
Lecture notes of Image Compression and Video 

Compression

2. Transform Coding
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Topics

Introduction to Image Compression
Transform Coding
Subband Coding, Filter Banks
Haar Wavelet Transform
SPIHT, EZW, JPEG 2000
Motion Compensation
Wireless Video Compression 
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Transform Coding

Why transform Coding?
Purpose of transformation is to convert the data into 
a form where compression is easier. This 
transformation will transform the pixels which are 
correlated into a representation where they are 
decorrelated. The new values are usually smaller 
on average than the original values. The net effect 
is to reduce the redundancy of representation.

For lossy compression, the transform 
coefficients can now be quantized according to 
their statistical properties, producing a much 
compressed representation of the original 
image data.



#4

Transform Coding Block Diagram

Transmitter

Receiver

Segment into 
n*n Blocks

Forward 
Transform

Quantization 
and Coder

Original Image f(j,k) F(u,v) F*(uv)

Channel

Combine n*n 
Blocks

Inverse 
Transform Decoder

Reconstructed Image f(j,k) F(u,v) F*(uv)
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How Transform Coders Work

Divide the image into 1x2 blocks
Typical transforms are 8x8 or 16x16

x1

x1

x2

x2
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Joint Probability Distribution

Observe the Joint Probability Distribution 
or the Joint Histogram.

x1
x2

Probability
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Pixel Correlation in Image[Amar]

Rotate 45o clockwise

Source Image: Amar

Before Rotation After Rotation
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Pixel Correlation Map in [Amar]
-- coordinate distribution

Upper: 
Before Rotation
Lower:
After Rotation

Notice the 
variance of Y2 is 
smaller than the 
variance of X2.
Compression: 
apply entropy 
coder on Y2.
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Pixel Correlation in Image[Lenna]

Let’s look at another example

Before Rotation After Rotation

Source Image: Lenna
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

2

1

45cos45sin
45sin45cos

X
X

Y
Y

Y
oo

oo



#10

Pixel Correlation Map in [Lenna]
-- coordinate distribution

Upper: 
Before Rotation
Lower:
After Rotation

Notice the 
variance of Y2 is 
smaller than the 
variance of X2.
Compression: 
apply entropy 
coder on Y2.
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Rotation Matrix

Rotated 45 degrees clockwise

Rotation matrix A
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Orthogonal/orthonormal Matrix

Rotation matrix is orthogonal.
The dot product of a row 
with itself is nonzero.
The dot product of different 
rows is 0.

Futhermore, the rotation 
matrix is orthonormal.

The dot product of a row 
with itself is 1.
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Reconstruct the Image

Goal: recover X from Y.
Since Y = AX, so X = A-1Y
Because the inverse of an orthonormal matrix 
is its transpose, we have A-1 = AT

So, Y = A-1X = ATX
We have inverse matrix
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Energy Compaction

Rotation matrix [A] compacted the energy into Y1.
Energy is the variance (http://davidmlane.com/hyperstat/A16252.html)

Given: 

The total variance of X equals to that of Y. It is 41. 
Transformation makes Y2 (0.707) very small.

If we discard min{X}, we have error 42/41 =0.39
If we discard min{Y}, we have error 0.7072/41 =0.012
Conclusion: we are more confident to discard min{Y}.
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Idea of Transform Coding

Transform the input pixels X0,X1,X2,...,Xn-1 into 
coefficients Y0,Y1,...,Yn-1 (real values)

The coefficients have the property that most of 
them are near zero. 
Most of the “energy” is compacted into a few 
coefficients.

Scalar quantize the coefficient
This is bit allocation.
Important coefficients should have more 
quantization levels.

Entropy encode the quantization symbols.
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Forward transform (1D)

Get the sequence Y from the sequence X.
Each element of Y is a linear combination of 
elements in X.

The element of the matrix are also called the weight of the linear transform, 
and they should be independent of the data (except for the KLT transform). 
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Choosing the Weights of the Basis 
Vector

The general guideline to determine the values 
of A is to make Y0 large,  while remaining 
Y1,...,Yn-1 to be small. 
The value of the coefficient will be large if 
weights aij reinforce the corresponding data 
items Xj. This requires the weights and the 
data values to have similar signs. The 
converse is also true: Yi will be small if the 
weights and the data values to have dissimilar 
signs. 
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Extracting Features of Data 

Thus, the basis vectors should extract distinct 
features of the data vectors and must be 
independent orthogonal). Note the pattern of 
distribution of +1 and -1 in the matrix. They 
are intended to pick up the low and high 
“frequency” components of data.
Normally, the coefficients decrease in the 
order of  Y0,Y1,...,Yn-1.
So, Y is more amenable to compression than 
X. AXY =
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Energy Preserving (1D)

Another consideration to choose rotation matrix is to conserve 
energy.
For example, we have orthogonal matrix 

Energy before rotation: 42+62+52+22=81
Energy after rotation: 172+32+(-5)2+12=324
Energy changed!
Solution: scale W by scale factor. The scaling does not change the fact 
that most of the energy is concentrated at the low frequency components.
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Energy Preserving, Formal Proof

The sum of the squares 
of the transformed 
sequence is the same 
as the sum of the 
squares of the original 
sequence.
Most of the energy are 
concentrated in the low 
frequency coefficients.                    
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Why we are interested in the 
orthonormal matrix?

Normally, it is 
computationally difficult 
to get the inverse matrix.
The inverse of the 
transformation matrix is 
simply its transpose.
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Two Dimensional Transform

From input Image I, we get D.
Given Transform matrix A

2D transformation goes as:

Notice the energy compaction.
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Two Dimensional Transform

Because transformation matrix is 
orthonormal, 
So, we have 

Forward transform

Backward transform

1−= AAT

TAXAAXAY == −1

YAAYAAX T== −1
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Linear Separable transform

Two dimensional transform is simplified as two 
iterations of one-dimensional transform.

Column-wise transform and row-wise transform.
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Transform and Filtering

Consider the orthonormal 
transform.

If A is used to transform a vector of 2 identical 
elements x = [x,x]T, the transformed sequence will 
indicating the “low frequency” or the “average” 
value is      and the “high frequency” component is 
0 because the signal value do not vary. 
If x = [3,1]T or [3,-1]T, the output sequence will be 
and          respectively. Now, the high frequency 
component has positive value and it is bigger for 
[3,-1]T,indicating a much large variation. Thus, the 
two coefficients behave like output of a “low-pass” 
and a “high-pass” filters, respectively.
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Transform and Functional 
Approximation

Transform is a kind of function approximation. 
Image is a data set. Any data set is a function.
Transform is to approximate the image function 
by a combination of simpler, well defined 
“waveforms” (basis functions).
Not all basis sets are equal in terms of 
compression.
DCT and Wavelets are computationally easier 
than Fourier.
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Comparison of various transforms

The KLT is optimal in the sense of decorrelating and energy-packing.
Walsh-Hadamard Transform is especially easy for implementation.

basis functions are either -1 or +1, only add/sub is necessary.
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Two-Dimensional Basis Matrix

The outer product of two vectors V1 and V2 is 
defined as V1

TV2. For example,

For a matrix A of size n*n, the outer product of 
ith row and jth column is defined as
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Outer Product

For example, if 
We have:
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Outer Product (2)

We have shown earlier that  
Consider X to be a 2*2 matrix:
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Basis Matrix

The quantities                          are called the 
basis matrices in 2-D space. 
In general, the outer products of a n*n 
orhtonormal matrix form a basis matrix set in 2 
dimension. The quantity          is called the DC 
coefficient (note all the elements for the DC 
coeeficient  are 1, indicating an average 
operation), and other  coefficients have 
alternating values and are called AC 
coefficients.

11100100 ,,, αααα

00α
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Fast Cosine Transform

2D 8X8 basis functions 
of the DCT: 
The horizontal frequency 
of the basis functions 
increases from left to 
right and the vertical 
frequency of the basis 
functions increases from 
top to bottom.

.
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Discrete Cosine Transform (DCT)

Conventional image data have 
reasonably high inter-element correlation.
DCT avoids the generation of the 
spurious spectral components which is a 
problem with DFT and has a fast 
implementation which avoids complex 
algebra.
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One-dimensional DCT

The basic idea is to decompose the image into 
a set of “waveforms”, each with a particular 
“special” frequency.
To human eyes, high spatial frequencies are 
imperceptible and a good approximation of the 
image can be created by keeping only the 
lower frequencies. 
Consider the one-dimensional case first. The 8 
arbitrary grayscale values (with range 0 to 255, 
shown in the next slide) are level shifted by 
128 (as is done by JPEG). 
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One-dimensional DCT

The waveforms cam be denoted as  
with frequencies f = 

0, 1, …, 7. Each wave is sampled at 8 points
to form a basis vector.

The eight basis vector constitutes a matrix A: 

πθθ ≤≤= 0 with ),cos()( ffw
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1 1 1 1 1 1 1 1

0.981 0.831 0.556 0.195 -0.195 -0.556 -0.831 -0.981

0.924 0.383 -0.383 -0.924 -0.924 -0.383 0.383 0.924
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One-dimensional DCT

The output of the DCT transform is:

where A is the 8*8 transformation matrix 
defined in the previous slide, and I(x) is 
the input signal.
S(u) are called the coefficients for the 
DCT transform for input signal I(x).

[ ]TxIAuS )()( =
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One-dimensional FDCT and IDCT

The 1-D DCT in JPEG is defined as:
FDCT

IDCT

Where (u is frequency)
I(x) is the 1-D sample
S(u) is the 1-D DCT coefficient
And 
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One-dimensional FDCT and IDCT

As an example, let I(x)=[12,10,8,10,12,10,8,11]

If we now apply IDCT, we will get back I(x). 
We can quantize the coefficient S(u) and still 
obtain a very good approximation of I(x). 
For example, 

While
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Two-dimensional FDCT and IDCT

The 2-D DCT in JPEG is defined as:
FDCT

IDCT

Where
I(y,x) is the 2-D sample
S(v,u) is the 2-D DCT coefficient
And 
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Fast Cosine Transform

2D 8X8 basis functions 
of the DCT: 
The horizontal frequency 
of the basis functions 
increases from left to 
right and the vertical 
frequency of the basis 
functions increases from 
top to bottom.

.
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Two-dimensional DCT

The image samples are shifted from unsigned integer with range 
[0, 2 p-1] to signed integers with range [- 2 p-1, 2 p-1-1]. Thus 
samples in the range 0-255 are converted in the range -128 to 
127 and those in the range 0 to 4095 are converted in the range -
2048 to 2047. This zero-shift  done for JPEG to reduce the 
internal precision requirements in the DCT calculations. 
How to interpret the DCT coefficients?

The DCT coefficient values can be regarded as the relative amounts 
of the 2-D spatial frequencies contained in the 8×8 block.
F(0,0) is called DC coefficient, which is a measure of the average of 
the energy of the block.
Other coefficients are called AC coefficients, coefficients correspond 
to high frequencies tend to be zero or near zero for most images.

The energy is concentrated in the upper-left corner.
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The Effect of Segmentation

The image samples are grouped into 8×8 blocks. 2-D DCT is 
applied on each 8×8 blocks.

Because of blocking, the spatial frequencies in the image and the 
spatial frequencies of the cosine basis functions are not precisely 
equivalent. According to Fourier’s theorem, all the harmonics of 
the fundamental frequencies must be present in the basis 
functions to be precise. Nonetheless, the relationship between 
the DCT frequency and the spatial frequency is a close 
approximation if we take into account the sensitivity of human eye 
for detecting contrast in frequency.
The segmentation also introduces what is called the “blocking 
artifacts”. This becomes very pronounced if the DC coefficients 
from block to block vary considerably. These artifacts appear as 
edges in the image, and abrupt edges imply high frequency. The 
effect can be minimized if the non-zero AC coefficients are kept.
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Amplitude distribution of the DCT
coefficients

Histograms for 8x8 DCT 
coefficient amplitudes 
measured for natural 
images

DC coefficient is typically 
uniformly distributed.
The distribution of the AC 
coefficients have a 
Laplacian distribution 
with zero-mean. 
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Why quantization? – to achieve further compression by representing DCT 
coefficients with no greater precision than is necessary to achieve the 
desired image quality.
Since different DCT coefficient  corresponds to different frequency, the 
quantization value is different for each DCT coefficient because HVS has 
different response to them – generally, the “high frequency coefficients” 
has larger  quantization value.
Quantization makes most coefficients to be zero, it makes the 
compression system efficient, but it’s the main source that make the 
system “lossy”.

)
),(
),((),('

vuQ
vuFRoundvuF =

F(u,v):  original DCT coefficient
F’(u,v): DCT coefficient after quantization
Q(u,v): quantization value

The Baseline System – Quantization
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Quantization Tables in DCT

Human eyes are less sensitive to high 
frequencies.
We use different quantization value for 
different frequencies. 

Higher frequency, bigger quantization value.
Lower frequency, smaller quantization value.

Each DCT coefficient corresponds to a certain 
frequency.
High-level HVS is much more sensitive to the 
variations in the achromatic channel than in 
the chromatic channels.
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Quantization Tables in DCT

So, we have two quantization tables. 
Measured for an “average” person.
Higher frequency, bigger quantization value.
Lower frequency, smaller quantization value.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Luminance quantization table Chrominance quantization table
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Zig-Zag-Scan

The variances 
of the DCT 
transform 
coefficients are 
decreasing in a 
zig-zag manner 
approximately.

zig-zag-scan + 
run-level-coding
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Example
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JPEG stands for Joint Photographic Expert Group
A standard image compression method is needed to 
enable interoperability of equipment from different 
manufacturer
It is the first international digital image compression 
standard for continuous-tone images (grayscale or 
color)
The history of JPEG – the selection process

JPEG Introduction - The background
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“very good” or “excellent” compression rate, 
reconstructed image quality, transmission rate
be applicable to practically any kind of continuous-
tone digital source image
good complexity
have the following modes of operations:

sequential encoding
progressive encoding
lossless encoding
hierarchical encoding

JPEG Introduction – what’s the 
objective?
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encoder decoder
Source

image data
compressed
image data

reconstructed
image data

Image compression system

encoder
statistical

model

entropy
encoder

Encoder
model

Source
image data

compressed
image data

descriptors symbols

model
tables

entropy
coding tables

The basic parts of an JPEG encoder

JPEG Architecture Standard
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JPEG has the following Encoder Models:
Sequential DCT-based mode
Progressive DCT-based mode
Sequential lossless mode
Hierarchical mode

JPEG entropy encoder supports:
Huffman encoding
Arithmetic encoding

JPEG Architecture Standard (cont.)
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JPEG Baseline system definition:
Sequential DCT-based encoder mode
Huffman entropy encoding
8-bits data precision

The basic architecture of JPEG Baseline system

Source
image data

quantizer entropy
encoder

compressed
image data

table
specification

table
specification

8×8 blocks DCT-based encoder

statistical
model

FDCT

JPEG Baseline System
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Statistical modeling translate “descriptors” into a 
sequence of “symbols” for Huffman coding use
Statistical modeling on DC coefficients:

symbol 1: different size (SSSS)
symbol 2: amplitude of difference (additional bits)

Statistical modeling on AC coefficients:
symbol 1: RUN-SIZE=16*RRRR+SSSS
symbol 2: amplitude of difference (additional bits)

Baseline System - Statistical modeling
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Additional bits for sign and magnitude

Huffman AC statistical model 
run-length/amplitude combinations Huffman coding of AC coefficients

Baseline System - Statistical modeling
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+8 +9 +8 -6 -8 -3 +3 +3
0 +1 -1 -14 -2 +5 +6 0
0 1 1 4 2 3 3 0
-- 1 0 0001 00 101 110 --Additional bits

Example 1: Huffman symbol assignment to DC descriptors
quantized DC value
DPCM difference
SSSS

1 2 3 4 5 6 7 8 9 … 63
0 0 0 0 -14 0 0 +1 0 … 0

4 1
RUN-SIZE 68 33

0001 1

Example 2: Huffman symbol assignment to AC descriptors

AC descriptor
RRRR
SSSS

0

zigzag index

Additional bits

4 2 EOB
0

--

An examples of statistical modeling
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JPEG Progressive Model

Why progressive model?
Quick transmission of the coarse to fine image

First stage: encode a rough but recognizable version 
of the image
Later stage(s): the image refined by successive scans 
till get the final image
Two ways to do this:

Spectral selection – send DC, AC coefficients 
separately
Successive approximation – send the most significant 
bits first and then the least significant bits
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Some other transforms

Discrete Fourier Transform (DFT)
Haar Transform
Karhunen Loève Transform (KLT)
Walsh-Hadamard Transform (WHT)
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Discrete Fourier Transform (DFT)

Well-known for its connection to spectral 
analysis and filtering.
Extensive study done on its fast 
implementation (O(Nlog2N) for N-point DFT).
Has the disadvantage of storage and 
manipulation of complex quantities and 
creation of spurious spectral components due 
to the assumed periodicity of image blocks.
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Haar Transform

Very fast transform.
The easiest wavelet 
transform.
Useful in edge 
detection, image 
coding, and image 
analysis problems.
Energy Compaction 
is fair, not the best 
compression 
algorithms.

2D basis function of Haar transform
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Karhunen Loève Transform (KLT)

Karhunen Loève Transform (KLT) yields 
decorrelated transform coefficients.
Basis functions are eigenvectors of the 
covariance matrix of the input signal.
KLT achieves optimum energy concentration.
Disadvantages:

KLT dependent on signal statistics
KLT not separable for image blocks
Transform matrix cannot be factored into sparse 
matrices
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Walsh-Hadamard Transform (WHT)

Although far from 
optimum in an 
energy packing 
sense for typical 
imagery, its simple 
implementation 
(basis functions are 
either -1 or +1) has 
made it widely 
popular.

Transformation matrix:
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11
1 1 1 1 1 1 1 18
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

A

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥− − − −⎢ ⎥= ⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦
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Walsh-Hadamard Transform (WHT)

Walsh-Hadamard transform requires 
adds and subtracts
Use of high speed signal processing has 
reduced its use due to improvements 
with DCT.
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Transform Coding: Summary

Purpose of transform
de-correlation
energy concentration

KLT is optimum, but signal dependent and, hence, 
without a fast algorithm
DCT reduces blocking artifacts appeared in DFT
Threshold coding + zig-zag-scan + 8x8 block size is 
widely used today 

JPEG, MPEG, ITU-T H.263.
Fast algorithm for scaled 8-DCT

5 multiplications, 29 additions
Audio Coding

MP3 = MPEG 1- Layer 3 uses DCT
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