
 1

The Coding Problem
The source alphabet A of n symbols {a1,a2, …an} and a corresponding set of probability

estimates P={p1,p2,…,pn} are given, such that ∑ =
n

ip
1

1. The coding problem consists of

deciding on a code giving a representation of each symbol ai of the alphabet using strings
over a channel alphabet B , which is usually {0,1} .

 Code: Source message --- -f-----> code words
 (alphabet A) (alphabet B)
 alphanumeric symbols Channel alphabet= binary symbols
 |A| = n |B|=2

The symbol ai may be drawn from a longer message M consisting of strings of source
alphabet symbols, but at this point we are considering the symbol ai in isolation.
Sometimes we will denote the source alphabet A by the integers {1, 2, 3,…,n}. Let the
codewords for a particular coding algorithm be C= {c1,c2,…cn} with corresponding
lengths of codewords being L={l1,l2,..,ln}. Then the average code length l or the
expected codeword length E(C,P) is given by

 ∑
=

==
n

j
jjlplPCE

1

),(

Prefix-free Code: A code is said to have prefix property if no code word or bit pattern is
a prefix of other code word. Sometimes prefix-free code is also called simply prefix
code. A code is said to be uniquely decodable or uniquely decipherable (UD) if the
message for the code string, if it exists, can be recovered unambiguously. The
fundamental question is: how short can we make the average code length so that the code
is UD. Consider the table below giving different codes for 8 symbols 821 ,...,, aaa :

Example Codes: ,
 probabilities codes
ai p(ai) Code A Code B Code C Code D Code E Code F

a1 0.40 000 0 010 0 0 1

a2 0.15 001 1 011 011 01 001

a3 0.15 010 00 00 1010 011 011

a4 0.10 011 01 100 1011 0111 010

a5 0.10 100 10 101 10000 01111 0001

a6 0.05 101 11 110 10001 011111 00001

a7 0.04 110 000 1110 10010 0111111 000001

a8 0.01 111 001 1111 10011 01111111 000000

Avg.length 3 1.5 2.9 2.85 2.71 2.55

 2

Code A: violates Morse’s principle, not efficient but instantaneously decodable.
Code B: not uniquely decodable
Code C: Prefix code that violates Morse’s principle
Code D: UD but not prefix
Code E: not instantaneously decodable (need look-ahead to decode), not prefix
Code F: UD, ID, and Prefix and obeys Morse’s principle

Code D, E and F: are incomplete, as there are prefixes over the channel alphabets that are
not used. For D, all four prefixes 00, 01, 10 and 11 do not occur etc. Code F is a minimum
redundancy code which is also known as Huffman code which we will discuss later

Note

1. Code A is optimal if all probabilities are the same, each taking ⎡ ⎤N2log bits,
where N is the number of symbols.

2. (See Section 2.4, p.29, Sayood) Code 5 (a=0, b=01,c=11) is not prefix, not
instantaneously decodable but is uniquely decodable. Consider the string ‘01
11 11 11 11 11 11 11 11’. There is only one way to decode this string which will
not have leftover dangling bits. But if we interpret this as ‘0 11 11 11 11 11 11 11
11 1’ , a dangling left over ‘1’ will remain.

3. (See Section 2.4, p.29, Sayood) Code 6 (a=0,b=01,c=10) decodable in two
different ways. The sequence ‘ 0 10 10 10 10 10 10 10 10’= acccccccc but can
also be parsed as ’01 01 01 01 01 01 01 01 0’= bbbbbbbba. Both are valid
interpretation. So, it is not UD, not prefix.

Exercise: Find and justify a test for a UD code.

Note there is a whole family of codes that use bit-fractional codes which are not
illustrated here in this table. For example, arithmetic codes which we will discuss
later.

A code is
Distinct: mapping f is one-to-one.
Block-to-Block (ASCII – EBCDIC)
Block-to-Variable or VLC (variable length code) (Huffman)
Variable-to-Block (Arithmetic)
Variable-to-Variable (LZ family)
Obviously, every prefix code is UD, but the converse is not true as we have seen.

The Kraft-McMillan Inequality

 If the code words are the leaf nodes of a binary tree, the code satisfies the prefix
condition. In general this is true for any d-ary tree with d symbols in the alphabet. Why
restrict to prefix code? Is it possible to find shorter code if we do not impose prefix
property? Fortunately, the answer to this is NO. For any non-prefix uniquely decodable
 code, we can always find a prefix code with the same codeword lengths. If each symbol

 3

ai has a probability which is a negative power of 2, that is, ik
ip −= 2 , then the self-

information is iii kpaI =−= log)(, a whole number. So, if we set ii kl = , this results in
average code length or the expected code length equal to Shannon’s entropy bound and

hence cannot be further improved. We also have 12
1
∑
=

− =
n

i

li . This led Kraft [1949] to

formulate the famous Kraft inequality.

Theorem 1: (A necessary condition for UD code) Let C be a code with n codewords
with lengths nlll ,...,, 21 . If C is uniquely decodable, then

 12)(
1

≤=∑
=

−
n

i

liCK

McMillan [1956] extended this result and showed that if the Kraft inequality is satisfied
for some code C’, then it is possible to find a UD prefix code C that will have exactly the
same lengths of code words as those of C’.

 Theorem 2: (A sufficient condition for prefix code) Given a set of integers nlll ,...,, 21 ,

that satisfy the inequality 12
1

≤∑
=

−
n

i

li , we can always find a prefix code with codeword

lengths nlll ,...,, 21 .

This code is also uniquely decipherable. Further more, this relationship is invertible, that
is, if

 ∑
=

−=
n

i

liCK
1

2)(

is greater than 1, the code cannot be a prefix-free. As a simple but obvious example, if
each code word has length 1, then K(C) = n/2, and a prefix-free code is possible only if
n=2. The corresponding codes are ‘0’ and ‘1’.

(Formal proofs for Theorem 1 and 2 are given in pp.32-34, Sayood)

Simpler Proofs for Theorems 1 and 2 for the Prefix Code

We prove the Theorem 1 by using a binary tree embedding technique. Every prefix code
can be represented in the paths of a binary tree

Example to illustrate the proof
 { } { }4,4,3,2,2,2=jl

 4

Proof: Given a binary prefix code with word lengths{ }jl , we may embed it in a binary
tree of depth L where { }jlL max= , since each of the prefix code must define a unique
path in a binary tree. This embedding assigns to each codeword of length jl a node on
level jl to serve as the terminal node. Then the entire sub-tree below that node is pruned,

wiping out jlL−2 nodes. Since we cannot prune from a level-L tree more than L2

nodes that were there to start with, we must have L
n

i

lL i 22
1

≤∑
=

− . Diving by L2 , we get

12
1

≤∑
=

−
n

i

li which is the Kraft Inequality.

The proof of Theorem 2 is more interesting.

Given a set of integers { }jl satisfying Kraft inequality, there is a binary prefix code with
these lengths.

Proof: That is, for each level l we must show that after we have successfully embedded
all words with lengths ll j < , enough nodes at level l remain un-pruned so that we can
embed a codeword there for each j such that ll j = .

That is,
 llj j

llj

lll

j

j =≥− ∑
<

− :{22
:

} …(1)

 5

The right hand side of Eqn.(1) is simply the number of nodes with jll = . But

 c= ∑∑∑

=

−

==

====
llj

ll

lljllj
j

j

j

jj

llj
::

0

:

221}:{

Therefore, from Eqn.(1), ∑∑

=

−

<

− ≥−
llj

ll

llj

lll

j

j

j

j

::
222

Or ∑∑∑

≤

−

=

−

<

− ≥+≥
llj

ll

llj

ll

llj

lll

j

j

j

j

j

j

:::
2222

Dividing both sides by l2 , we have ∑

≤

−≥
llj

l

j

j

:

21

Since we also have ∑∑

≤

−− ≥
llj

l

jall

l

j

jj

:
22

We must have 122

:
≤≤ ∑∑ −

≤

−

jall

l

llj

l j

j

j

(The above derivations are also valid for any d-ary tree. Put jld − to replace jl−2 .)

Some Well Known Prefix Codes

(References: Chapters 1-4 of Moffat and Turpin, pp.47-53 of Salomom)

 Unary code
 Variations
 General Unary Code
 Elias Code
 Golomb Code
 Rice Code
 Fibonacci Code
 Shannon-Fano Code
 Huffman Code

Before we discuss these codes, we need to understand the models that are appropriate for
estimation of the probabilities.

 6

Probability Estimation
We learned that the compression system has three components: modeling, probability
estimates and coding. We also know that we cannot device a code whose expected
average length is less than the entropy of the source for the given model. The human
beings are very good at building rather sophisticated model of our languages at a very
early age. The human brain could have evolved through millions of years to achieve these
characteristics. Consider the following texts:
 “ If you don’t hurray up, you are going to be …. “
 “If you don’t put on a jacket, you are going to be …”
 “If you don’t do your assignments in the data compression course,
 you are going to get …………. “.
We can easily fill in the gap. This is equivalent to predicting the next word(s). If we can
do this sort of analysis, we may be able to find out a good estimate of the probabilities of
the words in English language. Shannon (1951) undertook seminal work in this area and
concluded that the entropy of English language is about 2 BPC. Later Cover and
King(1978) improved this estimate to 1.3 BPC. Thus any lossless text compression
algorithm that comes close to 2.0 BPC is supposed to be very good. Researchers
(including our work at UCF) have come close to 2.3 for some specific corpus.

 A natural question to ask is: where and how do we get the probability estimates of the
source symbols? The answer to this question is extremely difficult. The order(-1) model,
assumes equal probability for all symbols even if some symbols may not occur in the
text. Thus for ASCII (ISO-646) the alphabet has 128 symbols, each having a probability
of 1/128. The extension of ASCII (ISO-8859-1) has 256 symbols, and so the entropy of
the source is 8 bits under Order (-1) model. The Unicode (for all languages of planet
earth) uses 2 bytes for each symbol has entropy of 16 bits. These are called static codes.
Both decoder and encoder know the model and there is no overhead to transmit the model
from source to destination.

Semi-Static I Model
If a particular text does not have all the symbols of the alphabet, we can determine what
symbols it has by a first pass of the text. Let’s say the text has only 25 symbols. Then
under Order(-1) model, the entropy of the source is given by

 64.4
25
1log

25
1)(

25

1
=−= ∑

=i
PH

Of course, one has to find an algorithm to encode the text that actually obtains this lower
bound. In practice it might take 5 or 6 bits. The decoder needs to know the symbols of the
alphabet which is sent as a prelude taking 8*25=200 bits plus count of the number of
symbols, which takes 8 bits (since the maximum count could be 256). If we distribute
this overhead on the entire message of length m, the average code length becomes 4.64 +
208/m. If we take m=128, as an example, this becomes 6.27 BPC.

Semi-Static II Model
Perhaps we can improve the situation if we can calculate the self-probabilities of the n
characters in the message. That is, if the symbols si appears vi times in the message, then

 7

take pi=vi/m. The quantity
m
vv i

n

i
i log

1
∑
=

− is called the zero-order self-information of the

message and gives the lower bound on the number of bits required to encode the message
provided the symbols are iid. This gives a figure of 4.22 BPC for the example discussed
in Moffat and Turpin, p.23. It looks like an improvement, but it is not. Because, we have
to include frequency of symbols information in the prelude, assuming conservatively that
we need 4 bits per symbol to send the frequency information, we need 4X25=100
additional bits. This brings the total with m=128 to be 4.22+ (208+100)/128=6.63 which
is worst than the previous scheme. Thus, making the model more and more complex
does not always buy in compression ratio. We need to strike a balance between the
modeling stage and the actual coding stage. If the message is short, the additional cost for
complex modeling is not justifiable whereas if the file size is very large and the model is
going to be used many times, the overhead could be amortized.

Static Codes
In this section, we will discuss some of simplest static codes. These codes are very
suitable for coding a set of m integers with smaller values more probable than the larger
values. Such integer sequences are often generated as an intermediate output for many
data compressor (such as move-to-front method). Since most of the methods do not take
into account the probabilities, their compression performance is relatively poor. But, they
have very regular structures and can be encoded or decoded very fast. For some very
special classes of probability distribution, these codes are also optimal. We assume that
the message M consists of m integers from the source alphabet S={1,2,3, …, n} and that
their probabilities are p1 >p2>…>pn . We allow n to be unbounded in which case the
probabilities are p1 >p2> >pi > ….>0.
Unary Code
In a unary code, an integer x is encoded as a sequence of x-1 1’s (or 0’s) followed by one
0 (or 1) as shown below

 m Code Alternate Code
 --
 1 0 1
 2 10 01
 3 110 001
 4 1110 0001
 … …
 --

The unary code is a zero redundancy code if the probability distribution is P=

{ }2,2,....,
8
1,

4
1,

2
1)1()1(−−−− mm . For an infinite sequence of numbers it is P=

{)0.,,.........
8
1,

4
1,

2
1 .

General Unary Code
In this scheme, rather than allocating one integer to a unary code, a group of consecutive
integers are allocated to a unary code followed by a distinct binary code for each member

 8

of the group. The code is best described by a triplet (start, step, stop). The mth code word
has m 1’s followed by a single 0 which is followed by all possible combinations of a=
start+m.step binary digits. If a=stop, then the single 0 bit preceding the a-bits is dropped.
For example, a (3,2,9) code is shown below.

m a=3+m.2 mth codeword # of codewords(2a) Range of integers
--
0 3 0xxx 23=8 0-7
1 5 10xxxxx 25=32 8-39
2 7 110xxxxxxx 27=128 40-167
3 9 111xxxxxxxxx 29=512 168-679
These codes are optimal for probability distribution (for the groups are: ½,1/4,1/8,1/8) is

}256,..8
1,8

1(256
1),128,8

1,8
1(128

1),32,...4
1,4

1(32
1)),8,...2

1,2
1(8

1{ timestimestimestimesP =

Minimal Binary Code
A code is said to be a minimal binary code if all prefixes are used in the code. If we use
the regular binary numbers to encode the first six integers as (000,001,010,011,100,101),
we will miss ‘11’ as a prefix. On the other hand the first six integers can be coded using
a code (00,01,100,101,110,111). Note all possible prefixes of one bit (0,1) and all
possible prefixes of two bits (00,01,10,11) appear in the code. These codes are also called
complete. Note, the code of an integer varies depending on maximum value of n. Thus if
n=3, the integer 2 gets encoded as ‘10’ (the codes are 0, 10, 11) but when n=6, 2 is
encoded as ‘01’. It is usually more efficient than the obvious binary numbers, each
having log2n bits. In general, for an alphabet of n symbols, the minimal binary codes have

⎡ ⎤ nk n −= 2log2 codewords that are ⎣ ⎦n2log bits long and remaining n-k=n-[⎡ ⎤ nn −2log2]
= ⎡ ⎤nn 2log22 − are ⎡ ⎤n2log bits long. The shorter codes are allocated to the more probable
symbols to minimize the expected code length. The minimal binary codes has the
property that if n is a power of two and all symbols have equal probability (=1/n), then it
is a zero-redundancy code. If n is not a power of two, it is minimum redundancy for the
same equal-probability distribution and in effect becomes a Huffman code, as we will see
later. The algorithm to construct the code is as follows: Given n, use first ⎡ ⎤ nk n −= log2
combinations of ⎣ ⎦nlog bits to encode k; for the remaining combinations append a ‘0’
and then a ‘1’, giving a total of n codes. An example: n=11, k=16-11=5. So, the code is;
000,001,010, 011,100, 1010,1011,1100,1101,1110,1111.

Elias Code
The Elias code is an elegant compromise between minimal binary code and the unary
code. This is also a family of infinite code, that is, it handles an integer x of arbitrarily
large magnitude and takes O(logx) number of bits. The most common are the codes γC
and δC , as shown in the following table. The code γC can be obtained by writing the
binary numbers as 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010 then drop the most
significant bit and replace this with a unique unary code prefix. The unary part takes
1+ ⎣ ⎦x2log bits and the binary part takes ⎣ ⎦x2log number of bits making a total of

 9

1+2 ⎣ ⎦x2log bits for the γC code. . The code γC can be seen as a general unary code that
consists of a selector part that indicates a range of values (answers the question: is it
bigger than 1,3,7,….2k-1) that collectively form buckets of size 1,2,4,…2k, and a binary
part that indicates a value within the bucket. Since the binary part has all its numbers with
most significant bit ‘1’, this bit can be dropped without any ambiguity.
The second Elias code δC uses a prefix part that is γC rather than a unary code and it
takes a total of ⎣ ⎦ ⎣ ⎦xx 222 log2loglog21 ++ bits to code an integer x. The algorithm to
encode and decode Elias codes are given in Moffat and Turpin “Compression and Coding
Algorithms” Chapter 3.

 M γC code δC code

 1 0 0
 2 10 0 100 0
 3 10 1 100 1
 4 110 00 101 00
 5 110 01 101 01
 6 110 10 101 10
 7 110 11 101 11
 8 1110 000 11000 000
 9 1110 001 11000 001
 10 1110 010 11000 010
__

We conclude by citing a direct quote from this book: “The amazing thing about the Elias
code is that they are shorter than the equivalent unary codes at all but a small finite
number of codewords. The γC code is longer than unary code only when x=2 or x=4 and
in each case by only one bit. Similarly, the δC code is larger than γC only when
εx {2..3,8..15}. On the other hand for large values of x both Elias codes are not just

better than unary, but exponentially better.”

 The Elias codes are for any arbitrary probability distribution. To see why, assume a
probability distribution P in which p1 >p2>…>pn. . Because of this distribution px must be
less than x

1 for all nx ≤≤1 . Because if it is not then for some value x, we must have

 ∑
=

x

j
jp

1
> 11

1
=∑

=

x

j
x

which contradicts the assumption that the sum of probabilities equals to 1. But, as we

 10

know if xpx
1≤ then the symbol x must take at least O(log2 x) bits. Thus, both the Elias

codes take number of bits within a multiplicative constant of the entropy bound. The code
words are fixed yet they are provably “not bad” and hence general purpose for any
probability distribution.

Golomb Code
The Elias code has bucket sizes {1, 2, 4, 8, .. . 2k,..}. For Golomb code the bucket size is
a fixed constant b. Given the n integers to be encoded, first compute two other integers as

b

nq 1−
= (Integer quotient)

 qbnr −= (Integer remainder or residue)
Now, encode q using a unary code and r using a minimal binary code. The concatenation
of these two codes gives the Golomb code. The table below illustrates the Golomb code
for b=5 and n=9:

 n q r Golomb Code

 1 0 1 0 00
 2 0 2 0 01
 3 0 3 0 10
 4 0 4 0 110
 5 0 5 0 111
 6 1 1 10 00
 7 1 2 10 01
 8 1 3 10 10
 9 1 4 10 110

Rice Code
Rice code is a special case of a Golomb code where the bucket size is a power of 2, that
is, for some fixed k the bucket size is b=2k. Thus

 k

nq
2

1−
= (Integer quotient)

 qbnr −= (integer remainder or residue)
The example below illustrates Rice code for k=2, b=4,
 n q r Golomb Code

 1 0 1 0 00
 2 0 2 0 01
 3 0 3 0 10
 4 0 4 0 11
 5 1 1 10 00
 6 1 2 10 01
 7 1 3 10 10

 11

 8 1 4 10 11
 9 2 1 110 0

Division by 2k has a simple shift register implementation:
1)For integer n,Take the low-order k bits of n-1 which gives the minimal binary part of
the code; 2) Right shift n-1 by k bits and t take the least significant k bits, which gives
the integer q, 3)Obtain the unary representation of q.
Concatenation of the unary and the binary part is the final Golomb code.

Both Rice and Golomb codes are extensively used in compression system. Golomb codes
are particularly useful for Bernoulli distribution – a sequence of Bernoulli trials with
probability of success given by p. Let px be the probability of the next success after x
trials. Then, p1=p, p2=p(1-p) etc. and in general,]1|)1([1 xppP x ≤−= − . If the
distribution P has this property and the parameter b is chosen as (See Turpin and Moffat,
p.38)

pp

b e
e

e 1)2(log
)1(log

5.0log
×≈⎥

⎥

⎤
⎢
⎢

⎡
−

=

then Golomb code is a minimum redundancy code. Elias, Golomb and Rice codes have
been extensively studied in the literature and several generalizations and mathematical
properties of these codes are discussed in text and in the literature. The detail discussion
of this material is outside the scope of this course.(Possible Term project)

N 21 13 8 5 3 2 1 Code
1 1 1 1
2 1 0 0 1 1
3 1 0 0 0 0 1 1
4 1 0 1 1 0 1 1
5 1 0 0 0 0 0 0 1 1
6 1 0 0 1 1 0 0 1 1
7 1 0 1 0 0 1 0 1 1
8 1 1 0 0 0 0 1 1 1
16 1 0 0 1 0 0 0 0 1 0 0 1 1
32 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1

Fibonacci Code
Express the integer x in terms of a weighted number system where the Fibonacci number
are the weights. Then x is encoded as the reverse Fibonacci sequence followed by
binary’1’. See the above tables.

 12

Further reading: (available at the reserved material desk at the library) 1)Moffat and
Turpin: Chapter 3, pp.29-41. 2) P. Fenwick, Chapter 3, “Lossless Compression
Handbook” (Ed. Sayood)

Minimum -Redundancy Code
A code is a minimum-redundancy code for a probability distribution P if its average
length or expected code length),'(),(PCEPCE ≤ for every n symbol prefix-free code
C’; thus, there is no other prefix-free whose average code length is strictly less than that
of C. The code obviously has to obey the Kraft inequality.

Shannon-Fano Code
The Shannon-Fano code was the first attempt to find a minimum -redundancy code. The
motivation for this algorithm is this: if the 0’s and 1’s are equally useful in the code, then
each bit position in the code word should correspond to a choice between groups of
symbols whose probabilities add roughly to the same amount. The algorithm is a top-
down approach and the most significant bit positions for all symbols are determined first.
The idea is to partition the symbols in two groups such that their probability sums are
approximately as much equal as is possible. The process is then repeated for each sub-
partition. Each partition can be imagined as an abstract symbol representing the sum of
probabilities of symbols in the partition. The process is iterated until each of the final
partitions contains only one original symbol to be encoded. The algorithm is illustrated
below for the probability distributions P=(0.25, 0.2, 0.15, 0.15.0.1, 0.1, 0.05) and
P=(0.25, 0.25, 0.125, 0.125, 0.125). The method produces best result if the splits are
perfect which happens when the probabilities are k−2 and ∑ =− 12 k . This property is
also true for Huffman codes as we will see later.

 i pi Code
1 0.25 1 0 1 0 Average length = 2.7 bit/symbol
2 0.2 1 1 1 1 Entropy=2.67bit
3 0.15 0 0 0 0 0 0 very good
4 0.15 0 0 1 0 0 1
5 0.1 0 1 0 0 1 0
6 0.1 0 1 1 0 0 1 1 0
7 0.05 0 1 1 1 0 1 1 1

1 0.25 1 1 Average length = 2.5 bit/symbol
2 0.25 1 0 Entropy=2.5bit
3 0.125 0 1 1 perfect code!
4 0.125 0 1 0
5 0.125 0 0 1
6 0.125 0 0 0

 13

Shannon-Fano code does not always produce the best expected length codes. For
example, take P=(0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1). The first partition will group the
symbols with probabilities 0.4 and 0.1 in one group and the rest in the second group and
so on resulting in a code length sequence L=(2,2,3,3,3,4,4). This gives an average code
length of 2.70 bits. A Huffman code, as we will see soon, will yield a code length
sequence L=(1,3,3,4,4,4,4) yielding an average code length of 2.60 bits. There is even a
“non-Huffman” prefix code given below with length sequence L=(2,3,3,3,3,3,3) whose
average code length is 2.60 bits.
 1 : 00
 2 : 010
 3 : 011
 4 : 100
 5 : 101
 6 : 110
 7 : 111
The top-down construction of the Shannon-Fano code forces the second symbol to have
two bits and some others to have 4 bits, although all symbols from second to the last have
the same equal probability 0.1. The last code gives them all the same length. The
Huffman code give the first symbol a code length of only one bit which more than
compensates for some symbols having code length 4.

 HHuuffffmmaann CCooddee:

 Shannon-Fano is top-down. If you draw a binary tree, the symbols near to the root
get codes assigned to them first.

 Huffman is bottom-up. It starts assigning codes from leaf nodes.

 Huffman invented this code as an undergraduate at MIT and managed to skip the final
exam as a reward!
Same offer: If you come up with an original idea in this course worth publishing in a
reputable journal, you may skip the final exam.

Huffman code construction (Encoding)
Huffman code uses a bottom-up approach. At the beginning, each symbol has code word
of length 0. Unless n=1, this violates Kraft inequality and it is not prefix. At each stage of
the algorithm, two symbols having lowest probabilities are combined to form a composite
symbol whose probability is the sum of probabilities of its constituent symbols, which are
recognized as child nodes in the binary tree depicting the construction. The construction
is as shown below. A code bit of ‘0’ is prefixed to the already generated code for the
symbol to its left child and a code bit ‘1’ is prefixed to the right child. This reduces the
Kraft inequality value and also reduces the total number of symbols yet to be coded by
one. The probabilities are sorted again and the process is repeated.

 14

0.05 0.06 0.110.07

0.13

0.67

0.09

0.20

0.33

1.00

0.04

The steps are given below with corresponding value of the Kraft inequality values K(C).
 P=(0.67, 0.11, 0.07, 0.06, 0.05, 0.04) ; K(C)=6
 P=(0.67, 0.11, 0.09, 0.07, 0.06) ; K(C)=5
 P=(0.67, 0.13, 0.11, 0.09) ; K(C)=4
 P=(0.67, 0.20, 0.13) ; K(C)=3
 P=(0.67, 0.33) ; K(C)=2
 P=(1.00) ; K(C)=1
When the number of composite symbols becomes exactly one (the root node of the binary
tree), the process terminates with K(C) =1.
What is the complexity of the Huffman algorithm? What is its storage complexity ?
Huffman code decoding
Note there is a unique path from the root to each leaf node each of which represents a
source symbol. The internal and the root nodes do not represent the source symbols, they
represent abstract composite symbols.
Based on the tree representation of the Huffman code, can you formulate an obvious
decoding algorithm? What is the most efficient way to store the tree?
Note the decoder must have an exact same copy of the Huffman tree. This constitutes an
overhead which becomes insignificant if the tree (sometimes also refereed to as a table)
is used many times over large number of files.

Minimum Variance Code
• Average code length ii lpl ∑= . Variance of code ∑ −=

i
ii pllv 2)(

 15

36.12.2 == vl

The codes for the above tree are a=0000, b=0001, c=001, d=01 and e=1. If we draw the
tree as: combine (a,b), then (c,d). Then combone (ab,) with e and then (a,b,e) with (c,d).
Then the codes are a=000, b=001, c=10, d=11 and e=01. You will see the variance is
0.16 although the average length is the same (2.2). The tree looks more bushy. Another
bushy construction with same variance is shown next page. The more bushy the tree is
the less will be its variance value because ,by definition, the mutual difference in length
of the codes are smaller for bushy trees.

Rule: During the iterative steps of ordering the probabilities, move as far right as
possible for the composite symbols at higher level in the sort order.
 0.2 (ab) 0.4 (cd)
 0.1 0.1 0.2 0.2 0.2 0.4
 (a) (b) (c) (d) (ab) (e)
 0.6 (abe) 1.0

 0.2 0.4 0.4 0.6 0.4
 (ab) (e) (cd) (abe) (cd)

 1.0

0 1 code
0.6 0.4 a= 000

 0 1 0 1 b=001
 0.2 0.4 0.2 0.2 c=10
 0 1 (e) (c) (d) d=11 and e=01

 0.1 0.1
 (a) (b)

What is the advantage of having a code with minimum variance?

 16

Optimality of Huffman Code
Theorem 2 Huffman code is a minimum average length)(l binary prefix code.

Lemma 1 If)()(21 apap ≥ , then it must be that 21 ll ≤ for the code to have minimum
average)(l codelength.

 ∑
=

++=
n

i
ii lplaplapl

2
2211)()(

 Qlaplap ++= 2211)()(

For the sake of contradiction, assume 21 ll > . Then, we can exchange the codes for

1a and 2a , giving modified average length:
 Qlaplapl ++= 1221

*)()(
Therefore,))(())((122211

* llapllapll −+−=−
))(())((212211 llapllap −−−=
 2121 ,)]()([llCapapC −=−=

 Thus, *ll > . This means that l is not minimum, a contradiction.

Lemma 2 A minimum average length l binary code has at least two codes of

maximum length Ml .
Proof: Let),,,(21 MCCCC K= be a minimum l binary prefix code, such that

Mppp ≥≥≥ ,,21 K . Let Ml be the length of the least likely source symbol whose
code is MC and has length Ml . So, the leaf node sits at the deepest level of the
binary tree. It cannot be a lone node at that level, because, if it were, we can
replace it by its ancestor on the previous level. Since shuffling the code words to
nodes on any fixed level does not affect l , we may assume that 1−MC and

MC stem from the same ancestor, with 1−MC , say, encoding in 0 and MC encoding
in 1.That is we put these two leaf nodes on consecutive positions of the Huffman
tree. Let’s redefine 1−Ml to be the depth of the node that is the common ancestor
of MC and 1−MC , while letting each jl for 21 −≤≤ Mj retain the original

meaning.

 17

This converts the problem to construct a binary tree with M-1 terminal nodes so as to

minimize]1)[(11

2

2
+++= −−

−

=
∑ MMM

M

j
jj lpplpl .

Now, define modified probabilities { }11,* −≤≤ Mjp j as

 ,1
*

1 MMM ppp += −−

 21* −≤≤= Mjpp jj

Then *
1

1

1

*
1

*
1

2

1

*)1(−

−

=
−−

−

=

+=++= ∑∑ M

M

j
jjMM

M

j
jj plplplpl

But 1
*

−Mp is a constant of the problem and does not affect how we construct the tree.
This has converted our original problem to that of finding a tree with M-1 terminal nodes
that is optimum for probabilities }11,{ * −≤≤ Mjp j . This, in turn, can be reduced to an
(M-2) node problem by assigning the code words corresponding to the smallest two of
modified probabilities jp* to a pair of terminal nodes that share a common immediate
ancestor. But, that is, precisely what the next merge operation in Huffman algorithm
does! Iterating these argument M-1 times establishes that Huffman algorithm produces
minimum average length prefix binary codes, which proves Theorem 2.

This argument is also valid for d-ary codes!

Theorem 3 The entropy H of }1,{ njp j ≤≤ satisfies nH log0 ≤≤
Theorem 2 says that Huffman code produces a minimum average length code. Now, we
want to show that this average length is bounded below by the entropy of the source S
denoted as H(S) and bounded above by H(S)+1 bits. That is 1)()(+≤≤ SHlSH .

 18

Lower Bound for average length

∑

∑

∑∑

=

+=

−−=−

i

l
ii

i
iii

i
ii

i
ii

ipp

plp

pplpHl

)2log(

)log(

)log(

 Let il
ipx 2= . Using the relation)11(loglog 2 xex −≥ , we then have

)
2

11(log)2log(2 i
i

l
i

l
i p

ep −≥

 Thus,

]1[

]2[log

)2(log

)21(log

2

2

2

CK

pe

pe

ppeHl

i

l

i
i

i

l
i

i

l

i
i

i

i

i

−=

−=

−≥

−≥−

∑∑

∑

∑

−

−

−

where ∑ ≤= −

i

liC 12 (By Kraft inequality). Thus, 0≥− Hl . Equality holds when x = 1

Thus, Hl ≥ . The average code length for any binary prefix code is at least as large as
the entropy of the source. [The above derivation is also true for d-ary prefix code.
Replace il−2 by ild − and e2log by edlog .]

Upper Bound

The upper bound will be proved by showing that there exists a UD code (prefix free code
is UD) with average code word length H(S) +1. Thus the optimal code must have an
average length less than H(S) +1.

For our model, we know ii pl log−= . The integral value of the length is
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

p
li

1log .

Therefore, 1loglog +−≤≤− iii plp
 Thus, from left inequality, we have il

ip −≤ 2 . Therefore

 12
11

=≤∑∑
==

−
K

i
i

K

i

l pi

By Kraft-McMillan theorem, there exists a UD code with code word lengths {li}. Then,
we can use the right inequality of 1loglog +−≤≤− iii plp to write:

 19

 1)(log)1log(+≤+−≤+−≤= ∑∑∑∑ SHppppplpl iiiiiii

Combining the lower and upper bound, we have (See pp. 46-48, Sayood)

Theorem 4: 1)()(+〈≤ SHlSH
Rather than developing Huffman code for each symbol of the alphabet, if we develop
coding for k symbols together (the so-called k-grams), we can show (Sayood, pp49-52)

k

SHlSH k
1)()(+≤≤

Thus, when ∞→k , the upper and lower bound collapses to the value of the entropy of
the source. This is the reason why Huffman codes are called optimal binary codes. But
be aware, to achieve optimality, we must have probability values for all grams of
arbitrary length which is very impractical. But, even at the word level Huffman’s
performance is even better than LZ family of codes, as we will see later.

Canonical Huffman Code

 Huffman code has some major disadvantages. If the alphabet size is large, viz.
word based Huffman need to code each word of a large English dictionary.

1. Space: n symbols leaf nodes; n-1 internal nodes. Each internal node has two
pointers, each leaf stores a pointer to a symbol value and a flag saying it is a
leaf node. Thus, the tree needs around 4n words.

2. Decoding is slow – it has to traverse the whole tree with a lot of pointer
chasing with no locality of storage access. Each bit needs a memory access
during decoding.

The canonical Huffman code does not need any prelude to be sent receiver. It also needs
less storage. Canonical Huffman is very useful when the alphabet is large but fast
decoding is necessary. The code is stored in consecutive memory addresses, along with
symbols. The encoding and decoding steps are very fast. The design of the code starts
with the knowledge of the lengths of the code given as input to the encoder. This step
takes additional computation time but can be performed offline.

Non-Huffman Codes Having Same Average Length as That of Huffman Code

Consider the following example of probability distribution:

 20

1

As we know, if there are n-1 internal nodes, we can create 12 −n new Huffman
codes by re-labeling (at each internal node there are two choices of labeling with 0
and 1). So, for this example, we should have 3225 = Huffman codes. But, let us
create the codes as 00x, 10y, 01, and 11 where x,y = 0 or 1. let A=00, B=10, C=01,
D=11. The codes are Ax, By, C, D. Any permutation of A, B, C, D will lead to a
valid Huffman code in the sense that code lengths will be the same and all codes
will be prefix codes. There are 4! permutations and (x,y) has 4 possible values –
hence a total of 96 codes! This means that there are prefix codes that cannot be
generated by Huffman tree but has the same average length as that of the Huffman
code. Canonic Huffman code is one such “Huffman” code. An example is given
below. Note all the codes of same length are consecutive binary integers of given
length.

 a 000
 b 001
 c 010
 d 011
 e 10 e f
 f 11

 a b c d

The corresponding binary tree cannot be derived following Huffman’s algorithm.
But, it is prefix, minimum redundancy and has same average code length as that of

0 1

0 1 0 1

0 1 0

 21

the Huffman code. Given the lengths of the Huffman words, these codes can be
generated as follows.

 Algorithm to Generate the Canonical Huffman Codes (Encoding)

1. The input to the algorithm is the code length sequence in non-increasing
sequence {lmax, …., lk).

2. Take the largest length group with length maxl . If there are 1k words of this
length, generate the first 1k binary numbers of length maxl .

3. If the next length is
2kl , extract

2kl bit prefix of the last code of the previous

group. Add 1 2k times, where 2k is the number of words of length
2kl to get

the code for the group.
4. Iterate the process for all groups il .

Example : The lengths are (5,5,5,5,3,2,2,2)
 0 0 0 0 0
 0 0 0 0 1

0 0 0 1 0
0 0 0 1 1
0 0 1
01
10
11

Note, not all length sequences are valid. For example, there cannot be a Huffman
code for (5,5,5,5,3,2,2,2,2). Problem: why?

The algorithm to generate the codes seems very straight forward as

described above in the code generation steps. If the first code using il bits is
somehow figured out for the code group of length il , then we know the remaining
codes in this group are consecutive numbers. Let first(l) denote the first code in
the code group of length l. For encoding purpose we only need first(l) for values
of l equal to max21 ,,, lll K which are the lengths of the codes. But, we will
compute first(l) for all values of l in the range max1 lll ≤≤ since, as we will see
later, we will need this for the purpose of decoding. Let num(l) denote the number
of codes of length l, max1 lll ≤≤ . The computation of first(l) is given by the two
line code:

 first(maxl):=0;
 for l := maxl -1 down to 1 do
 first(l) := ()⎡ ⎤2/)1()1(+++ lnumlfirst ;

 22

Let’s do the example (5, 5, 5, 5, 3, 2, 2, 2) again.

⎡ ⎤
⎡ ⎤
⎡ ⎤
⎡ ⎤ 22/)31()1(

12/)11()2(
12/)02()3(
22/)40()4(

0)5(

=+=
=+=
=+=
=+=

=

first
first
first
first
first

 We have l 1 2 3 4 5
 num (l) 0 3 1 0 4
 first(l) 2 1 1 2 0

 Only the bold numbers in the array first(l) are used. Given the array first(l), the
algorithms steps can now be followed to obtain the canonical codes. The expression
()⎡ ⎤2/)1()1(+++ lnumlfirst guarantees that the resulting code is prefix-free. Convince

yourself that the algorithm generates a prefix-free code with specified lengths.

 Storing the Code in Memory
We will now give an algorithm to store the resulting code in consecutive locations in
main memory, starting from address 0. It is this property that will make the decoding
operations very efficient as we will see soon. Since it is a variable length code, provision
must be made to detect the end of a code word in each address. The following code gives
the address of the first code word in each group.
Compute an array called first_address(l)

Begin
 ;0)(_ max ←laddressfirst

)(0__ maxlnumaddressavailablenext +← ;
for l = maxl -1 down to 1 do {
 if 0)(≠lnum then {
 addressavailablenextladdressfirst __)(_ ← ;
)()(___ lnumladdressfirstaddressavailablenext +← ;
 } else
 0)(_ ←laddressfirst ;
} End

So, the result is: you may verify the addresses for lengths 5, 3, 2 are 0, 4, 5 respectively,
in the table (indicated by bold). Note the addresses for lengths 4 and 1 are set to 0 and
they represent dummy addresses but are useful in decoding.

l 1 2 3 4 5
first (l) 2 1 1 2 0
first_address 0 5 4 0 0

 23

Decoding Algorithm
Now, we are ready to perform the decoding operation given an input bit string. We define
a bit string variable v which stuffs input bits (to be decoded) into it as long as the binary
number represented by v is less than first(l) . Note here we need the values of first(l) even
if there is no code with length l.
As soon as v becomes greater than or equal to first(l), we know we are in the middle of
some group of codes, so we need to have the off-set address in this group to access the
symbol stored in an array in a RAM. Here is the algorithm:
 while input is not exhausted do {
 l = 1;
 stuff input bit in v; /* preparing the code word, msb first/*
 while v < first(l) do{
 append next input bit to v;
 l = l+1;
 }
 difference = v – first(l); /* computes the offset address within the group./*
 output symbol at first_address(l) + difference }

Note for each decoded symbol, we only need one memory access, while for Huffman
tree the memory access will be for each bit. For the example shown below, Huffman
decoder will need 10 memory accesses as opposed to only 6 for canonic Huffman code.

 l 1 2 3 4 5

num 0 3 1 0 4

first(l) 2 1 1 2 0

first_address(l) 0 5 4 0 0

 Address Symbol Code

0 a 0 0 0 0 0

1 b 0 0 0 0 1

2 c 0 0 0 1 0

3 d 0 0 0 1 1

4 e 0 0 1

5 f 0 1

6 g 1 0

7 h 1 1

 24

Try to trace the algorithm and see whether the following bit string gives the correct
symbol sequence.
Input: 0 0 1 1 0 0 0 0 1 0
 e g c

Now that we have a Huffman code that has a very fast decoding algorithm, the question
is: given the probabilities, how do you obtain the lengths of the codes? One way will be
to develop the regular Huffman tree, extract the length information and then don’t use the
tree. Instead, design canonic codes using the length information. But, this actually defeats
the original purpose where we were confronted with a large alphabet like the words in the
English dictionary and we need good amount of storage and computation overhead to
generate the length information. It is possible to obtain the lengths directly from
probabilities by using a fairly complex data structure and algorithm (heap and a linear
array for full binary trees) which will not be presented in these notes.. I would like to
assign this as optional reading: from Witten, Moffat and Bell ,pp.41-51 and David
Salomon, pp.73-76, Moffat and Turpin, Ch.4.

Non-Binary Huffman Code (See Section 3.3, Sayood)
Adaptive Huffman Code (See Section 3.4, Sayood)

Adaptive Huffman Code

Huffman tree has the following properties

•Each node except root node has a sibling.
•If the nodes (excluding root) are listed in order of non-increasing
weight,then each node is adjacent to its sibling.

Procedure: Whenever the count of a node is incremented, the new count is
compared with the two counts of the next higher sibling pair (if any) in the
ordered list. If the new count becomes larger than any one of these two counts,
the two nodes must be interchanged (or the two subtrees must be interchanged)
and the new counts computed until no further interchange can take place.

 25

31

17

10

6

4

14

7

4

2

1 1

33

0 1

0 1

0 1

0 1

0 1c

a b

d

e

f
x

y

z

Sibling pairs:(x,f)(y,e)(z,d)(c,j)(a,b)

j

19

7

11

4

14

8

4 4

1 3
3

4

8

a b

cde

f

0 1

0 1

0 1 0 1

0 1
a: 00010
b: 00011
c: 0000
d: 001
e: 01
f: 1

a: 0100
b: 0101
c: 011
d: 001
e: 000
f: 1

