
Wavelets 
 

Review Fourier Transform and Short Term Fourier Transform ( Read the tutorial posted 
on the web and/or read from either Sayood or Salomon). 
 
The Problems with Fourier Transform 
 
The Fourier transform hides information about time. It gives unambiguous information 
about the frequencies that the signal contains but it does not say at what times these 
frequencies occur. As a result, two signals, one stationary and the other no-stationary, 
containing the same frequencies will give the same frequency spectrum. Every frequency 
is considered a global characteristic of the signal. A discontinuity in the local part of the 
signal is translated in the frequency spectrum over the entire time domain – a local 
characteristic becomes a global characteristic. This does not mean that the information 
regarding time is totally lost, it becomes embedded in the ‘phases’ of the components and 
this is the reason we can reconstruct the original time signal faithfully. 
 
The lack of time information makes Fourier transform error prone. If a signal is received 
correctly for hours and gets corrupted for only a few second, it totally destroys the signal 
because the frequencies injected  spread over the entire time domain and the errors 
become global. 
 
A qualitative explanation of why Fourier transform fails to capture time information is 
the fact that the set of basis functions ( sines and cosines) are infinitely long and the 
transform picks up the frequencies regardless of where it appears in the signal. 
 
Uncertainty Principle 
 
The time and frequency domains are complimentary. If one is local, the other is global. 
For an impulse signal, which assumes a constant value for a very brief period of time, the 
frequency spectrum is infinite whereas if a sinusoidal signal extends over infinite time, its 
frequency spectrum is a single vertical line at the given frequency. We can always 
localize a signal or a frequency but we cannot do that simultaneously. If the signal has a 
short duration, its band of frequency is wide and vice versa. 
 
Heisenberg’s uncertainty principle was enunciated in the context of quantum physics 
which stated that the position and the momentum of a particle cannot be precisely 
determined simultaneously.  This principle is also applicable to signal processing where 
the precise statement is as follows.  
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where t  denote average values of t and f ,and G(f) is the Fourier transform of g(t). mm f,

Short-Term Fourier Transform (STFT) 

(Read the tutorial posted in the course web page.) 

The STFT is an attempt to alleviate the problems with FT. It takes a non-stationary signal 
and breaks it down into “windows” of signals for a specified short period of time and 
does FT on the window by  considering  the signal to consist of  repeated windows over 
time. This gives a better picture of the frequency content of the signal over the segment 
period but suffers from the disadvantage that the analysis is error prone if the size of the 
“window” is not suitably chosen. 

The following three diagrams depict the differences between FT, STFT and Wavelets For 
wavelets the time-frequency tiling looks quite different. The frequency spectrum is 
divided into octaves ( scale or pitch).  The signals at higher octaves have fine time 
resolution and the resolution becomes coarser and coarser as the octaves are smaller 
signifying lower frequencies.  The is an ideal scheme for muti-resolution analysis since 
human eyes are very sensitive to lower frequencies and have good visual perception of 
the object even if a good fraction of higher frequencies are totally missing from its 
representation. Of course, for lossless compression we need all the frequency components 
and enables multi-resolution analysis of the signal easily. 

For wavelets the time-frequency tiling looks quite different. The frequency spectrum is 
divided into octaves (signifying scale or pitch).  The signals at higher octaves have fine 
time resolution and the resolution becomes coarser and coarser as the octaves are smaller 
signifying lower frequencies.   
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Wavelet: At low frequency, 
we use a larger time window. 
With increasing frequency, 
the time window gets smaller 
according to the uncertainty 
principle explained earlier. 
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Wavelet Fundamentals ( Read Sayood Section 14.3, pp.459-462, Section 14.4, pp.462-
468. Salomon Section 5.5, pp.467-474, Section 5.6 , pp. 474-484, Section 5.6.3, pp. 490-
491 ) 

 
CWT – Continuous Wavelet Transfomation 

 
• ψ(t) – A “mother” wavelet function. 

• A scaled and translated mother wavelet: )(1)(, a
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where a = scaling factor, b = translation to right. 
• f(t): an arbitrary function of time 
• Wavelet transform 
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• The inverse wavelet transform 
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DWT – Discrete Wavelet Transform 
If (a,b) take discrete value in 2R , we get DWT. A popular approach to select (a,b) is 
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Wavelet Transform: 
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If f(t) is continuous while  consists of discrete values, the series is called the baw , discrete 
time wavelet transform (DTWT). If f(t) is sampled (that is, discrete in time, as well as 

 are discrete, we get baw , discrete wavelet transform (DTWT). 
 
 

Multi-resolution Analysis (MRA) 
 

Let’s say , we want to represent a real number N=87/7=12. 4285714… by a series of 
successive approximation. Depending on the desired accuracy, we can approximate N 
successively as sequence of “round-off” values 10, 12, 12.4,12.42, …etc.  The successive 
difference between two consecutive round-off values (2, 0.4, 0.02, 0.008, …) is called the 
“detail” part. The round off values are sometimes also called the “averages”. In multi-
resolution analysis, we use a scaling function to represent the round off values and a 
wavelet function to represent the detail values. The further we descend the level of 
details, the more accurate is the approximation. In the other direction, if we “stretch” the 
scaling function more and more, we end up seeing nothing at as if we trying to 
approximate 87/7 by 100’s  and at that point all information is in the details: 
10+2+0.4+0.02+0.008. This numerical example gives only a conceptual idea of multi-
resolution analysis. 
  
Let’s take another example. A function is to be viewed at various levels of approximation 
and resolutions. The idea is to divide a complicated function into several simple functions 
and study them separately. If a function has both a slowly varying as well as a rapidly 
varying component, we have to discretize it using step size (h) determined by the rapidly 
varying segment. This needs a large number of data point. The coarsest approximation of 
the function together with the details at every level completely represents the original 
function. Note with every level (scale) the step size is doubled. 



 
 
Study MRA equations and applications (Section 14.5, 14.6 and 14.7) from Sayood. 
  
Define a scaling function )(tφ . 
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Harr Mother wavelet 
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Ex.1. Now consider, a function 



    
Do you agree? 
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The coefficient for )(tφ  is the average = (5+3)/2 = 4. 
The coefficient for )(tψ  is the difference avg. = (5-3)/2 = 1. 
 
Ex.2.  
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Haar Transform 
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Interpretation of Computing Haar transform as averages and details taking O(N) time. 
Examples of Haar Trasnforms ( pp. 479-488, Salomon)). 
 
Matrix multiplication interpretation of Haar transform (Salomom, pp.490-491) 



 
 

Subband Coding 

Subband coding is a technique of decomposing the source signal into constitutent parts 
and coding the parts separately. 

One drawback of transform coding is that it artificially divides the source output into 
“blocks”, which might give rise to blocking artifacts. In subband coding the source signal 
output is decomposed into “constituent” frequencies. The constituents might have 
characteristics that relates to specific features of the image, compressability, R(D) values, 
quantization rates etc. 

Read pp. Sayood, Chapter 13 Sections 13.2 and 13.3, pp.405-416 

Nyquist’s Law : If the highest frequency component of a signal is f0  , then we need to 
sample the signal  at more than or equal to 2 f0  times per second in order to achieve 
accurate reconstruction of the signal. If the signal has frequency components between f1 
and f2 , then we need to sample the signal at more than or equal to 2(f2- f1) times per 
second to have faithful reconstruction. If this law is violated, a kind distortion called 
aliasing  take place which introduces unwanted signals with frequencies higher than half 
the sampling rate at lower frequencies.  To prevent this kind of distortion, the system is 
equipped with anti-aliasing filter which restricts the input to the sampler to be less than 
half the sampling frequency. 

The remainder of the reading assignment in Sayood gives a basic introduction to signal 
processing and explains concepts like finite impulse response (FIR), convolution  and 
quadrature mirror filter and filter banks for analysis and synthesis. Although not required 
for your final exam, this material is fundamental for your understanding of multi-
resolution analysis using wavelets. ( You may read this material from any standard text 
book on signal processing). 

Multi-Resolution Analysis 

Let’s now take a hypothetical signal as shown in Ex 2 and repeated below. 
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Note, if  the function has a resolution at a frequency f. Then both the scaling and the 
wavelet function has a resolution at half the frequency f .  We have used the Haar scaling 
and wavelet functions to express the given function. In general we can write 
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The multi-resolution can be performed if the signal satisfies the following conditions: 

1) The scaling function must be orthogonal to its translates by integers. 

2) The signal at any resolution contains all the information of the signal at coarses 
resolution. This is mathematically expressed by talking about the space Vj. 

V0= {space generated by the scaling function and its translates} 

V1={ space generated by scaling function compressed by a factor of two and 
translated by half integers} and so on for Vj. We also know that  
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3) Any signal  can be approximated with arbitrary precision. 

 



If the above four conditions are satisfied, then there exists a wavelet that, with its 
translates, by integers and dilates by a factor of two can encode the difference of 
information between the signal seen at two successive resolutions. In mathematical terms, 
as we have seen earlier, 

                                            W  1+=⊗ jjj VV

Multi-resolution theory gives a simple and fast method for decompressing a signal into 
its components at different scales. We progressively drain the signal of its information . 
At each step, we encode the details as wavelet coefficients and then work at the next level 
with the signal seen at half its previous resolution. 

In the language of wavelet theory, the scaling function is dilated  to make an image of the 
signal at half resolution. In the language of signal processing, a low pass filter is applied 
to the signal and the result is sub-sampled, taking only half as many samples. 

 
Filter Banks 
 
 The Haar transform can be looked upon as a bank of filters, lowpass and highpass 
filters.  A tree structured architecture of low and high pass filters in tandem with down-
sampling or decimation  can also be interpreted as sub-band decomposition 
corresponding to multi-resolution   analysis. 
 
A filter  is a linear operator in terms of filter coefficients h(0), h(1), h(2), …h(t). The 
number t is called the “tap” of the filter. Thus if t=2, it is called a 2-tap filter. See a few 
more examples of higher tap filters in p. 513, Sayood. The filter is used to transform the 
input vector x(n) to an output vector y(n) by the Convolution  operation, as defined 
earlier: 
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for all values of n=1,2, ….  For the sampled input sequence x(n).  
 
Matrix Formulation of the Filter Bank Operations 

In practice, digital filters perform these scaling (smoothing the signal) and wavelet 
(picking the differences) operations using simple arithmetic of multiplication and 
addition via the convolution operation. 

The k th term of the convolution of two sequences a  and b is defined as  
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If we interpret a and b  to be represent a radix 10 number, the the above expansion gives 
how many hundreds are there in the product of the numbers a  and  b. 

To transform a signal into wavelets, we convolve  the sampled signals with the a-
coefficients ( the low pass filter coefficients associated with the scaling function) and the 
b-coefficients (so denoted as d-coefficients ( the high-pass filter coefficient associated 
with  the wavelet corresponding to the scaling function). A mathematical proof of this 
statement is given in Sayood and other references on wavelets. For our running example, 

Haar scaling function has: a-1=0.5, a0=0.5 (average computation) and the corresponding 
Haar wavewlet co-efficients are d-1=-0.5, d0=0.5 (difference) [ignoring a square root of 2 
factor]. The signal has values are depicted in the last figure. Now, convolve the signal 
values with the sequence a. The values at time t=0,2,4 6 are .5, .75, .25 and .5. These 
correspond to averages. If we convolve the signal with the d-sequence, we get .5, -.75, 
.25, -.5 which are the same as we observed earlier. 

 
 
A more practical way to compute this transformation is given below. For the average and 
the detail coefficients, two different filters are used. Since the output is computed for 
every input, this will produce all average and details for consecutive inputs pairs. Since 
we need this output for every consecutive disjoint pairs, a down sampling step is needed. 
  

 Let W  and W  denote the low-pass and the high-pass coefficients. 
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 Let the Harr filter be denoted as: 
 

 m=0 m=1 
h(m) 0.5 0.5 
g(m) -0.5 0.5 

  
Let the input sampled signal values be  )8,7,6,5,4,3,2,1(=X



 
Imagine the computation to proceed on a matrix of  rows. At the 01log2 +N th row, 
there are 8 elements (for illustration, assume N=8). The first octave produces two 
groups: 2

N  low resolution values and 2
N   high resolution (detail) values. In the 

next octave computation, only the first 2
N  values are modified to produce their 

averages and detail values. This process is recursed until at the -th octave we 
only have one average and one detail value. This is showed in the following matrix: 

N2log

 
This can be expressed mathematically as: 
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Let’s do one row: 
 j=1, h(0)=0.5,    h(1)=0.5,  n=1,2,…,8 
 
  5.1)5.0(1)5.0(2)1,1( =×+×=LW
  …,etc. 5.3)5.0(3)5.0(4)2,1( =×+×=LW
 
  5.0)5.0(1)5.0(2)5,1( −=×+−×=HW
  …,etc. 5.0)5.0(3)5.0(4)6,1( −=×+−×=HW
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