
PPM(Prediction by Partial Match)

The Huffman and arithmetic coders are sometimes referred to as the entropy coder.
These methods normally use an order (0) model. If a good model with low entropy can be
built external to the algorithms, these algorithms can generate the binary codes very
efficiently. One of the most well known modeler is “prediction by partial match” (PPM)
[ClW84; Moff90].

 PPM uses a finite context Order (k) model where k is the maximum context that is
specified ahead of execution of the algorithm. The program maintains all the previous
occurrences of context at each level of k in a table or a trie-like data structure with
associated probability values for each context.

Exclusion Principle: If a context at a lower level is a suffix of a context at a higher level,
this context is excluded at the lower level.

Escape Character: At each level and for each distinct context at that level (except the
level with k = -1), an escape character is defined whose frequency of occurrence is
assumed to be equal to the number of distinct characters occurring for a given context
encountered in the text so far encoded, at that context level for the purpose of calculating
its probability. The escape character is required to handle the situation when the encoder
encounters a new context never encountered before at any context level to give the
decoder a signal that the context length has to be reduced by 1.

Algorithm: During the encoding process, the algorithm estimates the probability of the
occurrence of some given next character in the text stream as follows: the algorithm tries
to find the current context of maximum length k for this character in the context table or
trie. If the context is not found, it passes the probability of the escape character at this
level for this context and goes down one level to k-1 context table to find the current
context of length k-1 and the process is repeated. If it continues to fail to find the context,
it may go down ultimately to k=-1 level corresponding to equiprobable level for which
the probability of any next character is 1/|A|. If, on the other hand, a context of length q,
0<=q<=k, is found, then the probability of this next character is estimated to be the
product of probabilities of escape characters at levels k, k-1, . . ., q+1 multiplied by the
probability of the context found at the qth level. This probability value is then passed to
the backend entropy coder (arithmetic coder) to obtain the encoding. Note, at the
beginning there is no context available so the algorithm assumes a model with k = -1. The
context lengths are shorter at the early stage of the encoding when only a few contexts
have been seen. As the encoding proceeds, longer and longer context become available.

Methods of Handling “Zero Frequency”

Method C :The method to assign probability to the escape character is called the method
C and is as follows: at any level, with the current context, let the total number of symbols

seen previously be nt and let nd be the total number of distinct context. Then the
probability of the escape character is given by nd/(nd + nt). Any other character which
appeared in this context nc times will have a probability nc/(nd + nt). The intuitive
explanation of this method, based on experimental evidence, is that if many distinct
context are encountered, then the escape character will have higher probability but if
these distinct context tend to appear too many times, then the probability of the escape
character decreases. The PPM method using method C for probability estimation is
called PPMC algorithm. There are a few other variations:

Method A: PPMA uses method A which simply assigns a count of 1 to escape character
yielding its probability to be 1/(nt +1) and the probability of the character which appeared
nc times is nc/(nt+1).

PPMB PPMB is very similar to PPMC except that the probability of a symbol is (nc-1)/(
nd + nt), that is 1 is subtracted from the count nc If nc is 1, since nc-1 becomes 0, no
probability is assigned to the symbol and the count for the escape character is increased
by 1.

PPMD: In PPMD, the escape character gets a probability of nd/2nt and the symbol gets
a probability (2nc-1)/2nt. All of these methods have been proposed based on practical
experience and have only some intuitive explanation but no theoretical basis. PPMD
performs better than PPMC which is better than either PPMA or PPMB.

PPM*: In one version of PPM, called PPM*, an arbitrary length context is allowed
which should give the optimal minimum entropy. In practice a model with k = 5 behaves
as good as PPM* [ClTW95]. Although the PPM family of algorithms performs better
than other compression algorithms in terms of high compression ratio or low BPC, it is
very computation intensive and slow due to the enormous amount of computation that is
needed as each character is processed for maintaining the context information and
updating their probabilities.

PPM* with Deterministic Context: The idea is that if a long context used only once, it
is very unlikely that it will encounter a new symbol once. Contexts that are always
followed by the same symbol are called deterministic context. The algorithm first looks
for the longest deterministic context. If the symbol to be encoded does not appear in this
context, an escape character is emitted and then the algorithm defaults to normal PPM*.
It has been experimentally verified that a deterministic context length of 5 is as good as
PPM* for all English text.

PPMD+ : It is PPMD with a training set.

PPMX: See “Managing Gigabytes”, p.67. Also Read Section 2.5 from this book.

 Further reading from Salomon, Sayood and Moffat-Turpin.

An Example

12

Order k=2 Order k=1 Order k=0
Pr. Cn. P Pr. Cn. P Pr. Cn. P
**
ab>r 2 2/3 a>b 2 2/7 >a 5 5/16
>Esc 1 1/3 a>c 1 1/7 >b 2 2/16

a>d 1 1/7 >c 1 1/16
>Esc 3 3/7 >d 1 1/16

ac>a 1 ½ r>a 2 2/3 >r 2 2/16
>Esc 1 ½ Esc 1 1/3

b>r 2 2/3 >Esc 5 5/16
ad>a 1 ½ >Esc 1 1/3
>Esc 1 ½ -----------------

c>a 1 ½ Order k=-1
br>a 2 2/3 >Esc 1 ½ Pr. Cn. P
>Esc 1 1/3 -----------------

d>a 1 ½ > A 1 1/|A|
ca>d 1 ½ Esc 1 ½ -----------------

>Esc 1 ½ , da>b 1 ½, Esc 1 ½ ra>c 1 ½, Esc 1 ½

PPMC model for the string ‘abracadabra’(Cleary-
Teahan,Computer Journal,Vol.36,No.5,1993)

13

Char Probabilities No. of bits
Without With
Exclusion Exclusion

**
c ½ ½ -log(1/2)=1 bit

d ½, 1/7 ½, 1/6 -log(1/2*1/6)=3.6 bits

t ½,3/7,5/16,1/|A| ½,3/6,5/12,1/(|A|-5) -log(1/2.3/6.5/12.1/251)=11.2
bits(?)
**
Note for ‘d’, for Order(1) model the probability is increased to 1/6 (rather
than 1/7) with exclusion. This is because ‘c’ appeared in the context of ‘ra’
and therefore the context a->c will never be used at lower level and therefore
should be excluded in estimating the probabilities at level 1. Similarly, the
escape probability for t at Order (1) is reduced to 3/6 and so on. Since ‘b’,’c’
and ‘d’ appear in the context of ‘a->’, these are removed from Order(0)
context, so that Esc probability for Order(0) is 5/12. In order (-1) , the Esc
probability is 1/251 since 5 characters appear before (256-5=251). Note,
Sayood descibes a slightly different method for Esc probability estimate.

	An Example

