Recap
Pyramids
Recap

Gaussian Pyramids

- Smooth rows 1, 3, 5, ... N by 1D Gaussian
 - Select filtered rows
- Smooth columns 1, 3, 5, ... N by 1D Gaussian
 - Select filtered columns
- Create image ¼th of original image size

Recap

Laplacian Pyramid

- Synthesis (Coding)
 - Compute Gaussian pyramid
 - Compute Laplacian pyramid

- Analysis (Decoding)
 - Compute Gaussian pyramid from Laplacian pyramid
 - \(g_1 \) is reconstructed image

\[
\begin{align*}
L_4 &= g_4 - \text{EXPAND}[g_4] \\
L_3 &= g_3 - \text{EXPAND}[g_3] \\
L_2 &= g_2 - \text{EXPAND}[g_2] \\
L_1 &= g_1 - \text{EXPAND}[g_1] \\
g_4 &= L_4 \\
g_3 &= \text{EXPAND}[g_4] + L_3 \\
g_2 &= \text{EXPAND}[g_3] + L_2 \\
g_1 &= \text{EXPAND} [g_2] + L_1
\end{align*}
\]
Constructing Laplacian Pyramid

- Compute Gaussian pyramid
 \(g_k, g_{k-1}, g_{k-2}, \ldots, g_2, g_1 \)

- Compute Laplacian pyramid as follows:

 \[
 \begin{align*}
 L_k &= g_k - \text{EXPAND}(g_{k-1}) \\
 L_{k-1} &= g_{k-1} - \text{EXPAND}(g_{k-2}) \\
 L_{k-2} &= g_{k-2} - \text{EXPAND}(g_{k-3}) \\
 &\vdots \\
 L_1 &= g_1
 \end{align*}
 \]

Hough Transform
Line Fitting

- Line equation
 \[y = mx + b \quad m \text{ is slope, } b \text{ is } y \text{- intercept} \]

- Using edge pixels
 - Compute \(b \) for every \(m \)
 \[b_i = y - m_j x \]

- Problematic for vertical lines
 - \(m \) and \(b \) grow to infinity
Line Fitting

- Polar coordinate representation
 - For each point on line θ and ρ are constant
 - Numerically stable for lines in any orientation

$$x \cos \theta + y \sin \theta = \rho \quad (A)$$

- Different choices of θ for constant ρ gives different choices of lines

Algorithm

- Construct accumulator array in 2D (θ, ρ)
 - Initial values 0
- Select granularity of angle θ
 - For instance 10° increments
- For every edge point
 - Compute ρ using (A)
 - Increment accumulator array by one for each computed (θ, ρ) pair.
Line Fitting
Line Fitting Examples

Noisy vs. Ideal

- **Ideal**: No noise, points lie exactly on the line.
- **Noisy**: Some noise, points deviate slightly from the line.
- **Very Noisy**: High noise, points deviate significantly from the line.

Noise Factor

This is the number of votes that the real line of 20 points gets with increasing noise.
Noise Factor

as the noise increases in a picture *without a line*, the number of points in the max cell goes up, too

![Graph showing the relationship between number of noise points and maximum number of votes.]

Difficulties

- What is the increments for θ and ρ.
 - too big? We cannot distinguish between different lines
 - too small? noise causes lines to be missed
- How many lines
- Which edge point belongs to which line
- Hardly ever satisfactory due to noise.
Least Squares Fit

- Standard linear solution to estimating unknowns.
 - If we know which points belong to which line
 - Or if there is only one line

\[y = ax + b = f(x, a, b) \]

Minimize \(E = \sum_i [y_i - f(x_i, a, b)]^2 \)

Take derivative wrt \(a \) and \(b \) set to 0

Line Fitting

\[y = ax + b \]

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix}
= \begin{bmatrix}
 x_1 & 1 \\
 x_2 & 1 \\
 \vdots & \vdots \\
 x_n & 1
\end{bmatrix}
\begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix}
\Rightarrow B = AC
\]

\[
A^T B = A^T AC
\]

\[
(A^T A)^{-1} A^T B = (A^T A)^{-1} (A^T A) C
\]

\[
C = (A^T A)^{-1} A^T B
\]
Programming assignment

- Implement line fitting algorithm
- Due date October 24
- You will be given an image of the following form

Programming Assignment Reminder

- A week from today
- Submit hardcopy of the code.
- Submit program on a CD.
- Do NOT email your projects!!