
Lecture notes of Image Compression and Video 

Compression

4. Introduction to Wavelet



#2

Topics

Introduction to Image Compression
Transform Coding
Subband Coding, Filter Banks
Introduction to Wavelet Transform
Haar, SPIHT, EZW
Motion Compensation
Wireless Video Compression 



#3

Contents

History of Wavelet
From Fourier Transform to Wavelet 
Transform
Haar Wavelet
Multiresolution Analysis 
General Wavelet Transform
EZW
SPIHT



#4

Wavelet Definition

“The wavelet transform is a tool that cuts up data, 
functions or operators into different frequency 
components, and then studies each component 
with a resolution matched to its scale”

---- Dr. Ingrid Daubechies, Lucent, Princeton U
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Wavelet Coding Methods

EZW - Shapiro, 1993
Embedded Zerotree coding.

SPIHT - Said and Pearlman, 1996
Set Partitioning in Hierarchical Trees coding. Also uses “zerotrees”.

ECECOW - Wu, 1997
Uses arithmetic coding with context.

EBCOT – Taubman, 2000
Uses arithmetic coding with different context.

JPEG 2000 – new standard based largely on EBCOT
GTW – Hong, Ladner 2000

Uses group testing which is closely related to Golomb codes
UWIC - Ladner, Askew, Barney 2003

Like GTW but uses arithmetic coding
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Comparison of Wavelet Based 
JPEG 2000 and DCT Based JPEG

JPEG2000 image shows 
almost no quality loss 
from current JPEG, even 
at 158:1 compression. 
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Introduction to Wavelets

"... the new computational paradigm [wavelets] 
eventually may swallow Fourier transform methods..."

" ...a new approach to data crunching that, if 
successful, could spawn new computer architectures 
and bring about commercial realization of such difficult 
data-compression tasks as sending images over 
telephone lines. "

---- from "New-wave number crunching" C. Brown, Electronic Engineering Times, 11/5/90.
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Early History of Wavelet Theory

Roots found in a variety of disciplines
Mathematics, Signal Processing, Computer Vision, Physics.

1910 Haar basis 
First wavelet.

1946 The Gabor transform
Short time Fourier transform with Gaussian window function.

1964 Calderon's work on singular integral operators
Contains the continuous wavelet transform.

1971 A. Rosenfeld and M. Thurston
Multi-resolution techniques invented in machine vision 
Multi-resolution schemes inherent in the wavelet transform.

1976 A. Croiser, D. Estaban, C. Galand
Quadrature mirror filter banks for speech coding 
Digital implementation of wavelets.
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Recent History of Wavelets

1984 J. Morlet and A. Grossman
‘‘Invent“ term wavelets
Apply them to the analysis of seismic signals

1985 Meyer 
tried to prove that no orthogonal wavelet other than Haar 
exists, found one by trial and error!

1987 Mallat 
Developed multiresolution theory, DWT, wavelet construction 
techniques (but still noncompact) 

1988 I. Daubechies 
Found compact, orthogonal wavelets with arbitrary number of 
vanishing moments!

2001 wavelet based JPEG2000 finalized.
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Model and Prediction

Compression is PREDICTION.
There are many decomposition approaches 
to modeling the signal.

Every signal is a function.
Modeling is function representation/approximation.

Compressed
Bit Stream

Transmission System

Model Model

Probability 
Distribution

Probability 
Estimates

Probability 
Estimates

Probability 
Distribution

Encoder DecoderSource
Messages

Original Source
Messages
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Methods of Function Approximation

Sequence of samples 
Time domain

Pyramid (hierarchical)
Polynomial
Piecewise polynomials

Finite element method
Fourier Transform 

Frequency domain
Sinusoids of various frequencies

Wavelet Transform
Time/frequency domain
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The Fourier Transform

Analysis, forward transform:

Synthesis, inverse transform:

Forward transform decomposes f(t) into 
sinusoids. 

F(u) represents how much of the sinusoid with 
frequency u is in f(t).

Inverse transform synthesizes f(t) from 
sinusoids, weighted by F(u).

2( ) ( ) j utF u f t e dtπ−= ∫
2( ) ( ) j utf t F u e duπ= ∫
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The Fourier Transform Properties

Linear Transform.
Analysis (decomposition) of signals 
into sines and cosines has physical 
significance

tones, vibrations.
Fast algorithms exist. 

The fast Fourier transform requires 
O(nlogn) computations.
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Problems With the Fourier 
Transform

Fourier transform well-
suited for stationary
signals - signals that do 
not vary with time. This 
model does not fit real 
signals well.
For time-varying signals 
or signals with abrupt 
transitions, the Fourier 
transform does not 
provide information on 
when transitions occur.
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Problems With the Fourier 
Transform

Fourier transform is a “global” analysis. A 
small perturbation of the function at any one 
point on the time-axis influences all points on 
the frequency-axis and vise versa.
If a signal is received correctly for hours and 
gets corrupted for only a few second, it 
totally destroys the signal.
The lack of time information makes Fourier 
transform error prone. 
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Problems With the Fourier 
Transform

A qualitative explanation of why Fourier 
transform fails to capture time information is 
the fact that the set of basis functions ( sines 
and cosines) are infinitely long and the 
transform picks up the frequencies regardless 
of where it appears in the signal.

Need a better way to represent functions that 
are localized in both time and frequency.
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Uncertainty Principle
--- Preliminaries for the STFT

The time and frequency domains are complimentary. 
If one is local, the other is global. 
For an impulse signal, which assumes a constant value for a 
very brief period of time, the frequency spectrum is infinite.
If a sinusoidal signal extends over infinite time, its frequency 
spectrum is a single vertical line at the given frequency. 

We can always localize a signal or a frequency but we 
cannot do that simultaneously. 

If the signal has a short duration, its band of frequency is wide 
and vice versa.
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Uncertainty Principle

Heisenberg’s uncertainty principle was 
enunciated in the context of quantum 
physics which stated that the position 
and the momentum of a particle cannot 
be precisely determined simultaneously.  

This principle is also applicable to signal 
processing. 
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Uncertainty Principle
-- In Signal Processing

Let g(t) be a function with the property . 

Then

where            denote average values of t and 
f ,and G(f) is the Fourier transform of g(t).
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Gabor’s Proposal
Short-time Fourier Transform.

The STFT is an attempt to 
alleviate the problems with FT. 

It takes a non-stationary
signal and breaks it down into 
“windows” of signals for a 
specified short period of time 
and does Fourier transform 
on the window by considering  
the signal to consist of  
repeated windows over time. 
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The Short-time Fourier Transform 
Time-frequency Resolution
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The Short-time Fourier Transform

Analysis:

Synthesis:

where w(t) is a window function localized in time and 
frequency.
Analysis functions are sinusoids windowed by w(t).
Common window functions

Gaussian (Gabor), Hamming, Hanning, Kaiser.

* 2( , ) ( ) ( ) j utSTFT u f t w t e dtπτ τ −= −∫

2( ) ( , ) ( ) j utf t STFT u w t e d duπτ τ τ= −∫
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The Short-time Fourier Transform 
Properties

Linear transform.
Time resolution (∆t) and frequency 
resolution (∆u) are determined by w(t), 
and remain fixed regardless of τor u.
Biggest disadvantage: 

since ∆t and ∆u are fixed by choice of w(t), 
need to know a priori what w(t) will work for 
the desired application.
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Basic Idea of the Wavelet Transform 
-- Time-frequency Resolution

Basic idea:
∆t, ∆u vary as a function of scale 
(scale = 1/frequency).



#25

Given input value {1, 2, 3, 4, 5, 6, 7, 8} (resolution 8)
Step #1 (resolution 4)

Output Low Frequency {1.5, 3.5, 5.5, 7.5}  - averages. The averages can be used to 
approximate the function with some loss of information. To recapture the lost information, 
we need the differences – the so-called detailed coefficients.
Output High Frequency {-0.5, -0.5, -0.5, -0.5} – detail coefficients.

Now, Average +detail= first coefficient and Average-detail= second coefficient of the pair.
Step #2 (resolution 2)

Refine Low frequency output in Step #1
L: {2.5, 6.5}- average
H: {-1, -1} - detail

Step #3 (resolution1)
Refine Low frequency output in Step #2

L: {4.5} -average
H: {-2} - detail
Transmit { 4.5, -2, -1, -1, -0.5, -0.5, -0.5, -0.5}. No information has been lost or gained by this 
process.  We can reconstruct the original image from this vector by adding and subtracting the 
detail coefficients. The vector has 8 values, as in the original sequence, but except for the first 
coefficient, all have small magnitudes. This vector is called the wavelet transform or the wavelet 
decomposition of the original sequence. As we will see soon,we have used the Haar basis for 
this one-dimensional transfor.

One-dimensional  Haar Wavelet 
Transform
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Sub-band Interpretation of Wavelet 
Transform

The computation of 
the wavelet 
transform used 
recursive averaging 
and differencing 
coefficients. It 
behaves like a filter 
bank.
Recursive 
application of a two-
band filter bank to 
the lowpass band of 
the previous stage.
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Properties of the Transform

We can reconstruct the vector to any 
resolution by recursively adding and 
subtracting the detail coefficients.
In practice, a large number of detail 
coefficients become very small. We can 
simply drop or truncate them. The 
reconstruction will be “lossy” but for most 
image applications this approach is good 
enough.
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Function and Vector Space

Instead of thinking the pixels as coefficients, we may think of 
them as functions. For example, we can think of a one-pixel 
image to be a  function  that is constant over the entire interval 
[0,1). Since addition and multiplication operations are well defined 
for such functions, we can think of such a function to be a vector 
in the vector space V0. 
A 2-pixel image is then a function with two constant pieces over 
intervals [0,1/2) and [1/2,1). The vector space containing all such 
functions is denoted as V1 and so on . 
The vector space Vj include all piecewise constant functions 
defined on the interval [0,1) with constant pieces over each of 2j

equal sized subintervals. Thus, a one-dimensional image with 
resolution 2j is an element of the vector space Vj.
These vector spaces are nested.
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Function and Vector Space

Every vector space Vj is 
also contained in Vj+1, 
because a piece-wise 
constant function with 2j

intervals can be thought 
of as a piecewise 
constant function with 
2j+1 intervals.
So, 
In general, we have
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Scaling Function

The basis function for the space Vj is 
called scaling function   .φ

1

1

1

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

Basis function for V2

2
0φ

2
1φ

2
2φ

2
3φ

Basis function for V1

1
0φ

1
1φ

0 0.5 1

1

Basis function for V0

0
0φ



#31

Scaling Function

In general, a vector space is defined on 
the set of scaled and translated basis 
function
where

The interval on which           equals ‘1’ is 
called support. For example,  the support 
of        is [1/4, ½).
Note that 
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Scaling Function

Example of the Haar scaling function
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Any sequence of pixels of resolution 2j can be 
explained as a linear combination of the box 
basis function in Vj. For example, for j = 2, an 
image f(x)=[9,7,3,3] can be explained as:

In general, any function with resolution 2j can 
be written as:

Scaling Functions
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The above is equivalent to piece-wise linear approximation. 
It does not capture the notion of high or low frequency components
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Averaging and Detailing Functions

As we know, by using averaging 
and detail coefficient technique, we 
can explain the same sequence as 
[8,4,1,-1].
To recover the original sequence, 
we can add and subtract each detail 
component with the average. Thus, 
the set of Haar scaling functions 
form a basis set for any one-
dimensional function.
For a given resolution j, the Haar 
scaling function cannot represent 
the details in resolution j+1. For this 
we define a set of Haar wavelet 
functions Wj.. Informally, Wj

represent the parts of a function at 
resolution j+1 that cannot be 
represented in resolution j.

f(x) = 8 *

+ 4 *

+ 1 *

-1 *

f(x) = 9 *

+ 7 *

+ 3 *

+ 5*
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A More Formal Definition of 
Wavelets

Wj  is the space of all functions in Vj+1 that are orthogonal to all functions 
in Vj.
A set of linearly independent basis functions             spanning Wj

are called wavelets.
The wavelets have the two properties:

1.  The basis functions               of Wj, together with the functions               
of Vj, form a basis for Vj+1.

2.    Every basis function                of Wj is orthogonal to every basis 
function              of V j.    

)(xj
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)( xj
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Haar Wavelet

The Haar wavelet can be defined in 
general as:

where
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1D Haar Wavelet
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Averaging and Detailing Functions

We can now re-write our representation for [8,4,1,-1] 
as (in terms of basis functions in V1 and W1) :
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Averaging and Detailing Functions

If we proceed one more stage of averaging and detail coefficients, 
we can write the sequence as [6, 2, 1,-1]:

Instead of writing four scaling (box) functions
in V2, we can write one scaling function 
and three wavelet functions.                                 . 

The vector                        
forms the Haar basis for V2.
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Orthogonality and Normalization

Note the Haar basis functions are 
orthogonal to each other, that is , inner 
product of any pair is always zero. 
Form energy preservation point of view, 
another desirable property of any basis 
function is that they be normalized. 
A basis function is normalized if the inner 
product of itself is 1.
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Normalized Haar basis function

We can normalize the Haar basis by replacing 
our earlier definition with

With these modified definition, the new 
normalized coefficients are obtained by 
dividing each old coefficient with superscript j 
by        .
For example, [6, 2,1, -1] becomes
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How to normalize the coefficients ?

Multiplying each old coefficient with 
subscript j by 2-j/2.

first computing the un-normalized 
coefficients.
then normalizing them.

Or, include normalization in the 
Procedure Decomposition.
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Normalized 1D Haar Wavelet 
Transform

Procedure Decomposition(c:array [1…2j])
c = c/sqrt(2j)
g = 2j

while g >= 2 do
DecompostionStep(c[1..g])
g = g /2

end while
End procedure

Procedure DecompositionStep(c:array[1..2j])
for i = 1 to 2j-1 do

c’[i] = (c[2i-1]+c[2i])/sqrt(2)
c’[2j-1+i] = (c[2i-1]-c[2i])/sqrt(2)

end for
c = c’

End procedure

Decomposition Reconstruction of original data 
Procedure Reconstruction(c:array [1…2j])

g = 2
while g <= 2j do

ReconstructionStep(c[1..g])
g = 2g

end while
c = c*sqrt(2j) (undo normalization)

End procedure

Procedure ReconstructionStep (c:array[1..2j])
for i = 1 to 2j-1/2do

c’[2i-1] = (c[i]+c[2j-1+i])/sqrt(2)
c’[2i] = (c[i]-c[2j-1+i])/sqrt(2)

end for
c = c’

End procedure
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Normalized 1D Haar Wavelet 
Transform --Example

Input c=[9,7,3,5], j = 2
c = c / sqrt(22);     c = [4.5, 3.5, 1.5, 2.5]     
g = 4
DecompositionStep(c[1..4])

c’(1) = (c[1]+c[2])/sqrt(2) = 8/sqrt(2)
c’(3) = (c[1]-c[2])/sqrt(2) = 1/sqrt(2)
c’(2) = (c[3]+c[4])/sqrt(2) = 4/sqrt(2)
c’(4) = (c[3]-c[4])/sqrt(2) = -1/sqrt(2)
c = c’;       c=[8/sqrt(2), 4/sqrt(2), 1/sqrt(2), -1/sqrt(2)]

g = 2
DecompositionStep(c[1..2])

c’(1) = (c[1]+c[2])/sqrt(2) = 6
c’(3) = (c[1]-c[2])/sqrt(2) = 2
c = c’;       c=[6, 2, 1/sqrt(2), -1/sqrt(2)]

Try it yourself:

Work out the 
reconstruction 

procedure.
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From 1D Haar to 2D Haar

Standard Decomposition
First horizontal transform to 
each row of pixel values.
Then apply vertical 
transform on the columns.

Nonstandard 
Decomposition

Apply horizontal transform 
and vertical transform 
alternatively.
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Nonstandard 2D Haar Wavelet 
Transform

Procedure Decomposition(c:array [1…2j,1…2j])
c = c/2j

g = 2j

while g >= 2 do
for row = 1 to g do

DecompostionStep(c[row, 1..g])
/*  pair wise averaging and differencing is done on 

the row elements */ 
end for
for col = 1 to g do

DecompostionStep(c[1..g, col])
/*  pair wise averaging and differencing is done on 

the column elements */
end for
g = g /2 /* repeat only for the quadrant 

containing the averages in both directions. */
end while

End procedure

Decomposition Reconstruction
Procedure Reconstruction(c:array [1…2j, 1…2j])

g = 2
while g<= 2j do

for col = 1 to g do
ReconstructionStep(c[1..g, col])

/* the inverese pair wise operation on columns. */
end for
for row = 1 to g do

ReconstructionStep (c[row, 1..g])
/* the inverese pair wise operation on columns. */

end for
g = 2g /* enlarging the computation to 4 

quadrants */
end while
c = c*2j /* Note the size of the array c is 
variable to accommodate for finer resolution */

End procedure
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Two Dimensional Haar Basis

The nonstandard construction of a two-
dimensional basis proceeds by first 
defining a two-dimensional scaling 
function,
and three wavelet functions,

)()(:),( yxyx φφφφ =

)()(:),( yxyx ψφφψ =
)()(:),( yxyx φψψφ =
)()(:),( yxyx ψψψψ =
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Two Dimensional Haar Basis

We now denote levels of scaling with a superscript j
and horizontal and vertical translations with a pair 
subscripts k and l.
The nonstandard basis consists of a single coarse 
scaling function

along with dilations and translations of three wavelet 
functions:

),(:),(0,0
0 yxyx φφφφ =

)2()2(2:),( lykxyx jjj
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Example of 2D (8x8) Haar Basis



#50

Linear Time Complexity of 2D
Wavelet Transform

Let n = number of pixels and let b be the 
number of coefficients in the filters.
One level of transform takes time

O(bn)
levels of transform takes time 
proportional to

bn + bn/4 + ... + bn/4k-1 < (4/3)bn.
The wavelet transform is linear time
when the filters have constant size.

1 + a + a2 + … + ak = (1-ak+1)/(1-a)
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When Multiresolution Coding was a 
New Idea . . .

“This manuscript is okay if compared to some of the 
weaker papers. [. . .] however, I doubt that anyone will 
ever use this algorithm again.”

---- Anonymous reviewer of Burt and Adelson‘s original paper, 1982
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Multi-resolution Analysis

Let’s say , we want to represent a real number 
N=87/7=12. 4285714… by a series of successive 
approximation. Depending on the desired accuracy, 
we can approximate N successively as sequence of 
“round-off” values 10, 12, 12.4,12.42, …etc.  The 
successive difference between two consecutive round-
off values (2, 0.4, 0.02, 0.008, …) is called the “detail” 
part. The round off values are sometimes also called 
the “averages”. 
In multi-resolution analysis, we use a scaling function
to represent the round off values and a wavelet 
function to represent the detail values. 
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Multi-resolution Analysis

The further we descend the level of details, the 
more accurate is the approximation. In the 
other direction, if we “stretch” the scaling 
function more and more, we end up seeing 
nothing, as if we trying to approximate 87/7 by 
100’s  and at that point all information is in the 
details: 10+2+0.4+0.02+0.008. 
This numerical example gives only a 
conceptual idea of multi-resolution analysis.



#54

Multiresolution Analysis (MRA)
Objective: To analyze a complicated function by 
dividing it into several simpler ones and studying them 
separately.
The further we descend the level of details, the less 
accurate is the approximation.
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Multiresolution Analysis using Haar 
Wavelets

Suppose we have a function f(x) that can 
be accurately represented at a resolution 
2j. We have seen that f(x) can be 
expanded as

where     is the set of ‘box’ basis function 
for Vj and         

∑
−

=

=
12

0

)()(
j

i

j
i

j
i

j xcxf φ

jVxf ∈)(

j
iφ



#56

Multiresolution Analysis using Haar 
Wavelets

We can represent the function at a lower 
resolution level (j-1) with some detail 
coefficients:

where              is the ‘box’ scaling function at 
level (j-1) spanning the vector space Vj-1,            
are the wavelet functions for the vector space 
Wj-1.
Thus, we have
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Multiresolution Analysis using Haar 
Wavelets

We can now continue the decomposition 
process as:

So, we have:
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   and   
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Multiresolution Analysis using Haar 
Wavelets

If we carry on the process all the way to 
V0, we have:

Where                                form a Haar 
basis for Vj.
For example, the Haar basis for V2 is:

1100 −⊕⊕⊕⊕= jj WWWVV L

),,,,( 1100 −jWWWV L

[ ] 1001
1

1
0

0
0

0
0 WWV ⊕⊕≡ψψψφ



#59

Multiresolution Analysis using Haar 
Wavelets

Alternatively, we can write an expansion 
as : 

This equation is the Haar wavelet 
decomposition of an arbitrary function 
f(x). 
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Multiresolution Analysis using Haar 
Wavelets

For s<=j-1, if the reconstruction of the image 
using only up to sth level of detail is 
satisfactory, we can stop the decomposition at 
the sth level:

That is, if a function f(x) can be exactly 
represented at 2j resolution, we can 
decompose it into a sum of functions, starting 
with a low-resolution approximation followed 
by a sequence of functions generated by 
dilations of the wavelet that represent the 
detailed coefficients. 

11 −+ ⊕⊕⊕⊕≈ jsssj WWWVV L
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Overview: FFT - STFT - Wavelet

Time
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STFT (Gabor)

Time

A
m

pl
itu

de

Time Domain
Amplitude

Fr
eq

ue
nc

y

Frequency Domain

Time

S
ca

le

Wavelet Analysis
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Linear transform.
All analysis functions                      are shifts 
and dilations of the mother wavelet
Time resolution and frequency resolution vary 
as a function of scale. 
Continuous wavelet transform (CWT)

s and τare continuous.
Discrete wavelet transform (DWT)

s and τare discrete.

, ( )s
t

sτ
τψ ψ −

=

The Wavelet Transform

( )tψ
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General Wavelet Transformation 
)(tψ

dt
s

xtf
s

dttft
s

tftsWT sts

∫

∫
−

=

==
∞

∞−

)()(1

)()(1)(,),( ,,

τψ

ψψ τ

is a “mother wavelet function

)(1)(, s
t

s
ts

τψψ τ
−

= Is a scaled and translated mother wavelet

Where s,    are scaling and translation parameters.

Let            be an arbitrary function of time (or space)

The wavelet transform of the function is given by the set of coefficients:

τ

)(tf

Analysis
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Synthesis

τψτ τ
ψ

dsdsWT
sC

tf s∫∫= ,),(1)(

0)(, =∫
∞

∞−

dtts τψ

∞<∫
∞

∞−

dtts
2

, |)(| τψ

The inverse wavelet transform is given by 

dw
w
wC ∫

∞

∞−

Ψ
=

||
|)(| 2

ψwhere 

and )(wΨ is the Fourier transform of )(, ts τψ

Two conditions must be satisfied by the wavelet coefficients:

2) Admissibility condition:

1)Wave condition:

For an arbitrary pair of real values            there is a wavelet transform. So, 
the entire real plane is its support. ( Read example p.471 Salomon)

),( τs
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Scaling

Scaling = frequency band

Small scale
Rapidly changing 
details, 
Like high frequency

Large scale
Slowly changing details
Like low frequency

S
ca

le
Wavelet Basis functions
at 3 different scales
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More on Scale

It lets you either narrow down the frequency 
band of interest, or determine the frequency 
content in a narrower time interval
Good for non-stationary data
Low scale a Compressed wavelet
Rapidly changing details High frequency. 
High scale a Stretched wavelet Slowly 
changing, coarse features Low frequency.
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Shifting

• Shifting a wavelet simply means delaying 
(or hastening) its onset. 

• Mathematically, shifting a function f(t) by 
k is represented by f(t-k).
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Different Types of Mother Wavelets

Haar Meyer Daubechies

Battle-Lemarie Chui-Wang
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Calculate the CWT Coefficients

The result of the CWT are many wavelet 
coefficients WT

Function of scale and position.
How to calculate the coefficient?

,
1( , ) , ( ) ( ) ( )s

tWT s f t f t dt
ssτ
ττ ψ ψ −

= = ∫

for each SCALE s
for each POSITION t

WT (s, t) =   Signal  x Wavelet (s, t)
end

end
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Calculate the CWT Coefficients

1. Take a wavelet and compare 
it to a section at the start of 
the original signal. 

2. Calculate a correlation 
coefficient WT

3. Shift the wavelet to the right 
and repeat steps 1 and 2 
until you've covered the 
whole signal.

4. Scale (stretch) the wavelet 
and repeat steps 1 through 3.

5. Repeat steps 1 through 4 for 
all scales.

3

4

1 2
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Visualizing the CWT Coefficients

2D

3D
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Discrete Wavelet Transform

Calculating wavelet coefficients at every 
possible scale is a fair amount of work, and it 
generates an awful lot of data.
What if we choose only a subset of scales and 
positions at which to make our calculations?
It turns out, rather remarkably, that if we 
choose scales and positions based on powers 
of two --- so-called dyadic scales and positions 
--- then our analysis will be much more 
efficient and just as accurate. 
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Discrete Wavelet Transform

If (s, τ) take discrete value in R2, we get DWT. 
A popular approach to select (s, τ) is

So,

0

1
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s
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0
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n
s
ττ =

0
1 1 1 12      1, , , , ,       m: integer
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Discrete Wavelet Transform

Wavelet Transform:

Inverse Wavelet Transform

If f(t) is continuous while (s, τ) consists of discrete 
values, the series is called the Discrete Time Wavelet 
Transform (DTWT). 
If f(t) is sampled (that is, discrete in time, as well as (s, 
τ) are discrete, we get Discrete Wavelet Transform
(DWT).

2
, ,( ), ( ) 2 ( ) (2 )

m m
m n m nDWT f t t f t t n dtψ ψ=< >= −∫

, ,( ) ( ) ( )m n m n
m n

f t DWT t c tψ= + Φ∑∑
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Two Dimensional Transform
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Two Dimensional Transform
(Continued)
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Two Dimensional Average 
Transform
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Wavelet Transform Details

Conversion
Convert gray scale to floating point.
Convert color to Y U V and then convert 
each band to floating point. Compress 
separately.

After several levels (3-8) of transform we 
have a matrix of floating point numbers 
called the wavelet transformed image 
(coefficients).
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Coding Wavelet Coefficients

No compression in the Wavelet Transform.
Wavelet coefficients is just another lossless representation of 
the original signal.

However, most of the energy is concentrated in the 
low-frequency part of the wavelet coefficients.
So, we can compress the coefficients.

Entropy coder (Huffman, Arithmetic)
Vector Quantization
Organization of the coefficients is key to efficient coding

The low pass residual subband has the same statistics as an 
image.
The other subbands are zero mean.
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EZW: How Do Zero Trees Work

Invented by Shapiro, 1993 (EZW)
Refined by Said and Pearlman, 1996(SPIHT).
Transform Coefficients are losslessly encoded 
(after quantization).
How we present the coefficients for coding will 
determine how efficient the encoding will be.
Coefficients can be ordered so that 
progressive transmission or region of interest 
is presented to the coder.
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Example

Image Sample

139 144 149 153 155 155 155 155 
144 151 153 156 159 156 156 156 
150 155 160 163 158 156 156 156 
159 161 162 160 160 159 159 159 
159 160 161 162 162 155 155 155 
161 161 161 161 160 157 157 157 
162 162 161 163 162 157 157 157 
162 162 161 161 163 158 158 158 
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Example

Haar Filter Results

1259.6 0.1 -13.2 1.5 -6.0 -3.5 1.5 0.0 
-17.4 -12.9 -0.5 5.0 -3.5 -0.5 1.5 0.0 
-20.2 4.0 -3.2 0.0 -0.5 -0.5 5.0 0.0 
-2.0 -3.0 1.5 0.0 0.0 -1.0 5.0 0.0 
-6.0 -3.5 -2.5 -1.0 1.0 -0.5 -1.5 0.0 
-7.5 0.5 -2.5 -3.0 -1.5 -2.5 0.5 0.0 
-1.5 0.5 0.0 -2.0 -0.5 -0.5 2.0 0.0 
0.0 1.0 1.0 -1.0 0.0 -1.0 0.0 0.0 
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Quantization (Threshold 9)

140 0 -1 0 -1 0 0 0

-2 -1 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

-1 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

9 *



#84

Recovered Image

138 147 152 152 156 156 156 156 
147 156 152 152 156 156 156 156 
152 152 161 161 156 156 156 156 
161 161 161 161 156 156 156 156 
161 161 161 161 165 156 156 156 
161 161 161 161 165 156 156 156 
161 161 161 161 165 156 156 156 
161 161 161 161 165 156 156 156 
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Wavelet Zero Tree
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Wavelet Zero Tree
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Coded Sample Images

E= all below it 0’s
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E – The EZW encoder is based on progressive 
encoding. Progressive encoding is also known as 
embedded encoding
Z – A data structure called zero-tree is used in EZW 
algorithm to encode the data
W – The EZW encoder is specially designed to use 
with wavelet transform. It was originally designed to 
operate on images (2-D signals)

http://perso.wanadoo.fr/polyvalens/cleme
ns/ezw/ezw.html

EZW – basic concepts(1)
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A Multi-resolution Analysis Example

Lower octave has higher 
resolution and contains higher 
frequency information

EZW – basic concepts(2)
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The EZW algorithm is based on two 
observations:

Natural images in general have a low 
pass spectrum. When an image is 
wavelet transformed,  the energy in the 
sub-bands decreases as the scale 
goes lower (low scale means high 
resolution), so the wavelet coefficient 
will, on average, be smaller in the 
lower levels than in the higher levels.
Large wavelet coefficients are more 
important than small wavelet 
coefficients.

631 544 86  10 -7   29   55 -54 
730 655 -13  30 -12  44   41  32 
19  23   37  17 -4  –13  -13  39 
25 -49   32  -4 9  -23  -17 -35 
32 -10   56 -22  -7  -25   40 -10 

6  34  -44   4  13  -12   21  24 
-12  -2    -8 -24 -42    9  -21  45 
13  -3   -16 -15  31  -11 -10 -17

typical wavelet coefficients
for a 8*8 block in a real image

EZW – basic concepts(3)
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The observations give rise to the basic progressive coding idea:
1. We can set a threshold T, if the wavelet coefficient is larger than T, 

then encode it as 1, otherwise we code it as 0.
2. ‘1’ will be reconstructed as T (or a number larger than T) and ‘0’

will be reconstructed as 0.
3. We then decrease T to a lower value, repeat 1 and 2. So we get 

finer and finer reconstructed data.
The actual implementation of EZA algorithm should consider :
1. What should we do to the sign of the coefficients. (positive 

or negative) ? – answer: use POS and NEG
2. Can we code the ‘0’s more efficiently?  -- answer: zero-tree
3. How to decide the threshold T and how to reconstruct? –

answer: see the algorithm

EZW – basic concepts(4)
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coefficients that are in the same spatial 
location consist of a quad-tree.

EZW – basic concepts(5)
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The definition of the zero-tree: 
There are  coefficients in different subbands that represent  
the same spatial location in the image and this spatial relation 
can be depicted by a quad tree except for the root node at top 
left corner representing the DC coeficient which only has three 
children nodes. 
Zero-tree Hypothesis
If a wavelet coefficient c at a coarse scale is insignificant with 

respect to a given threshold T, i.e. |c|<T then all wavelet 
coefficients of the same orientation at finer scales are also likely 
to be insignificant with respect to T.

EZW – basic concepts(6)



#94

First step: The DWT of the entire 2-D image
will be computed by FWT
Second step: Progressively EZW encodes the
coefficients by decreasing the threshold
Third step: Arithmetic coding is used to
entropy code the symbols

EZW – the algorithm(1)
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What is inside the second step?

Here MAX() means the maximum coefficient value in the image and y(x,y) 
denotes the coefficient. With this threshold we enter the main coding loop

threshold = initial_threshold;
do {

dominant_pass(image);
subordinate_pass(image);
threshold = threshold/2;

} while (threshold > 
minimum_threshold);

The main loop ends when the threshold reaches a minimum value, which could be 
specified to control the encoding performance, a “0” minimum value gives the 
lossless reconstruction of the image

EZW – the algorithm(2)

The initial threshold t0 is decided as:
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In the dominant_pass
All the coefficients are scanned in a special order
If the coefficient is a zero tree root, it will be encoded as ZTR. All
its descendants don’t need to be encoded – they will be
reconstructed as zero at this threshold level
If the coefficient itself is insignificant but one of its descendants
is significant, it is encoded as IZ (isolated zero).
If the coefficient is significant then it is encoded as POS
(positive) or NEG (negative) depends on its sign.

This encoding of the zero tree produces significant compression because gray 
level images resulting from natural sources typically result in DWTs with many 
ZTR symbols. Each ZTR indicates that no more bits are needed for encoding 
the descendants of the corresponding coefficient

EZW – the algorithm(3)
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At the end of dominant_pass
all the coefficients that are in absolute value larger than the
current threshold are extracted and placed without their
sign on the subordinate list and their positions in the image
are filled with zeroes. This will prevent them from being
coded again.

In the subordinate_pass
All the values in the subordinate list are refined. this gives
rise to some juggling with uncertainty intervals and it
outputs next most significant bit of all the coefficients in the
subordinate list.

EZW – the algorithm(5)
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Wavelet coefficients for a 8*8 block

EZW – An example(1)
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The initial threshold is 32 and the result from the 
dominant_pass is shown in the figure

EZW – An example(2)

Data without any 
symbol is a node 
in the zero-tree.

63
POS

-34
NEG

49
POS

10
ZTR

7
ZTR

13
ZTR

-12 7

-31
IZ

23
ZTR

14
ZTR

-13
ZTR

3
ZTR

4
ZTR

6 -1

15
ZTR

14
IZ

3 -12 5 -7 3 9

-9
ZTR

-7
ZTR

-14 8 4 -2 3 2

--5 9 -1
ZTR

47
POS

4 6 -2 2

3 0 -3
ZTR

2
ZTR

3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4
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/* * Subordinate pass */
subordinate_threshold = current_threshold/2; 
for all elements on subordinate list do {

if (coefficient > subordinate_threshold) {
output a one; 
coefficient = coefficient-subordinate_threshold; 

} 
else output a zero; 

} 
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The result from the dominant_pass is output as the following:

EZW – An example(3)

POS, NEG, IZ, ZTR,  POS, ZTR, ZTR, ZTR,  ZTR, IZ, ZTR, ZTR,  
ZTR,ZTR,ZTR,ZTR,  ZTR,POS, ZTR,ZTR

The significant coefficients are put in a subordinate list and 
are refined. A one-bit symbol S is output to the decoder.

ABS(Original data) 63 34 49 47

Output symbol 1 0 1 0

ABS(Reconstructed data) 56 40 56 40
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S Bit: If Data- threshold (T) is greater than or equal to 0.5T, then S bit is set 
1; otherwise, if it is less than 0.5T, it is set to be 0.
Reconstruction Value:  Create a binary number starting from the most 
significant bits whose values can be predicted certainly using T and 0.5T 
only. For example 63 is greater than T=32 and 63-32=31 is greater than 16. 
So, its S bit is 1. Also the most significant value bit is ‘1’. Then 63-32=31 is 
greater than 16 so the second value bit is also 1. Now, 32+16=48. So we can 
say with certainty that the number is greater than 48. Then pick the midpoint 
between 48 and next number which is a power of 2. This gives 56 as the 
reconstructed value. 

sign    32    16    8    4    2    1
0       1      1    ?    ?     ?    ?

The number 34 is greater than 32 but 34-32 is less than 16; so its S bit is ‘0’ 
and then pick the number which is the midpoint between 32 and 48. Thus 32 
is reconstructed as 40. Similarly, 49 and 47 are reconstructed as 56 and 40, 
respectively with S bits 1 and 0, respectively. The actual sign of the 
numbers are captured in POS and NEG symbols. So, S is not a sign bit.
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EZW – An example(4)

*
IZ

*
ZTR

* 10 7 13 -12 7

-31
NEG

23
POS

14 -13 3 4 6 -1

15
ZTR

14
ZTR

3
ZTR

-12
ZTR

5 -7 3 9

-9
ZTR

-7
ZTR

-14
ZTR

8
ZTR

4 -2 3 2

--5 9 -1 * 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

After dominant_pass, the significant coefficients will be replaced by * or 0
Then the threshold is divided by 2, so we have 16 as current threshold
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The result from the second dominant_pass is output as the following:

EZW – An example(5)

IZ, ZTR, NEG, POS, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR

The significant coefficients are put in the subordinate list and 
all data in this list will be refined as:

ABS(Original data) 63-
32

34-
32

49-
32

47-
32

-31 23

Output symbol 1 0 0 1 1 0

ABS(Reconstructed 
data)

60 36 52 44 28 20

For example, the output for 63 is:
sign    32    16    8    4    2    1
0       1      1    1    ?     ?    ?

The computation is now extended with respect to the next significant 
bit. So 63 will be reconstructed as the average of 56 and 64 –- 60!
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The process is going on until threshold =1, the final output as:

EZW – An example(6)

D1: pnzt pttt tztt tttt tptt 
S1: 1010 
D2: ztnptttttttt 
S2: 100110 
D3: zzzzzppnppnttnnptpttnttttttttptttptttttttttptttttttttttt 
S3: 10011101111011011000 
D4: zzzzzzztztznzzzzpttptpptpnptntttttptpnpppptttttptptttpnp 
S4: 11011111011001000001110110100010010101100 
D5: zzzzztzzzzztpzzzttpttttnptppttptttnppnttttpnnpttpttppttt 
S5: 10111100110100010111110101101100100000000110110110011000111 
D6: zzzttztttztttttnnttt
Here p=pos, n=neg, z=iz, t=ztr  The encoding used is : POS—01, NEG—11, ZTR—00, IZ--10

For example, the output for 63 is:
sign    32    16    8    4    2    1
0       1      1    1    1     1    1

So 63 will be reconstructed as 32+16+8+4+2+1=63!
Note, how progressive transmission can be done.



#106

Wavelet Theory: Conclusions

Wavelets are a useful tool, better than the Fourier 
transform in many applications.
Most powerful aspect of wavelets is their inherent 
multi-resolution analysis of signals and images.
Wavelets have popularized multi-resolution 
approaches.
Very active field, many conferences, special journal 
issues, everyone is trying wavelets.
Applications are wide-ranging. 

Signal processing, data compression, computer vision, 
computer graphics, quantum physics, fast numerical 
algorithms.
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