhausted.



Example

• π=(5,3,4,9,6,2,1,8,7,10)

• D1=(5,3,2,1), D2=(4), D3=(9,6), D4=(8,7), 
D4=(10)

• The algorithm has O (n2) complexity. We will 
present an O (n logn) algorithm.



An Efficient Algorithm for Constructing the 
Cover

• We use a data structure which is a list containing the last 
number of each of the decreasing sequence that is being 
constructed. 

• The list is always sorted in increasing order. An identifier 
indicating which list the number belongs to also included.

Procedure Decreasing Sequence Cover

Input: π= , the list of input numbers.

Output: the set of decreasing sequences Di constituting 
the cover.
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O(n logn) Algorithm

• Initialize:  i←1;  Di=(x1);  L=(x1, i) ; j←1;
• For i=2 to n do

– Search the x-fields of L to find the first x-value such that 
xi < x.   ….takes O( logn) time.

– If such a value exists, then insert x at the end in the list Di
and set xi←x in L… This step takes constant time.

– If such a value does not exist in L, then set j←j+1. insert in 
L a new  element (x,j) and  start a new decreasing 
sequence Dj=(x)

End



• Lemma: 

– At any point in the execution of the algorithm the list L is sorted 
in increasing order with respect to x-values as well as with 
respect to identifier value.

• In fact two separate lists will be better from practical 
implementation point of view.

• Theorem: 

– The greedy cover can be constructed taking O(nlogn) time. A 
longest increasing sequence and a smallest cover thus can be 
constructed using O(nlogn) time.



Example:  π=(5,3,4,9,6,2,1,8,7,10)
i=1     x1=5 L={(5,1)}                            D1=(5)         

2          3       {(3,1)}                                      (5,3)        
3          4       {(3,1),(4,2)}                              (5,3)    D2=(4)
4          9       {(3,1),(4,2),(9,3)}                     (5,3)          (4)  D3=(9)
5          6        {(3,1),(4,2),(6,3)}                    (5,3)          (4)  (9,6)
6          2        {(2,1),(4,2),(6,3)                      (5,3,2)       (4)  (9,6)
7          1        {(1,1),(4,2),(6,3)}                    (5,3,2,1)    (4)   (9,6)
8          8        {(1,1),(4,2),(6,3),(8,4)}            (5,3,2,1)   (4)   (9,6)  D4=(8)
9          7        {(1,1),(4,2),(6,3),(7,4)}            (5,3,2,1)    (4)   (9,6)  D4=(8,7)

10         10      {(1,1),(4,2),(6,3),(7,4),(10,5)} (5,3,2,1)    (4)   (9,6)  D4=(8,7) D5=(10)

The x-component of the list, if separated, will look like 
the following during execution: 
(5),(3),(3,4), (3,4,9), (3,4,6), (2,4,6),(1,4,6), (1,4,6,8), 
(1,4,6,8),(1,4,6,7), (1,4,6,7,10)



Reduction of LIS problem to LCS problem

• Definition: 

– Given sequences S1 and S2, let r(i ) be the number 
of occurrence of the ith character of S1 in S2.

(position index in sequence S2: ) 1 2 3 4 5 6  
Example:S1=a b a c x and S2= b a a b c a  
Then, r(1)=3,  r(2)=2,  r(3)=3, r(4)=1, r(5)=0 .



Definition: list(x)

• Definition: 

– for each distinct character x in S1, define list(x) to 
be the positions of x in S2 in decreasing order.

• Example:   list(a)= (6,3,2);   list(b)=(4,1),   
list(c)=(5), list(x)=φ (empty sequence).



Definition: Π (S1,S2) 

• Definition: Let Π (S1,S2) be a sequence 
obtained by concatenating list(si) for i=1,2,…,n 
where n is the length of S1 and si is the ith
symbol of S1.

• Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5).



Theorem

• Theorem: 

– Every increasing sequence I of Π (S1,S2) specifies an equal 
length common subsequence of  S1 and S2 and vice versa. Thus 
a longest common subsequence LCS of S1 and S2 corresponds 
to a longest increasing sequence of Π (S1,S2).

• Example: Π (S1,S2)= (6,3,2,4,1,6,3,2,5). The possible 
longest increasing sequences used as indices to access 
the characters in S2 yield the LCS as: (1,2,5)= b a c,   
(2,3,5)=a a c,  (3,4,6)= a b a for S1=a b a c x and S2= b a a 
b c a.


