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The Coding Problem 
The source alphabet A of n symbols {a1,a2, …an} and a corresponding set of probability 

estimates P={p1,p2,…,pn} are given, such that ∑ =
n

ip
1

1. The coding problem consists of 

deciding on a code giving a representation of each symbol ai of the alphabet using strings 
over a channel alphabet B , which is usually {0,1} .  
********************************************************************* 
                                   Code:   Source  message --- -f-----> code words 
                                      (alphabet A)            (alphabet B) 
                       alphanumeric symbols          Channel alphabet= binary symbols 
                                          |A| = n     |B|=2 
********************************************************************* 
The symbol ai may be drawn from a longer message M consisting of strings of source 
alphabet symbols, but at this point we are considering the symbol ai in isolation. 
Sometimes we will denote the source alphabet A by the integers {1, 2, 3,…,n}. Let the 
codewords for a particular coding algorithm be C= {c1,c2,…cn} with corresponding 
lengths of codewords being  L={l1,l2,..,ln}. Then the average code length l  or the 
expected codeword length E(C,P) is given by  
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Prefix-free Code: A code is said to have prefix property if no code word or bit pattern is 
a prefix of other code word. Sometimes prefix-free code is also called simply prefix 
code. A code is said to be uniquely decodable or uniquely decipherable (UD) if the 
message for the code string, if it exists, can be recovered unambiguously. The 
fundamental question is: how short can we make the average code length so that the code 
is UD. Consider the table below giving different codes for 8 symbols 821 ,...,, aaa : 
 
Example Codes: ,  
                 probabilities                                                         codes 
ai p(ai) Code A Code B Code C Code D Code E Code F 

a1 0.40 000 0 010 0 0 1 

a2 0.15 001 1 011 011 01 001 

a3 0.15 010 00 00 1010 011 011 

a4 0.10 011 01 100 1011 0111 010 

a5 0.10 100 10 101 10000 01111 0001 

a6 0.05 101 11 110 10001 011111 00001 

a7 0.04 110 000 1110 10010 0111111 000001 

a8 0.01 111 001 1111 10011 01111111 000000 

Avg.length   3 1.5 2.9 2.85 2.71 2.55 
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Code A: violates Morse’s principle, not efficient but instantaneously decodable. 
Code B: not uniquely decodable 
Code C: Prefix code that violates Morse’s principle 
Code D: UD but not prefix 
Code E: not instantaneously decodable (need look-ahead to decode), not prefix 
Code F: UD, ID, and Prefix and obeys Morse’s principle 
 

Code D, E and F: are incomplete, as there are prefixes over the channel alphabets that are 
not used. For D, all four prefixes 00, 01, 10 and 11 do not occur etc. Code F is a minimum 
redundancy code which is also known as Huffman code which we will discuss later 
 
Note  

1. Code A is optimal if all probabilities are the same, each taking ⎡ ⎤N2log bits, 
where N is the number of symbols. 

2. (See Section 2.4, p.29, Sayood) Code 5 (a=0, b=01,c=11) is not prefix, not 
instantaneously decodable but is uniquely decodable. Consider the string ‘01 
11 11 11 11 11 11 11 11’.  There is only one way to decode this string  which will 
not have leftover dangling bits. But if we interpret this as ‘0 11 11 11 11 11 11 11 
11 1’ , a dangling left over ‘1’ will remain. 

3. (See Section 2.4, p.29, Sayood) Code 6 (a=0,b=01,c=10) decodable in two 
different ways. The sequence ‘ 0 10 10 10 10 10 10 10 10’= acccccccc but can 
also be parsed as ’01 01 01 01 01 01 01 01 0’= bbbbbbbba. Both are valid 
interpretation. So, it is not UD, not prefix. 

 
Exercise: Find and justify a test for a UD code. 

 
Note there is a whole family of codes that use bit-fractional codes which are not 
illustrated here in this table. For example, arithmetic codes which we will discuss 
later. 
 

A code is  
Distinct: mapping f is one-to-one. 
Block-to-Block (ASCII – EBCDIC) 
Block-to-Variable or VLC (variable length code) (Huffman) 
Variable-to-Block (Arithmetic) 
Variable-to-Variable (LZ family) 
Obviously, every prefix code is UD, but the converse is not true as we have seen. 
  
The Kraft-McMillan Inequality  
 
 If the code words are the leaf nodes of a binary tree, the code satisfies the prefix 
condition. In general this is true for any d-ary tree with d symbols in the alphabet. Why  
restrict to prefix code? Is it possible to find shorter code if we do not impose prefix  
property? Fortunately, the answer to this is NO. For any non-prefix uniquely decodable 
 code, we can always find a prefix code with the same codeword lengths. If each symbol  
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ai has a probability which is a negative power of 2, that is, ik
ip −= 2 , then the self- 

information is iii kpaI =−= log)( , a whole number. So, if we set ii kl = , this results in  
average code length or the expected code length equal to Shannon’s entropy bound and  

hence cannot be further improved. We also have 12
1
∑
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n

i

li . This led Kraft [1949] to  

formulate the famous Kraft  inequality. 
 
Theorem 1: (A necessary condition for UD code) Let C be a code with n codewords 
with lengths nlll ,...,, 21 . If C is uniquely decodable, then  
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McMillan [1956] extended this result and showed that if the Kraft inequality is satisfied 
for some code C’, then it is possible to find a UD prefix code C that will have exactly the 
same lengths of code words as those of C’.  
 
 Theorem 2:  (A sufficient condition for prefix code) Given a set of integers nlll ,...,, 21 ,  

that  satisfy the inequality 12
1

≤∑
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−
n

i

li  , we can always find a prefix code with codeword 

lengths  nlll ,...,, 21 .     
                                                     
This code is also uniquely decipherable. Further more, this relationship is invertible, that 
is, if 

                                                             ∑
=

−=
n

i

liCK
1

2)(  

is greater than 1, the code cannot be a prefix-free. As a simple but obvious example, if 
each code word has length 1, then K(C) = n/2, and a prefix-free code is possible only if 
n=2. The corresponding codes are ‘0’ and ‘1’. 
 
(Formal proofs for Theorem 1 and 2 are given in pp.32-34, Sayood) 

Simpler Proofs for Theorems 1 and 2 for the Prefix Code  
 
We prove the Theorem 1 by using a binary tree embedding technique. Every prefix code 
can be represented in the paths of a binary tree 
 
Example to illustrate the proof 
  { } { }4,4,3,2,2,2=jl  
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Proof: Given a binary prefix code with word lengths{ }jl , we may embed it in a binary 
tree of depth L where { }jlL max= , since each of the prefix code must define a unique 
path in a binary tree. This embedding assigns to each codeword of length jl  a node on 
level jl  to serve as the terminal node. Then the entire sub-tree below that node is pruned, 

wiping out jlL−2  nodes.  Since we cannot prune from a level-L tree more than L2  

nodes that were there to start with, we must have L
n

i

lL i 22
1

≤∑
=

− . Diving by L2 , we get  

12
1
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−
n

i

li        which is the Kraft Inequality. 

 
The proof of Theorem 2 is more interesting. 
 
Given a set of integers { }jl  satisfying Kraft inequality, there is a binary prefix code with 
these lengths. 
 
Proof: That is, for each level l we must show that after we have successfully embedded 
all words with lengths ll j < , enough nodes at level l remain un-pruned so that we can 
embed a codeword there for each j  such that ll j = .  

         
That is, 
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The right hand side of Eqn.(1) is simply the number of nodes with jll = . But        
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Dividing both sides by l2 , we have           ∑
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We must have                                            122
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(The above  derivations  are also valid for any  d-ary tree. Put jld − to replace jl−2 .) 
 

 
Some Well Known Prefix Codes 
 
(References: Chapters 1-4 of Moffat and Turpin, pp.47-53 of Salomom) 

 Unary code 
 Variations  
 General Unary Code 
 Elias Code    
 Golomb Code  
 Rice Code 
 Fibonacci Code 
 Shannon-Fano Code  
 Huffman Code 

 
Before we discuss these codes, we need to understand the models that are appropriate for 
estimation of the probabilities. 
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Probability Estimation 
We learned that the compression system has three components: modeling, probability 
estimates and coding. We also know that we cannot device a code whose expected 
average length is less than the entropy of the source for the given model. The human 
beings are very good at building rather sophisticated model of our languages at a very 
early age. The human brain could have evolved through millions of years to achieve these 
characteristics. Consider the following texts: 
                  “ If you don’t hurray up, you are going to be  …. “ 
                   “If you don’t put on a jacket, you are going to be …” 
                   “If you don’t do your assignments in the data compression course, 
                     you are going to get  …………. “. 
We can easily fill in the gap. This is equivalent to predicting the next word(s). If we can 
do this sort of analysis, we may be able to find out a good estimate of the probabilities of 
the words in English language. Shannon (1951) undertook seminal work in this area and 
concluded that the entropy of English language is about 2 BPC.  Later Cover and 
King(1978) improved this estimate to 1.3 BPC. Thus any lossless text compression 
algorithm that comes close to 2.0 BPC is supposed to be very good. Researchers 
(including our work at UCF) have come close to 2.3 for some specific corpus. 
 
 A natural question to ask is: where and how do we get the probability estimates of the 
source symbols? The answer to this question is extremely difficult. The order(-1) model,   
assumes equal  probability for all symbols even if some symbols may not occur in the 
text. Thus for ASCII (ISO-646) the alphabet has 128 symbols, each having a probability 
of  1/128.  The extension of ASCII (ISO-8859-1) has 256 symbols, and so the entropy of 
the source is 8 bits under Order (-1) model. The Unicode (for all languages of planet 
earth) uses 2 bytes for each symbol has entropy of 16 bits.  These are called static codes. 
Both decoder and encoder know the model and there is no overhead to transmit the model 
from source to destination. 
 
Semi-Static I Model 
If a particular text does not have all the symbols of the alphabet, we can determine what 
symbols it has by a first pass of the text. Let’s say the text has only 25 symbols. Then 
under Order(-1) model, the entropy of the source is given by  

                                                       64.4
25
1log

25
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25

1
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Of course, one has to find an algorithm to encode the text that actually obtains this lower 
bound. In practice it might take 5 or 6 bits. The decoder needs to know the symbols of the 
alphabet which is sent as a  prelude  taking 8*25=200 bits plus count of the number of 
symbols, which takes 8 bits ( since the maximum count could be 256). If we distribute 
this overhead on the entire message of length m, the average code length becomes 4.64 + 
208/m.  If we take m=128, as an example, this becomes 6.27 BPC. 
 
Semi-Static II  Model 
Perhaps we can improve the situation if we can calculate the self-probabilities of the n 
characters in the message. That is, if the symbols si appears vi times in the message, then 
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take pi=vi/m. The quantity 
m
vv i

n

i
i log

1
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−  is called the zero-order self-information of the 

message and gives the lower bound on the number of bits required to encode the message 
provided the symbols are iid. This gives a figure of 4.22 BPC for the example discussed 
in Moffat and Turpin, p.23. It looks like an improvement, but it is not. Because, we have 
to include frequency of symbols information in the prelude, assuming conservatively that 
we need 4 bits per symbol to send the frequency information, we need 4X25=100 
additional bits. This brings the total with m=128 to be 4.22+ (208+100)/128=6.63 which 
is worst than the previous scheme.  Thus, making the model more and more complex 
does not always buy in compression ratio. We need to strike a balance between the 
modeling stage and the actual coding stage. If the message is short, the additional cost for 
complex modeling is not justifiable whereas if the file size is very large and the model is 
going to be used many times, the overhead could be amortized. 
 
Static Codes 
In this section, we will discuss some of simplest static codes. These codes are very 
suitable for coding a set of m integers with smaller values more probable than the larger 
values.  Such integer sequences are often generated as an intermediate output for many 
data compressor (such as move-to-front method).  Since most of the methods do not take 
into account the probabilities, their compression performance is relatively poor. But, they 
have very regular structures and can be encoded or decoded very fast. For some very 
special classes of probability distribution, these codes are also optimal.  We assume that 
the message M consists of  m integers from the source alphabet  S={1,2,3, …, n} and that 
their probabilities  are  p1 >p2>…>pn .  We allow n to be unbounded in which case the 
probabilities are p1 >p2>   >pi > ….>0. 
Unary Code 
In a unary code, an integer x is encoded as a sequence of x-1 1’s (or 0’s) followed by one 
0 (or 1) as shown below 
 
                                 m          Code                                   Alternate Code 
                               -------------------------------------------------------------- 
                                  1            0                                          1 
                                  2            10                                        01 
            3            110                                      001 
                                  4            1110                                    0001 
                                       …                                                    … 
                                 -------------------------------------------------------------- 
 
The unary code is a zero redundancy code if the probability distribution is P= 

{ }2,2,....,
8
1,

4
1,

2
1 )1()1( −−−− mm . For an infinite sequence of numbers it is P= 

{ )0.,,.........
8
1,

4
1,

2
1 .    

General Unary Code 
In this scheme, rather than allocating one integer to a unary code, a group of consecutive 
integers are allocated to a unary code followed by a distinct binary code for each member 
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of the group. The code is best described by a triplet (start, step, stop). The mth code word 
has m 1’s followed by a single 0 which is followed by all possible combinations of a= 
start+m.step binary digits. If a=stop, then the single 0 bit preceding the a-bits is dropped. 
For example, a (3,2,9) code is shown below. 
 
m      a=3+m.2           mth  codeword  # of codewords(2a)   Range of integers 
---------------------------------------------------------------------------------------------------- 
0  3  0xxx    23=8  0-7 
1 5  10xxxxx   25=32  8-39 
2 7  110xxxxxxx   27=128  40-167 
3 9  111xxxxxxxxx  29=512  168-679 
These codes are optimal for probability distribution (for the groups are:  ½,1/4,1/8,1/8) is 

}256,..8
1,8

1(256
1),128,8

1,8
1(128

1),32,...4
1,4

1(32
1)),8,...2

1,2
1(8

1{ timestimestimestimesP =

 
Minimal Binary Code 
A code is said to be a minimal binary code if all prefixes are used in the code. If we use 
the regular binary numbers to encode the first six integers as (000,001,010,011,100,101), 
we will miss ‘11’ as a prefix.  On the other hand the first six integers can be coded using 
a code (00,01,100,101,110,111). Note all possible prefixes of one bit (0,1) and all 
possible prefixes of two bits (00,01,10,11) appear in the code. These codes are also called 
complete. Note, the code of an integer varies depending on maximum value of n. Thus if 
n=3, the integer 2 gets encoded as ‘10’ (the codes are 0, 10, 11) but when n=6, 2 is 
encoded as ‘01’. It is usually more efficient than the obvious binary numbers, each 
having log2n bits. In general, for an alphabet of n symbols, the minimal binary codes have 

⎡ ⎤ nk n −= 2log2  codewords that are ⎣ ⎦n2log  bits long and remaining n-k=n-[ ⎡ ⎤ nn −2log2 ] 
= ⎡ ⎤nn 2log22 −  are ⎡ ⎤n2log  bits long. The shorter codes are allocated to the more probable 
symbols to minimize the expected code length. The minimal binary codes has the 
property that if n is a power of two and all symbols have equal probability (=1/n), then it 
is a zero-redundancy code.  If n is not a power of two, it is minimum redundancy for the 
same equal-probability distribution and in effect becomes a Huffman code, as we will see 
later. The algorithm to construct the code is as follows: Given n, use first ⎡ ⎤ nk n −= log2  
combinations of ⎣ ⎦nlog  bits to encode k; for the remaining combinations append a ‘0’ 
and then a ‘1’, giving a total of n codes. An example: n=11, k=16-11=5. So, the code is; 
000,001,010, 011,100, 1010,1011,1100,1101,1110,1111.   
 
Elias Code 
The Elias code is an elegant compromise between minimal binary code and the unary 
code. This is also a family of infinite code, that is, it handles an integer x of arbitrarily 
large magnitude and takes O(logx) number of bits. The most common are the codes γC  
and δC , as shown in the following table. The code γC  can be obtained by  writing  the 
binary numbers as 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010 then drop the most 
significant bit and replace this with a unique unary code prefix. The unary part takes 
1+ ⎣ ⎦x2log  bits and the binary part takes ⎣ ⎦x2log  number of bits making a total of 
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1+2 ⎣ ⎦x2log bits for the γC  code. . The code γC  can be seen as a general unary code that 
consists of a selector part that indicates  a range of values (answers the question: is it 
bigger than 1,3,7,….2k-1) that collectively form  buckets of size 1,2,4,…2k, and a binary 
part that indicates a value within the bucket. Since the binary part has all its numbers with 
most significant bit ‘1’, this bit can be dropped without any ambiguity.  
The second Elias code δC  uses a prefix part that is γC  rather than a unary code and it 
takes a total of ⎣ ⎦ ⎣ ⎦xx 222 log2loglog21 ++  bits to code an integer x. The algorithm to 
encode and decode Elias codes are given in Moffat and Turpin “Compression and Coding 
Algorithms” Chapter 3. 
 
 
 
 
       M              γC  code                                            δC  code 

       1  0     0 
       2  10  0     100  0 
       3           10  1     100  1 
       4  110  00    101  00 
       5  110  01    101  01 
       6  110  10    101  10 
       7     110  11    101  11 
       8  1110  000    11000  000 
       9     1110  001    11000  001 
       10  1110  010    11000  010 
________________________________________________________________________ 
 
We conclude by citing a direct quote from this book: “The amazing thing about the Elias 
code is that they are shorter than the equivalent unary codes at all but a small finite 
number of codewords. The γC  code is longer than unary code only when x=2 or x=4 and 
in each case by only one bit. Similarly, the δC  code is larger than γC  only when 
εx {2..3,8..15}. On the other hand for large values of x both Elias codes are not just 

better than unary, but exponentially better.”  
 
 The Elias codes are for any arbitrary probability distribution. To see why, assume a 
probability distribution P in which p1 >p2>…>pn. . Because of this distribution px must be 
less than x

1  for all nx ≤≤1 . Because if it is not then for some value x, we must have 

 
 
  
 

                                  ∑
=

x

j
jp

1
> 11

1
=∑

=

x

j
x  

which contradicts the assumption that the sum of probabilities equals to 1. But, as we  
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know if xpx
1≤  then the symbol x must take at least O(log2 x) bits. Thus, both the Elias 

codes take number of bits within a multiplicative constant of the entropy bound. The code 
words are fixed yet they are provably “not bad” and hence general purpose for any  
probability distribution. 
 
Golomb Code 
The Elias code has bucket sizes {1, 2, 4, 8, .. . 2k,..}.  For Golomb code the bucket size is 
a fixed constant b. Given the n integers to be encoded, first compute two other integers as 

                                               
b

nq 1−
=         (Integer quotient) 

                                               qbnr −=      (Integer remainder or residue) 
Now, encode q using a unary code and r using a minimal binary code. The concatenation 
of these two codes gives the Golomb code. The table below illustrates the Golomb code 
for b=5 and n=9: 
 
 
 
                        n                     q           r                     Golomb Code 
                  ----------------------------------------------------------------- 
   1  0 1  0 00 
  2  0 2  0 01 
  3  0 3  0 10 
  4  0 4  0 110 
  5  0 5  0 111 
  6  1 1  10 00 
  7  1 2  10 01 
  8  1 3  10 10 
  9  1 4  10 110 
                  -----------------------------------------------------------------    
Rice Code 
Rice code is a special case of a Golomb code where the bucket size is a power of 2, that 
is, for some fixed k the bucket size is b=2k.  Thus 

                                                   k

nq
2

1−
=         (Integer quotient) 

                                               qbnr −=      (integer remainder or residue) 
The example below illustrates Rice code for k=2, b=4, 
                        n                     q           r                     Golomb Code 
                  ----------------------------------------------------------------- 
   1  0 1  0 00 
  2  0 2  0 01 
  3  0 3  0 10 
  4  0 4  0 11 
  5  1 1  10 00 
  6  1 2  10 01 
  7  1 3  10 10 
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  8  1 4  10 11 
  9  2 1  110 0 
                  -----------------------------------------------------------------    
 
 
Division by 2k has a simple shift register implementation:   
1)For integer n,Take the low-order k bits of n-1  which gives the minimal binary part of 
the code;  2) Right shift n-1 by k  bits and t take the least significant k  bits, which gives 
the integer q, 3)Obtain the unary representation of q.  
Concatenation of the unary and the binary part is the final Golomb code.  

Both Rice and Golomb codes are extensively used in compression system. Golomb codes 
are particularly useful for Bernoulli distribution – a sequence of Bernoulli trials with 
probability of success given by p. Let px  be the probability of  the next success after x 
trials. Then, p1=p, p2=p(1-p) etc. and in general, ]1|)1([ 1 xppP x ≤−= − .  If the 
distribution P has this property and the parameter b is chosen as (See Turpin and Moffat, 
p.38) 

                                 
pp

b e
e

e 1)2(log
)1(log

5.0log
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⎤
⎢
⎢

⎡
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then Golomb code is a minimum redundancy code. Elias, Golomb and Rice codes have 
been extensively studied in the literature and several generalizations and mathematical 
properties of these codes are discussed in text and in the literature. The detail discussion 
of this material is outside the scope of this course.( Possible Term project) 
***************************************************************** 
N 21 13 8 5 3 2 1   Code             
1             1   1 1             
2           1 0   0 1 1           
3         1 0 0   0 0 1 1         
4         1 0 1   1 0 1 1         
5       1 0 0 0   0 0 0 1 1       
6       1 0 0 1   1 0 0 1 1       
7       1 0 1 0   0 1 0 1 1       
8       1 1 0 0   0 0 1 1 1       
16   1 0 0 1 0 0   0 0 1 0 0 1 1   
32 1 0 1 0 1 0 0   0 0 1 0 1 0 1 1 
 
 
Fibonacci Code 
Express the integer x in terms of a weighted number system where the Fibonacci number 
are the weights. Then x is encoded as the reverse Fibonacci sequence followed by 
binary’1’. See the above tables.  
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Further reading: (available at the reserved material desk at the library) 1)Moffat and 
Turpin: Chapter 3, pp.29-41. 2) P. Fenwick, Chapter 3, “Lossless Compression 
Handbook” (Ed. Sayood) 
 
Minimum -Redundancy Code 
A code is a minimum-redundancy code for a probability distribution P if its average 
length or expected code length ),'(),( PCEPCE ≤  for every n symbol prefix-free code 
C’; thus, there is no other prefix-free whose average code length is strictly less than that 
of C.  The code obviously has to obey the Kraft inequality.  
 
Shannon-Fano Code 
The Shannon-Fano code was the first attempt to find a minimum -redundancy code. The 
motivation for this algorithm is this: if the 0’s and 1’s are equally useful in the code, then 
each bit position in the code word should correspond to a choice between groups of 
symbols whose probabilities add roughly to the same amount.  The algorithm is a top-
down approach and the most significant bit positions for all symbols are determined first. 
The idea is to partition the symbols in two groups such that their probability sums are 
approximately as much equal as is possible. The process is then repeated for each sub-
partition. Each partition can be imagined as an abstract symbol representing the sum of 
probabilities of symbols in the partition. The process is iterated until each of  the final 
partitions contains only one original symbol to be encoded. The algorithm  is illustrated 
below for the probability distributions P=(0.25, 0.2, 0.15, 0.15.0.1, 0.1, 0.05) and 
P=(0.25, 0.25, 0.125, 0.125, 0.125). The method produces best result if the splits are 
perfect which happens when the probabilities are k−2 and ∑ =− 12 k . This property is 
also true for Huffman codes as we will see later. 
 
 
 i   pi             Code          
1 0.25   1 0       1 0       Average length = 2.7 bit/symbol
2 0.2   1 1       1 1       Entropy=2.67bit  
3 0.15   0 0 0     0 0 0     very good   
4 0.15   0 0 1     0 0 1        
5 0.1   0 1 0     0 1 0        
6 0.1   0 1 1 0   0 1 1 0      
7 0.05   0 1 1 1   0 1 1 1      
                 
1 0.25   1 1      Average length = 2.5 bit/symbol   
2 0.25   1 0      Entropy=2.5bit     
3 0.125   0 1 1    perfect code!     
4 0.125   0 1 0            
5 0.125   0 0 1            
6 0.125   0 0 0            
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Shannon-Fano code does not always produce the best expected length codes. For 
example, take P=(0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1). The first partition will group the 
symbols with probabilities 0.4 and 0.1 in one group and the rest in the second group and 
so on resulting in a code length sequence L=(2,2,3,3,3,4,4). This gives an average code 
length of 2.70 bits.  A Huffman code, as we will see soon, will yield a code length 
sequence L=(1,3,3,4,4,4,4) yielding an average code length of 2.60 bits.  There is even a 
“non-Huffman” prefix code  given below with length sequence L=(2,3,3,3,3,3,3) whose 
average code length is 2.60 bits. 
     1 :  00 
     2 :  010 
     3 :  011 
     4 :  100 
     5 : 101 
     6 : 110 
     7 : 111 
The top-down construction of the Shannon-Fano code forces the second symbol to have 
two bits and some others to have 4 bits, although all symbols from second to the last have 
the same equal probability 0.1. The last code gives them all the same length. The 
Huffman code  give the first symbol a code length of only one bit which more than 
compensates for some symbols having code length 4. 
 
                                                                                      HHuuffffmmaann  CCooddee: 

 Shannon-Fano is top-down. If you draw a binary tree, the symbols near to the root 
get codes assigned to them first. 

 Huffman is bottom-up. It starts assigning codes from leaf nodes. 
 
 Huffman invented this code as an undergraduate at MIT and managed to skip the final 
exam as a reward! 
Same offer: If you come up with an original idea in this course worth publishing in a 
reputable journal, you may skip the final exam.  
 
Huffman code construction (Encoding) 
Huffman code uses a bottom-up approach. At the beginning, each symbol has code word 
of length 0. Unless n=1, this violates Kraft inequality and it is not prefix. At each stage of 
the algorithm, two symbols having lowest probabilities are combined to form a composite 
symbol whose probability is the sum of probabilities of its constituent symbols, which are 
recognized as child nodes in the binary tree depicting the construction. The construction 
is as shown below. A code  bit of ‘0’ is prefixed to the already generated code for the 
symbol to its left child and a code bit  ‘1’ is prefixed to the right child.  This reduces the 
Kraft inequality value and also reduces the total number of symbols yet to be coded by 
one.  The probabilities are sorted again and the process is repeated. 
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0.05 0.06 0.110.07

0.13

0.67

0.09

0.20

0.33

1.00

0.04

 
The steps are given below with corresponding value of the Kraft inequality values K(C). 
   P=(0.67, 0.11, 0.07, 0.06, 0.05, 0.04) ;  K(C)=6 
   P=(0.67, 0.11, 0.09, 0.07, 0.06) ;  K(C)=5 
   P=(0.67, 0.13, 0.11, 0.09) ;  K(C)=4 
   P=(0.67, 0.20, 0.13) ;  K(C)=3 
   P=(0.67, 0.33) ;  K(C)=2 
   P=(1.00) ; K(C)=1 
When the number of composite symbols becomes exactly one (the root node of the binary 
tree), the process terminates with K(C) =1. 
What is the complexity of the Huffman algorithm? What is its storage complexity ? 
Huffman code decoding  
Note there is a unique path from the root to each leaf node each of which represents a 
source symbol. The internal and the root nodes  do not represent the source symbols, they 
represent abstract composite symbols.  
Based on the tree representation of the Huffman code, can you formulate an obvious 
decoding algorithm? What is the most efficient way to store the tree?  
Note the decoder must have an exact same copy of the Huffman tree. This constitutes an 
overhead which becomes insignificant if the tree (sometimes also refereed to as a table ) 
is used many times over large number of files. 

Minimum Variance Code 
• Average code length  ii lpl ∑= . Variance of code ∑ −=

i
ii pllv 2)(  
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36.12.2 == vl  

   
The codes for the above tree are a=0000, b=0001, c=001, d=01 and e=1. If we draw the 
tree as: combine (a,b), then (c,d). Then combone (ab,) with e and then (a,b,e) with (c,d). 
Then the codes are a=000, b=001, c=10, d=11 and e=01. You will see the variance is 
0.16 although the average length is the same (2.2). The tree looks more bushy. Another 
bushy construction with same variance is shown next page. The more bushy the tree is 
the less will be its variance value because ,by definition, the mutual difference in length 
of the codes are smaller for bushy trees. 
 
Rule: During the iterative steps of ordering the probabilities, move as far right as 
possible for the composite symbols at higher level in the sort order. 
           0.2  (ab)                                                    0.4 (cd) 
    0.1             0.1                                         0.2        0.2        0.2         0.4 
    (a)              (b)                          (c)         (d)         (ab)         (e) 
                                        0.6 (abe)                                       1.0 
                          
                               0.2          0.4         0.4                0.6                 0.4 
                               (ab)          (e)        (cd)               (abe)              (cd) 
 
                                                           1.0 

0        1                     code 
0.6       0.4                        a= 000 

                                         0              1    0            1                  b=001 
                                           0.2       0.4     0.2     0.2                 c=10 
                                    0              1  (e)      (c)       (d)               d=11 and e=01 
 
                                  0.1                0.1 
                                   (a)            (b) 
 
 
What is the advantage of having a code with minimum variance? 
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Optimality of Huffman Code 
Theorem 2 Huffman code is a minimum average length )( l binary prefix code. 
 
Lemma 1  If )()( 21 apap ≥ , then it must be that  21 ll ≤  for the code to have minimum 
average )(l codelength. 

                                                ∑
=

++=
n

i
ii lplaplapl

2
2211 )()(  

                                                 Qlaplap ++= 2211 )()(  
 

For the sake of contradiction, assume 21 ll > . Then, we can exchange the codes for 

1a and 2a , giving modified average length: 
                                             Qlaplapl ++= 1221

* )()(  
Therefore,                                   ))(())(( 122211

* llapllapll −+−=−  
                                      ))(())(( 212211 llapllap −−−=  
                                      2121 ,)]()([ llCapapC −=−=  

           Thus, *ll > . This means that  l is not minimum, a contradiction. 
 
Lemma 2  A minimum average length l binary code has at least two codes of 

maximum length Ml . 
Proof: Let ),,,( 21 MCCCC K=  be a minimum l binary prefix code, such that 

Mppp ≥≥≥ ,,21 K . Let Ml be the length of the least likely source symbol whose 
code is MC and has length Ml . So, the leaf node sits at the deepest level of the 
binary tree. It cannot be a lone node at that level, because, if it were, we can 
replace it by its ancestor on the previous level. Since shuffling the code words to 
nodes on any fixed level does not affect l , we may assume that 1−MC and 

MC stem from the same ancestor, with 1−MC , say, encoding in 0 and MC encoding 
in 1.That is we put these two leaf nodes on consecutive positions of the Huffman 
tree. Let’s redefine 1−Ml  to be the depth of the node that is the common ancestor 
of MC and 1−MC , while letting each jl for 21 −≤≤ Mj  retain the original 

meaning. 
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This converts the problem to construct a binary tree with M-1 terminal nodes so as to 

minimize                                          ]1)[( 11

2

2
+++= −−

−

=
∑ MMM

M

j
jj lpplpl . 

 
Now, define modified probabilities  { }11,* −≤≤ Mjp j    as  

                                                                           ,1
*

1 MMM ppp += −−  
 
                                                        21* −≤≤= Mjpp jj  

 

Then                                             *
1

1

1

*
1

*
1

2

1

* )1( −

−

=
−−

−

=

+=++= ∑∑ M

M

j
jjMM

M

j
jj plplplpl  

But 1
*

−Mp  is a constant of the problem and does not affect how we construct the tree. 
This has converted our original problem to that of finding a tree with M-1 terminal nodes 
that is optimum for probabilities }11,{ * −≤≤ Mjp j . This, in turn, can be reduced to an 
(M-2) node problem by assigning the code words corresponding to the smallest two of 
modified probabilities jp*  to a pair of terminal nodes that share a common immediate 
ancestor. But, that is, precisely what the next merge operation in Huffman algorithm 
does! Iterating these argument M-1 times establishes that Huffman algorithm produces 
minimum average length prefix binary codes, which proves Theorem 2.  

This argument is also valid for d-ary codes! 
 
Theorem 3 The entropy H of }1,{ njp j ≤≤ satisfies nH log0 ≤≤  
Theorem 2 says that Huffman code produces a minimum average length code. Now, we 
want to show that this average length is bounded below by the entropy of the source S 
denoted as H(S) and bounded above by H(S)+1 bits. That is 1)()( +≤≤ SHlSH . 
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Lower Bound for average length 
 

                                                        

∑

∑

∑∑

=
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−−=−
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i
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i
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ipp

plp

pplpHl

)2log(

)log(

)log(

 

 Let il
ipx 2= . Using the relation )11(loglog 2 xex −≥ , we then have 

                                )
2

11(log)2log( 2 i
i

l
i

l
i p

ep −≥  

 
 Thus,                                              

                                          

]1[

]2[log

)2(log
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ppeHl

i

l

i
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−=

−≥
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where ∑ ≤= −

i

liC 12   (By Kraft inequality). Thus, 0≥− Hl . Equality holds when x = 1 

Thus, Hl ≥ . The average code length for any binary prefix code is at least as large as 
the entropy of the source. [The above derivation is also true for d-ary prefix code. 
Replace il−2  by ild − and e2log by edlog .] 
 
Upper Bound 
 
The upper bound will be proved by showing that there exists a UD code (prefix free code 
is UD) with average code word length H(S) +1. Thus the optimal code must have an 
average length less than H(S) +1. 

For our model, we know ii pl log−= .  The integral value of the length is
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

p
li

1log . 

Therefore,                         1loglog +−≤≤− iii plp  
 Thus, from left inequality, we have il

ip −≤ 2 . Therefore 

                                                  12
11

=≤∑∑
==

−
K

i
i

K

i

l pi  

By Kraft-McMillan theorem, there exists a UD code with code word  lengths {li}. Then, 
we can use the right inequality  of 1loglog +−≤≤− iii plp  to write: 
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                           1)(log)1log( +≤+−≤+−≤= ∑∑∑∑ SHppppplpl iiiiiii  
 
Combining the lower and upper bound, we have (See pp. 46-48, Sayood) 
 
Theorem 4: 1)()( +〈≤ SHlSH  
Rather than developing Huffman code for each symbol of the alphabet, if we develop 
coding for k symbols together (the so-called k-grams), we can show (Sayood, pp49-52) 

                                                 
k

SHlSH k
1)()( +≤≤  

Thus, when ∞→k , the upper and lower bound collapses to the value of the entropy of 
the source.  This is the reason why Huffman codes are called optimal binary codes. But 
be aware, to achieve optimality, we must have probability values for all grams of 
arbitrary length which is very impractical. But, even at the word level Huffman’s 
performance is even better than LZ family of codes, as we will see later.  
 
Canonical Huffman Code 
 
 Huffman code has some major disadvantages. If the alphabet size is large, viz. 
word based Huffman need to code each word of a large English dictionary. 

1. Space: n symbols leaf nodes; n-1 internal nodes. Each internal node has two 
pointers, each leaf stores a pointer to a symbol value and a flag saying it is a 
leaf node. Thus, the tree needs around 4n words. 

2. Decoding is slow – it has to traverse the whole tree with a lot of pointer 
chasing with no locality of storage access. Each bit needs a memory access 
during decoding. 

 
The canonical Huffman code does not need any prelude to be sent receiver. It also needs 
less storage. Canonical Huffman is very useful when the alphabet is large but fast 
decoding is necessary. The code is stored in consecutive memory addresses, along with 
symbols. The encoding and decoding steps are very fast.  The design of the code starts 
with the knowledge of the lengths of the code given as input to the encoder. This step 
takes additional computation time but can be performed offline.  
 
Non-Huffman Codes Having Same Average Length as That of Huffman Code 

Consider the following example of probability distribution: 
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1

 
 
As we know, if there are n-1 internal nodes, we can create 12 −n  new Huffman 
codes by re-labeling (at each internal node there are two choices of labeling with 0 
and 1). So, for this example, we should have  3225 =  Huffman codes. But, let us 
create the codes as 00x, 10y, 01, and 11 where x,y = 0 or 1. let A=00, B=10, C=01, 
D=11. The codes are Ax, By, C, D. Any permutation of A, B, C, D will lead to a 
valid Huffman code in the sense that code lengths will be the same and all codes 
will be prefix codes. There are 4! permutations and (x,y) has 4 possible values – 
hence a total of 96 codes! This means that there are prefix codes that cannot be 
generated by Huffman tree but has the same average length as that of the Huffman 
code. Canonic Huffman code is one such “Huffman” code. An example is given 
below. Note all the codes of same length are consecutive binary integers of given 
length.  
 
 

 
  a 000  
  b 001 
  c 010 
  d 011                                                                                           
  e 10                                                                   e                       f 
  f 11                                            
 
 
                                 a              b        c           d 
                    
 
 
The corresponding binary tree cannot be derived following Huffman’s algorithm. 
But, it is prefix, minimum redundancy and has same average code length as that of 

0 1

0 1 0 1 

0 1 0
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the Huffman code. Given the lengths of the Huffman words, these codes can be 
generated as follows. 

 
 Algorithm to Generate the Canonical Huffman Codes (Encoding) 
 

1. The input to the algorithm is the code length sequence in non-increasing 
sequence {lmax, …., lk). 

2. Take the largest length group with length maxl . If there are 1k words of this 
length, generate the first 1k  binary numbers of length maxl . 

3. If the next length is 
2kl , extract 

2kl bit prefix of the last code of the previous 

group. Add 1 2k times, where 2k is the number of words of length 
2kl  to get 

the code for the group. 
4. Iterate the process for all groups il .  
 

Example : The lengths are (5,5,5,5,3,2,2,2) 
 0 0 0 0 0 
 0 0 0 0 1 

0 0 0 1 0 
0 0 0 1 1 
0 0 1 
01 
10 
11 
 

Note, not all length sequences are valid. For example, there cannot be a Huffman 
code for (5,5,5,5,3,2,2,2,2). Problem: why? 

  
The algorithm to generate the codes seems very straight forward as 

described above in the code generation steps. If the first code using il  bits is 
somehow figured out for the code group of length il , then we know the remaining 
codes in this group are consecutive numbers. Let first(l) denote the first code in 
the code group of length l. For encoding purpose we only need first(l) for values 
of l equal to  max21 ,,, lll K which are the lengths of the codes. But, we will 
compute first(l)  for all values of l in the range max1 lll ≤≤ since, as we will see 
later, we will need this for the purpose of decoding. Let num(l) denote the number 
of codes of length l, max1 lll ≤≤ . The computation of first(l) is given by the two 
line code: 

   first( maxl ):=0; 
               for l := maxl -1 down to 1 do 
   first(l) := ( )⎡ ⎤2/)1()1( +++ lnumlfirst ; 
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Let’s do the example (5, 5, 5, 5, 3, 2, 2, 2) again. 

⎡ ⎤
⎡ ⎤
⎡ ⎤
⎡ ⎤ 22/)31()1(

12/)11()2(
12/)02()3(
22/)40()4(

0)5(

=+=
=+=
=+=
=+=

=

first
first
first
first
first

  

                                     We have           l 1   2   3   4   5    
                                                    num (l) 0   3   1   0   4   
                                                                 first(l)         2   1   1   2   0    

 Only the bold numbers in the array first(l) are used.  Given the array first(l), the 
algorithms steps can now be followed to obtain the canonical codes. The expression  
( )⎡ ⎤2/)1()1( +++ lnumlfirst  guarantees that the resulting code is prefix-free. Convince 

yourself that the algorithm generates a prefix-free code with specified lengths. 
 
 Storing the Code in Memory 
We will now give an algorithm to store the resulting code in consecutive locations in 
main memory, starting from address 0. It is this property that will make the decoding 
operations very efficient as we will see soon.  Since it is a variable length code, provision 
must be made to detect the end of a code word in each address. The following code gives 
the address of the first code word in each group. 
Compute an array called first_address(l) 

Begin 
 ;0)(_ max ←laddressfirst  

)(0__ maxlnumaddressavailablenext +← ; 
for l = maxl -1 down to 1 do { 
 if 0)( ≠lnum   then { 
  addressavailablenextladdressfirst __)(_ ← ; 
  )()(___ lnumladdressfirstaddressavailablenext +← ; 
            } else  
  0)(_ ←laddressfirst ; 
}  End 
 

So, the result is: you may verify the addresses for lengths 5, 3, 2 are 0, 4, 5 respectively, 
in the table (indicated by bold).  Note the addresses for lengths 4 and 1 are set to 0  and 
they represent dummy addresses but are useful in decoding. 

  
l                                        1   2   3    4   5 
first (l)                              2   1   1    2   0 
first_address                     0   5   4    0   0 

 
 
 



 23

Decoding Algorithm 
Now, we are ready to perform the decoding operation given an input bit string. We define 
a bit string variable v which stuffs input bits (to be decoded) into it as long as the binary 
number represented by v is less than first(l) . Note here we need the values of first(l) even 
if there is no code with length l. 
As soon as v becomes greater than or equal to first(l), we know we are in the middle of 
some group of codes, so we need to have the off-set address in this group to access the 
symbol stored in an array in a  RAM. Here is the algorithm:      
        while input is not exhausted do { 
                         l = 1; 
  stuff input bit in v; /* preparing the code word, msb first/* 
  while v < first(l)  do{ 
   append next input bit to v; 
   l = l+1; 
                              } 
         difference = v – first(l); /* computes the offset address within the group./* 
         output symbol at first_address(l) + difference } 
  
Note for each decoded symbol, we  only need one memory access, while for Huffman 
tree the memory access will be for each bit. For the example shown below, Huffman 
decoder will need 10 memory accesses as opposed to only 6 for canonic Huffman code. 
 

    l  1 2 3 4 5    

num  0 3 1 0 4    

first(l)  2 1 1 2 0    

first_address(l)  0 5 4 0 0    

 Address  Symbol  Code    

0  a  0 0 0 0 0  

1  b  0 0 0 0 1  

2  c  0 0 0 1 0  

3  d  0 0 0 1 1  

4  e  0 0 1    

5  f  0 1     

6  g  1 0     

7  h  1 1     
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Try to trace the algorithm and see whether the following bit string gives the correct 
symbol sequence. 
Input: 0 0 1 1 0 0 0 0 1 0 
  e    g       c 
 
Now that we have a Huffman code that has a very fast decoding algorithm, the question 
is: given the probabilities, how do you obtain the lengths of the codes? One way will be 
to develop the regular Huffman tree, extract the length information and then don’t use the 
tree. Instead, design canonic codes using the length information. But, this actually defeats 
the original purpose where we were confronted with a large alphabet like the words in the 
English dictionary and we need good amount of storage and computation overhead to 
generate the length information. It is possible to obtain the lengths directly from 
probabilities by using a fairly complex data structure and algorithm (heap and a linear 
array for full binary trees) which will not be presented in these notes..  I would like to 
assign this as optional reading: from Witten, Moffat and Bell ,pp.41-51 and David 
Salomon, pp.73-76, Moffat and Turpin, Ch.4. 
 
Non-Binary Huffman Code  ( See  Section 3.3, Sayood) 
Adaptive Huffman Code  ( See Section 3.4, Sayood) 

Adaptive Huffman Code

Huffman tree has the following properties

•Each node except root node has a sibling.
•If the nodes (excluding root) are listed in order of non-increasing 
weight,then each node is adjacent to its sibling.

Procedure: Whenever the count of a node is incremented, the new count is
compared with the two counts of the next higher sibling pair (if any) in the 
ordered list. If the new count becomes larger than any one of these two counts, 
the two nodes must be interchanged (or the two subtrees must be interchanged)
and the new counts computed until no further interchange can take place.
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0 1

0 1

0 1

0 1

0 1c

a b

d

e

f
x

y

z

Sibling pairs:(x,f)(y,e)(z,d)(c,j)(a,b)

j

19

7

11

4

14

8

4 4

1 3
3

4

8

a b

cde

f

0 1

0 1

0 1 0 1

0 1
a: 00010
b: 00011
c: 0000
d: 001
e: 01
f: 1

a: 0100
b: 0101
c: 011
d: 001
e: 000
f: 1

 


