
 
daptive Huffman and arithmetic methods are universal in the sense 
that the encoder can adapt to the statistics of the source. But, 
adaptation is computationally expensive, particular when k-th order 

Markov approximation is needed for some k > 2. As we know, the kth order 
approximation approaches the source entropy rate when k → ∞. For example, for 
English text, to do second order Markov approximation, we will need to estimate 
the probability of all possible triplets (about 353=42,875, 35 = {a-z,(,)....etc} ) 
triplets, which is impractical. Arithmetic codes are inherently adaptive, but it is 
slow and works well for binary file. 
 
The dictionary-based methods such as the LZ-family of encoders do not use any 
statistical model, nor do they use variable size prefix code. Yet, they are universal, 
adaptive, reasonably fast and use modest amount of storage and computational 
resources. Variants of LZ algorithm form the basis of Unix compress, gzip, pkzip, 
stacker and for modems operating at more than 14.4 KBPS. 

  

Dictionary Models
The dictionary model allows several consecutive symbols, 
called phrases stored in a dictionary, to be encoded as an 
address in the dictionary. Usually,  an adaptive model is 
used where the dictionary is encoded using previously 
encoded  text. As the text is compressed, previously 
encountered substrings are added to the dictionary. Almost 
all adaptive dictionary models originated from the original 
papers by Ziv and Lempel which led to several families of 
LZ coding techniques.
Here we will present a couple of those techniques.
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LZ77 algorithms
The prior text constitutes the codebook or the dictionary. Rather
than keeping an explicit dictionary, the decoded text up to current
time can be used as a dictionary. The figure below shows the
characters abaabab just decoded and the decoder is looking at
the triplet (5,3,b) - number 5 denotes how far back to look into the
already decoded text stream, number 3 gives the length of the phrase
matched beginning the first character of yet un-encoded part of the text
and the character ‘b’ gives the next character from input. 
This yields ‘aabb’ to be the next phrase added. 

a b a a b a b
(0,0,a)

(0,0,b)
(2,1,a) (3,2,b) (5,3,b) (10,1,a) Encoded Output

Decoded Output

 
 
 
 

  

LZ77 Algorithm with Finite 
Buffer

s

Two buffers of finite size W, called the search(left) and the look-ahead(right )buffers
are connected as a shift register. The text to be decoded is shifted in from right to left, 
initially placing  W symbols  in the right buffer and filling in the left buffer with the 
first character of the text. The information transmitted is (p,L,S) and the buffer is
shifted L+1 places left. Actually, rather than transmitting p, the offset backward in 
the search buffer is transmitted. The process is repeated until text is fully encoded.

L= maximum length of the first substring from right end of thesearch buffer
starting at position p that matches with a substring in the look-ahead buffer 
beginning at position 1. 

S= the next symbol after the match in the right buffer.
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♣ Read 5.3 and 5.4 from K. Sayood. Pp. 118-133. 
 



♣ A formal description of LZ77 with Sliding Window W 
 
 
 
 
The main idea of the algorithm is to use a dictionary to store the strings previously 
encountered. The encoder maintains a sliding window W in which the inputs are 
shifted from right to left. The window is split into two parts: The search buffer, 
which is the current dictionary, holding the recently encoded characters or 
symbols. The right part of the window is called look-ahead buffer, containing the 
text to be encoded. In practical implementation, the size of the search buffer could 
be several thousand bytes (8k or 16K) whereas the look-ahead buffer is very small 
(less than 100 bytes). The encoder searches the search buffer looking for the 
longest match beginning with the first character in the look-ahead buffer. The 
encoded output is a triple (B, l, ch), where B is the distance traversed backwards 
or the offset in the search buffer, l is the length of the match and ch is the next 
character in the look-ahead buffer for which the match fails. In case, l=0, B=0, and 
the character ch keeps the encoding process going. 
 
To encode text T [1...N] with a sliding window of W characters.   
 
Algorithm to Encode 
 
 Set p ← 1  /* p points to next charater in T to be coded */ 
 
 

 
While    there is text remaining to be encoded do 

  
{Search for first T[p] in the search buffer;  
 
If T[p] does not appear then {output (0,0,T[p]); p←p+1} 
Else 
{ suppose that matches occur at offsets m1 < m2 < .... < ms with 
lengths  l1, l2 ,... ls. Let l = max (l1,l2... ls) at offset  mmax = mi for some 
i, 1 ≤ i ≤ s. If there are more than one li with same value of l, take the 
value of max closet to the end of the search buffer. Note, the value of 
p is incremented by an amount l while the pattern matching operation 
takes place.  
 
 Output triple (B= m max, l, Ch=T[p+1]); 
 
 Set p ← p + 2} 
endwhile 



 
To Decode 
 
/* Assume that the offsets are measured in the left direction beginning the last 
character  of the search buffer while text is indexed always in the positive direction 
from left to right. */ 
 
Set p ← 1 /*next character of T to be decoded.*/ 
For each triple (B, l ,ch) input do 
{If B=l=0 then {T[p]:=ch ; p←p+1;} 
                else { T[p,..p+l-1] ← T[B,B-1,…,B- l+1]; 
                         T[p+l] ← ch 
                        p ←p +l+1;} 
Shift buffer contents left by l+1 places} 
 
In step 2 of encoding algorithm, selecting the last match rather than the first or 
second, simplifies the encoder since the algorithm only has to keep track of the 
last string match details. But selecting the first match (greedy approach) may make 
the value of the offsets smaller and hence can be compressed further using a 
statistical coder such as Huffman (such a method by Berhard is called LZH). 
Note, the string matching operation may begin at the search buffer but may spill 
over to the look-ahead buffer, which may even make the length l bigger than the 
look-ahead buffer. 
 
 
  ................. 
  
 
 
 Search Buffer      Look-Ahead Buffer 
 
The LZ77 method has been improved in the 1980's and 1990's in several ways: 
 
• Use variable-size Huffman code for the length (l) and offset(B) fields. (A fixed 

format needs ⎡ ⎤l2log  bits to denote l for the look-ahead buffer and 

⎡ ⎤B2log  bits for the search buffer.  
• Increased sizes of the buffer to find longer and longer matches. The search 

time would increase. A more sophisticated data structure (TRIE) may improve 
the search time. 
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• Use a circular queue for the sliding window. In the sliding window, all the text 
characters have to be moved left after each match. A circular-queue avoids 
this. 

 
 
 
 
Start(S) End (E)         S                           E 
 
       (a)        (b) 
 
 
 
 
 E S            E   S 
  (c)       (d) 
 
 
 
    E    S         E   S 
    (e)       (f)    
• The different states of a 16-character buffer input : sid-eastman-easily 

(Example taken from David Soloman, p.157). In (a), a 16 byte array is shown 
with only 8 bytes occupied, S denoting start point and E denoting the end 
point. In (b), all 16 bytes are occupied. In (c), character ‘s’ deleted, and 
character ‘l’ inserted.  Now , E is located left of S. In (d), two letters ‘id’ have 
been effectively deleted (by moving the start pointer to first ‘-‘) although they 
are still present in the buffer. In (e), two characters ‘y-‘  have been appended 
and pointer E moved two places right. In (f), the pointers show that the buffer 
ends at ‘teas’ and starts at ‘tman’.  Inserting new symbols into the circular 
queue and moving the pointers is thus equivalent to shifting the contents of the 
queue. No actual shifting or moving in necessary. 

 
• Eliminates the third element of the triple (ch) by adding an extra flag bit. 
 

The improved version is called LZSS. 
 
LZSS 
 
• Uses a circular queue for look-ahead buffer, 

s  i  d - e  a  s  t sid - eastman- easi 

lid-eastman-easi lid-eastman-easi 

ly--eastman-easi ly-teastman-easi 



 
• Holds search buffers (the dictionary) in a binary search tree, and 
 
• It creates tokens with only 2 fields. 
 
Example: 
 
"sid-eastman-clumsily-teases-sea-sick-seals" 
 
 

    sid-eastman-clum    sily-................... 
  
 
Temporary Search Buffer(16)   Look-Ahead Buffer(5) 
 
The encoder scans the search buffer having 12 5-character strings, which are five 
consecutive characters or 5-grams of the search buffer. They are stored in a RAM 
along with a binary search tree [a height balanced search tree like AVL tree], each 
node with its offset. ( A binary search tree is a binary tree where the left subtree of 
every node X contains nodes smaller than X, and the right subtree contains nodes 
greater than X.  A lexicographic ‘less than’ or ‘greater than’ relation is used for 
this purpose including the special characters. For this example, the character ‘-‘ is 
assumed to be smallest. The addresses 0-4 in the RAM holds the look ahead 
buffer. 
                
     
               15,id-ea 
 
 
 

   11,astma                             16,sid-e 
 
 
        13,-east     14,d-east        8, man-c  10, stman 
 
 
 
5,-clum  7,an-cl       12,eastm   6,n-clu            9,tman- 

  
 
 
 

sid-e 16 
id-ea 15 
d-east 14 
-east 13 
eastm 12 
astme 11 
stman 10 
tman- 9 
man-c 8 
an-cl 7 
n-clu 6 
-clum 5 



The first symbol in the Look-Ahead buffer is 's'. Two words are found at offset 16 
and 10   of which 16 leads to a longer match 'si' of length 2. The encoder emits 
(16,2). The next window is 
 

           sid-eastman-clumsily-te....... 
 
The tree is updated by deleting 'sid-e' and 'id-ea' and inserting two new strings 
'clums' and 'lumsi'. Note, the words deleted are always from the top addresses in 
RAM, and the words added are from the bottom of the RAM. This statement is 
true in general if there is a longer k-letter match. The window has to be shifted k 
positions. 
 
A simple procedure to update the tree is to take the first 5 letter word in the search 
buffer, find it in the tree, delete it, slide the buffer by one position to right, prepare 
a string consisting of the last 5 letters in the search buffer and add this to the tree. 
This has to be updated k times. 
 
Since each update operation deletes an entry from the tree and also adds another 
entry in the tree, the size of the search tree never changes; it remains constant.. 
More precisely the number of nodes in the tree equals length of the search buffer 
minus length of the look ahead buffer plus 1. For this example, it is 16-5+1=12. 
The RAM also contains same number of entries. The AVL tree keeps the height of 
the tree balanced after insertions and deletions. 
 
In contrast to LZ 77, LZSS does not send a 3-field token. When there is match, it 
sends only two tokens (B, l) – the offset and length of the match. If there is no 
match, it will send the raw text character in its uncompressed (8 bit ASCII) format. 
To differentiate between tokens and uncompressed characters, each is preceded by 
a one bit flag. In practice, values are chosen such that a token can be fitted into 
multiple of bytes. A typical choice is search buffer size 2 Kbytes ( 11 bit address 
for B) and look ahead buffer size 32 ( 5 bits for l). With this choice the encoder 
will emit 2-byte tokens and 1-byte uncompressed characters.  To preserve ‘byte 
integrity’, the flags are collected in 1 byte and 8 tokens/ASCII codes could be 
transmitted together. Thus eight output items are transmitted together: a 8-bit flag 
followed by 8 items each 1 or 2 byte long. 
 
 
 
 
 
 
 



LZ78 (Lempel-Ziv-78) 
 

ne of the major drawbacks of LZ77 is that there is an implicit assumption 
that like patterns occur close together so that they can be found during 
string matching operation. If the like patterns are separated by gaps longer 

than the search buffer size, LZ77 will not compress at all. An extreme example is: 
 

 abcdefabcdefabcdef 
 

 Search Buffer    Look-Ahead Buffer 
 
There will be no string match and each character will be sent with a flag, leading 
to expansion rather than compression. For another example, say the word 
"economy" occurs many times in the text but they occur sufficiently far away so 
that it will never be compressed. A better strategy will be to store the common 
occurring strings in a dictionary rather than letting them slide away. It means it 
does not have a window to limit how far back the substrings can be referenced. 
This is the basic principle of LZ78, which builds up the dictionary of common 
phrases. The decoder performs identical operation creating the same dictionary 
dynamically and in sync. The output is a sequence of tokens consisting of two 
items <j, S>,j = a pointer address to the dictionary and 'S' is the next character. 

LZ78 Algorithm
The family of LZ algorithms use an adaptive dictionary based on a scheme
to compress text strings. The basic idea is to replace a substring of
the text with a pointer (initially 0) in a table (codebook or dictionary) where 
that substring occurred previously.

S

String already 
parsed

Longest substring
already in table at 
location j

New Symbol S

Transmit (j,S) and repeat process beginning the next symbol after S.
Enter at current pointer +1 location the longest substring concatenated with
with S. Initialize j=0.

 

O 



Example
Message : aa_bbb_cccc_ddddd_e
Pointer      Longest

Substring
1               a
2               a_
3               b
4               bb
5               _
6               c
7               cc
8              c_
9              d

10 dd
11 dd_
12             e

The decoder can build an identical table at the 
receiving end.

Transmitted Information
(j,S)
0,a
1,_
0,b
3,b
0,_
0,c
6,c
6,_
0,d
9,d
10,_
0,e

 
The LZ78 can be looked upon as a parsing of the input strings as ‘phrases’, which 
are entered in the static dictionary. Thus, the string ‘abaababaa’ is parsed into 
phrases ‘a’,’b’,’aa’,’ba’,’baa’ and entered into phrase dictionary as 
 

Phrase # Phrase Output 
Token 

1 a (0,a) 
2 b (0,b) 
3 aa (1,a) 
4 ba (2,a) 
5 baa (4,a) 

 
 
where phrase number 0 stands for null phrase. Using a table to store the phrases is 
not very storage efficient. A more efficient method is to use a data structure called 
TRIE (or digital search tree) as shown below. The character of each phrase 
specifies a path from the root of the TRIE to the node that contains the number of 
phrase. The characters to be encoded are used to traverse the TRIE until the path is 
blocked either because there is no onward path for indicated character or leaf node 
is reached. The node at which block occur gives the phrase number for output. The 
character is appended to the output and a new node is created corresponding to a 
new phrase in the codebook or dictionary. 
 



If the input alphabet is large, the TRIE may have 
only a few pointers emanating from each node 
which gives rise to the problem of allocating 
enough storage at the beginning of each node for all 
possible future pointers. A linked list data structure 
to represent sparse pointer array may do a better 
job. A faster and simpler method is to use a hash 
table in which the current node number and the next 
input character are hashed to determine where the 
next node can be found. 
 
The TRIE data structure continues to grow as 
coding proceeds and eventually it may become too 

large. Several strategies can be used when memory is full. The TRIE is removed 
and the process is initialized again. Stop any further updates at the cost of less 
compression. Partially rebuild it using only the last few hundred bytes of coded 
text so that some knowledge from prior adaptation is retained. 
 
 Encoding for LZ78 is faster than LZ77 but decoding is slower since the decoder 
must store the parsed phrases. One variant of the LZ78 scheme, called LZW has 
been used widely in compression systems. 
 
 
LZW (Lempel-Ziv-Welch Algorithm) 
 

he main difference between LZW and 
LZ78 is that the encoding consists of a 
string of phrase numbers and the explicit 
‘next’ character are not part of the 
output.This is done by initializing the 
dictionary or the TRIE with all letters of 
the alphabet. 
 
Example 1 
“abcabbcabba”. The dictionary D is 
initialized with three nodes 1, 2 and 3  

      corresponding to the alphabet 
A=(a, b, c). 
 
Encoding 
a is in D, ab  not in D, add 4,output 1 
b is in D, bc  not in D, add 5,output 2 
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c is in D, ca  not in D, add 6,output 3 
ab is in D, abb not in D, add 7,output 4 
bc is in D, bca not in D, add 8,output 5 
abb is in D, abba not in D, add 9,output 6 
a is in D, output 1 
 
Parsing: a b c ab bc abb a 
 
Encoder output: 1234571 
 
The decoder does the reverse operation. It starts with initial dictionary D and 
keeps adding new no as it receive the node sequences from the encoder. 
 
 
 
 
 
Decode 1234571 
1 →  output a  → a is in D 
2 →  output b  → ab not  in D add 4 
3 →  output c  → bc not  in D add 5 
4 →  output ab  → ca not  in D, add 6 
5 →  output bc  → abb not in D add 7 
7 →  output abb  → bca not in D add 8 
1 →  output a  → abba  is in D add 9 



Example 2 
T = aba ab ab ba aba abaa 
a b a  ab  ab  ba  aba  abaa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note the encoder has used the phrase 9 immediately after it has been constructed.  
The final output of the encoder is: 12133469 
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Decoding 
The decoding will proceed smoothly till number 6 producing output 
abaababbaaba…. and creating phrases upto 8 in the dictionary, but does not know 
what phrase 9 is!  Fortunately, the decoder knows the beginning of new phrase – it 
is aba –and that the last character of this phrase (which is unknown yet) is the first 
character of the phrase 6. Since, phrase 9 will be constructed by appending one 
character to phrase 6, phrase 9 must begin with same character as phrase 6,which 
is ‘a’. Thus phrase 9 must be ‘abaa’ and decoding will proceed. 
 
Whenever a phrase is referenced as soon as the encoder has created it, the last 
character of the phrase must be same as the first character. 
 
Despite this little problem in decoding, LZW works well giving good compression 
and efficient implementation. The following description of the algorithm is based 
on the description in “Managing Gigabytes” [WMB,1990]. Note ++ means 
concatenation 
 
Encoding Algorithm 
 
1 Set p=1 /* p, an index to text T[1…N].*/ 

/* assume alphabet, A=(0,1,2,..,q-1) */ 
q= size of the alphabet; 
previous-phrase= null; 
 

2 For d= 0 to q-1 do D[d] =character ‘d’  
/* D is the TRIE with a root and q children. The leaves 
are numbered 0,1, …,q-1. Each edge is recognized as 
a phrase D(d) */  

3 d=d+1 /* The node number for next entry in the 
dictionary. The next node number starts at q */ 

4 while input stream not exhausted do 
 
 Trace TRIE D to find the largest match beginning 
T[p]. Suppose, the match terminate at phrase 
number c and the length of the match is l. 
New-phrase= previous phrase**first character of 
the matched pattern; 
D(d)= new-phrase;  
Add an edge for D(d) extending the TRIE by one 
node if D(d) already does not exist in D. /* The 
case where the edge already exists occurs only for 
phrases corresponding to single symbols. */ 
 



 d = d+1 /* next entry to TRIE. */ 
previous-phrase= new-phrase 
 output code c 
       p=p+l; 
endwhile 
 

 



LZW Algorithm

This algorithm eliminates the need to transmit the ‘next’ character as in 
the LZ78 algorithm.The dictionary is initialized to contain all characters 
in the alphabet. New phrases are added to the dictionary  by appending 
the first character of next phrases . The algorithm is best described by 
using a ‘trie’ data structure to represent all distinct phrases
in the dictionary . The algorithm is illustrated below.
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Decoding Algorithm 
 
Setp1,2,3 are same as in encoding setting up the initial TRIE or dictionary. Let the 
code sequence be S=c1 c2 …ck 



 
             Decode c1 - output D(c1) 
             for j=2 to k do 
  begin 
                         If cj is in D, then { 
                             output D(cj),Create a new phrase by concatenating cj-1 with the  
                             first character of cj 
                        } 
                        else 
                        { 
                   D(cj) = D(cj-1)++F(cj-1); 
                             Output D(cj) 
                        } 
               /*F(cj-1) is the first character of the last phrase decoded.*/ 
                        Enter a new phrase number in D. 
            end 
 
 
LZW has been fine-tuned and has several variants. The Unix compress is one such 
variant. Compress uses a variable-length code to represent the phrase number and 
puts a maximum limit to the size of the phrase number. If afterwards the 
compression performance degrades, the dictionary is re-built from scratch. 
  


