
Coding

Source Messages, M Codeword, C
(alphabet α )                      (alphabet β)

Properties

•Distinct

•Uniquely Decipherable (Prefix)

•Instantaneously Decodable

•Minimal Prefix
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Modeling and Coding

Model Model

Probability Distribution Probability DistributionProbability Estimates Probability Estimates

Transmission System
Encoder Decoder Original Source

Messages
Source
Messages Compressed

Bit Stream

•Model predicts next symbol
•Probability distribution and static codes
•Probability estimates and dynamic codes



Entropy as a 
Measure of Information

• Given a set of possible events with known 
probabilities p1, p2, …, pn, that sum to 1.

• Entropy E(p1, p2, …, pn) (Shannon, 1940’s):  how 
much choice in selecting an event.
– E should be a continuous function of pi.
– If pi=pj for all 1≤i,j≤n, then E should be an increasing 

function of n.
– If choice is made in stages, E should be the weighted 

sum of the entropies at each stage (weights are the 
probabilities of each stage).



Entropy

• Shannon showed that only one function can 
satisfy these conditions.
– Self-information of event A with probability 

P(A) is i(A) = - log P(A)
– Entropy of a source is the sum of the self-

information over all events
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Information and Compression

• Compression seeks a message representation that 
uses exactly as many bits as required for the 
information content (entropy is a lower bound on 
compression).

• However, computing entropy is difficult.
• Example:  1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2

– One char at a time:  P(1)=P(2)=¼, P(3)=½; entropy is 
1.5 bits/symbol.

– Two chars at a time:  P(1 2)=P(3 3)=½; entropy is 1 
bit/symbol.



Models Improve 
Entropy Computations

• Finite Context Models
• Finite State Models (Markov models)
• Grammar Models
• Ergodic Models



Finite Context Models

• Order k model:  k preceding characters used 
as context in determining probability of 
next character.

• Examples:  
– Order -1 model:  all characters have equal 

probability.
– Order 0 model:  probabilities do not depend on 

context.



Finite State Models 
(Markov Models)

• Probabilistic finite state machine.
• Fixed context models are a subclass.

Order 0 Fixed Context Model as a Finite State Model

b 0.3
a 0.5

c 0.2

a b c a a b
0.5 0.3 0.2 0.5 0.5 0.3

Msg. Prob. = 0.00225
(8.80 bits entropy)



Order 1 Fixed Context Model as 
a Finite State Model

1

2

3a 0.2

a 0.7

c 0.2

b 0.6

c 0.2
a 0.5 c 0.2

b 0.3
b 0.1

Message: a b c a a b
States: 1 1 2 3 1 1 2

Probabilities: 0.5 0.3 0.2 0.2 0.5 0.3

Msg. Prob. = 0.0009; entropy = 10.1 bits



Grammar Models

• Use a grammar as the underlying structure.
– Grammars have more expressive power than finite state 

machines.
– Assign probabilities to each production rule.
– However, does not appear useful to exploit this for 

natural language.

Example:  
1.  message --> string “.”  (probability 1)
2.  string --> substring string (probability 0.6)
3.  string --> empty-string (probability 0.4)
4.  substring --> “a” (probability 0.5)
5.  substring --> “(” string “)” (probability 0.5)

String ((a)(a)). has 
entropy 7.80 bits.



Ergodic Models

• Ergodic:  as a sequence grows in length, it 
better represents the entire model.

• Usually assume this for natural language 
models.



Entropy of Source H = ∑[ -pilog pi]
i=1

n

=Average number of bits per symbol for an optimal
encoding scheme for an alphabet of size n, i-th symbol 
having a probability of pi.

Entropy of a message of m symbols ‘a1a2…am’ = ∑ [ -pilog pi]
i

m

Entropy and Redundancy

=Total number of bits in a message
>= mH = length of message∗entropy of source

Redundancy= ∑ li pi - H

where li is the length of the code for the source symbol ai.

i

m



Entropy and Encoding
• Measure of uncertainty/choice/information in a 

symbol sequence, with respect to a given model.
• Shannon’s “Noiseless Source Coding Theorem”: 

Entropy is optimal lower bound on average length 
of compressed message.

• Optimal symbol length for character encoding:
Ei = – log2 pi bits.

• Minimum redundancy code has minimum 
average code length for a given probability 
distribution.



Example

Message = aa_bbb_cccc_ddddd_eeeeee_fffffffgggggggg

Symbol         Probability     Huffman Code

a                 2/40               1001

b                 3/40               1000           H= 2.894 bits/symbol

c                  4/40               011           mH= 116 bits

d                 5/40                010           Message Length = 117

e                 6/40                111           Redundancy= 117/40 - 2.894

f                  7/40                110          = 2.925- 2.894

g                  8/40                00           = 0.031 bits/symbol

space              5/40                101

Compression Ratio =

Using 6-bit ASCII codes for source symbols, this ratio is 6/2.89=2.076 or 48.16%

compression ( the compressed file is about 48.16% of the original file size.)

average symbol length in bits
average codeword length in bits



Shannon-Fano Code

•List the source symbols in non-increasing probability order.
•Divide the list in two lists of nearly equal total probability.
•Assign a bit 0 to the first list and a bit 1 to the second list.
•Recurse the process over the two lists until each list has only 
one symbol.

Symbol     Probability                      Code
a                 1/2 0
b                 1/4 10
c                 1/8 110
d                 1/16 1110
e                 1/32 11110
f                 1/32 11111



Huffman Code
1. Construct a Binary Tree of Sets of Source 
Symbols.
• Sort the set of symbols with non-decreasing probabilities.
•Form a set including two symbols of smallest probabilities.
•Replace these by a single set containing both the symbols 
whose probability is the sum of the two component sets.
•Repeat the above steps until the set contains all the 
symbols. 
•Construct a binary tree whose nodes represent the sets.  
The leaf nodes representing the source symbols.

2. Traverse each path of the tree from root to a symbol,
assigning a code 0 to a left branch and 1 to a right branch.
The sequence of 0’s and 1’s thus generated is the code for
the symbol.



Example

(a,b,c,d,e)

(a,b,d) (c,e)

(a,b)

(a) (b)
10

19

0

1

1

1

10

0

039 27

66

(e)(c)(d)
171020

Symbol     Code
a           000
b           001
c            10
d            01
e            11

9



Text compression

Original text Compressed text

Data compression Data decompression

Compressed text Original text



Decoding
Decoding is performed by reading the code word left to right. The tree 
is traversed beginning from the root of the tree, moving left or right at 
each node corresponding to code bit being 0 or 1, respectively. Once it 
reaches the leaf node, a symbol of the source code is decoded and the 
traversal path starts again from the root of the tree . 

Thus, if  the input bit is ‘00001111111010111001’, the decoded message 
is ‘ggee_ca’, assuming the decoder also has the same Huffman tree as 
the encoder has. In fact, the same probability distribution is used by both 
the encoder and decoder based on the  distribution of symbol 
probabilities for a given text corpus. Note, the Huffman code is a prefix 
code which makes it possible to decode messages in only one pass over 
the codeword.



Properties of Huffman Code

• Huffman codes are minimum redundancy codes 
for a given probability distribution of the message.

• Huffman code is not ‘optimal’ unless the 
probability distribution of all  possible n-grams are 
used to build the tree, which is unrealistic.

• Huffman code does not achieve ‘minimum 
redundancy’ because it does not allow fractional 
bits.



Models

• Static: probabilities are determined using 
some representative text corpus.

• Semi-static: two-pass, one to gather 
statistics and the second to encode data. The 
model must also be transmitted with 
compressed text; appropriate for fixed text. 

• Adaptive: probabilities are adjusted based 
on already processed input symbols. 



Adaptive Huffman Code

Huffman tree has the following properties

•Each node except root node has a sibling.
•If the nodes (excluding root) are listed in order of non-increasing 
weight,then each node is adjacent to its sibling.

Procedure: Whenever the count of a node is incremented, the new count is
compared with the two counts of the next higher sibling pair (if any) in the 
ordered list. If the new count becomes larger than any one of these two counts, 
the two nodes must be interchanged (or the two subtrees must be interchanged)
and the new counts computed until no further interchange can take place.
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a: 0100
b: 0101
c: 011
d: 001
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f: 1
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Entropy Coding

• Huffman coding: Create binary (Huffman) 
tree such that path lengths correspond to 
symbol probabilities. Use path labels as 
encodings.

• Arithmetic coding: Combine probabilities 
of subsequent symbols into a single fixed-
point of high precision. Encode that number 
in binary.



Arithmetic Coding
Consider an half open interval [low,high). Initially, interval is set 
as [0,1) and  range= high -low = 1-0 = 1.
Interval is divided into cumulative probabilities of n symbols, each 
having the same probability 1/n at the beginning.

_

_

_

_

a

b

c

0

1/3

2/3

1

_

_

_

b

c

a

_

_

_

_

a

b

c

_

_

_

a

b

c

1/3

1/3

1/3

1/4

2/4

1/4

1/5

2/5

2/5

1/6

2/6

3/6

.3333

.4167

.5834

.6667

.5834

.6001

.6334

.6667

.6334

.6390

.6501

.6667

Any value in the range [.6334,.6390) encodes ‘bcca’



Encoding Algorithm
Assume the source symbols have been numbered 1 through n
and the probability of  i -th symbol is pi . The k-th symbol is 
encoded by a number between [low,high) as follows:

•Calculate the probabilities dynamically with the k-th symbol
• low_bound=Cumulative(k-1) ⇐ ∑ pi
• high_bound=Cumulative(k) ⇐∑ pi
•range⇐ high - low ( from the previous iteration or initial 
values[which is 1-0=1])
• high ⇐ low + range∗ high_bound
•low ⇐ low + range ∗ low_bound1

-

k

1



Decoding Algorithm
Assume the initial probability of each symbol is 1/n.

1. Calculate the vector (c1,c2,…,cn) where ci corresponds to cumulative
probabilities up to and including the i-symbol within the high/low range
(this is initialized to be 1).

2. Given the received value v, find ck and ck+1 such that ck<v≤ck+1.
3. Reset low to be ck and high to be ck+1.
4. Output symbol k and calculate the new probability distribution of all

symbols.
5. Repeat the process until the numbers produced are within the bounds of

the arithmetic precision agreed by both the encoder and decoder jointly.



Properties of Arithmetic Coding
• The dynamic version is not more complex than the static version.

• The algorithm allocates -logpi number of bits to a symbol of probability pi    
whether or not  this value is low or high. Unlike Huffman codes which is a 
fixed-to-variable coding scheme,  arithmetic coding is variable -to-fixed 
coding scheme, and is capable of allocating non-integral number of bits to 
symbols, producing a  near-optimal coding. It is not absolutely optimal due to 
limited  precision of arithmetic operations.

• Incremental transmission of bits are possible, avoiding working with 
higher and higher precision numbers.
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