
Coding

Source Messages, M Codeword, C
(alphabet α) (alphabet β)

Properties

•Distinct

•Uniquely Decipherable (Prefix)

•Instantaneously Decodable

•Minimal Prefix

f

Modeling and Coding

Model Model

Probability Distribution Probability DistributionProbability Estimates Probability Estimates

Transmission System
Encoder Decoder Original Source

Messages
Source
Messages Compressed

Bit Stream

•Model predicts next symbol
•Probability distribution and static codes
•Probability estimates and dynamic codes

Entropy as a
Measure of Information

• Given a set of possible events with known
probabilities p1, p2, …, pn, that sum to 1.

• Entropy E(p1, p2, …, pn) (Shannon, 1940’s): how
much choice in selecting an event.
– E should be a continuous function of pi.
– If pi=pj for all 1≤i,j≤n, then E should be an increasing

function of n.
– If choice is made in stages, E should be the weighted

sum of the entropies at each stage (weights are the
probabilities of each stage).

Entropy

• Shannon showed that only one function can
satisfy these conditions.
– Self-information of event A with probability

P(A) is i(A) = - log P(A)
– Entropy of a source is the sum of the self-

information over all events

∑
=

−=
n

i
iin ppkpppE

1
21 log),...,(

Information and Compression

• Compression seeks a message representation that
uses exactly as many bits as required for the
information content (entropy is a lower bound on
compression).

• However, computing entropy is difficult.
• Example: 1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2

– One char at a time: P(1)=P(2)=¼, P(3)=½; entropy is
1.5 bits/symbol.

– Two chars at a time: P(1 2)=P(3 3)=½; entropy is 1
bit/symbol.

Models Improve
Entropy Computations

• Finite Context Models
• Finite State Models (Markov models)
• Grammar Models
• Ergodic Models

Finite Context Models

• Order k model: k preceding characters used
as context in determining probability of
next character.

• Examples:
– Order -1 model: all characters have equal

probability.
– Order 0 model: probabilities do not depend on

context.

Finite State Models
(Markov Models)

• Probabilistic finite state machine.
• Fixed context models are a subclass.

Order 0 Fixed Context Model as a Finite State Model

b 0.3
a 0.5

c 0.2

a b c a a b
0.5 0.3 0.2 0.5 0.5 0.3

Msg. Prob. = 0.00225
(8.80 bits entropy)

Order 1 Fixed Context Model as
a Finite State Model

1

2

3a 0.2

a 0.7

c 0.2

b 0.6

c 0.2
a 0.5 c 0.2

b 0.3
b 0.1

Message: a b c a a b
States: 1 1 2 3 1 1 2

Probabilities: 0.5 0.3 0.2 0.2 0.5 0.3

Msg. Prob. = 0.0009; entropy = 10.1 bits

Grammar Models

• Use a grammar as the underlying structure.
– Grammars have more expressive power than finite state

machines.
– Assign probabilities to each production rule.
– However, does not appear useful to exploit this for

natural language.

Example:
1. message --> string “.” (probability 1)
2. string --> substring string (probability 0.6)
3. string --> empty-string (probability 0.4)
4. substring --> “a” (probability 0.5)
5. substring --> “(” string “)” (probability 0.5)

String ((a)(a)). has
entropy 7.80 bits.

Ergodic Models

• Ergodic: as a sequence grows in length, it
better represents the entire model.

• Usually assume this for natural language
models.

Entropy of Source H = ∑[-pilog pi]
i=1

n

=Average number of bits per symbol for an optimal
encoding scheme for an alphabet of size n, i-th symbol
having a probability of pi.

Entropy of a message of m symbols ‘a1a2…am’ = ∑ [-pilog pi]
i

m

Entropy and Redundancy

=Total number of bits in a message
>= mH = length of message∗entropy of source

Redundancy= ∑ li pi - H

where li is the length of the code for the source symbol ai.

i

m

Entropy and Encoding
• Measure of uncertainty/choice/information in a

symbol sequence, with respect to a given model.
• Shannon’s “Noiseless Source Coding Theorem”:

Entropy is optimal lower bound on average length
of compressed message.

• Optimal symbol length for character encoding:
Ei = – log2 pi bits.

• Minimum redundancy code has minimum
average code length for a given probability
distribution.

Example

Message = aa_bbb_cccc_ddddd_eeeeee_fffffffgggggggg

Symbol Probability Huffman Code

a 2/40 1001

b 3/40 1000 H= 2.894 bits/symbol

c 4/40 011 mH= 116 bits

d 5/40 010 Message Length = 117

e 6/40 111 Redundancy= 117/40 - 2.894

f 7/40 110 = 2.925- 2.894

g 8/40 00 = 0.031 bits/symbol

space 5/40 101

Compression Ratio =

Using 6-bit ASCII codes for source symbols, this ratio is 6/2.89=2.076 or 48.16%

compression (the compressed file is about 48.16% of the original file size.)

average symbol length in bits
average codeword length in bits

Shannon-Fano Code

•List the source symbols in non-increasing probability order.
•Divide the list in two lists of nearly equal total probability.
•Assign a bit 0 to the first list and a bit 1 to the second list.
•Recurse the process over the two lists until each list has only
one symbol.

Symbol Probability Code
a 1/2 0
b 1/4 10
c 1/8 110
d 1/16 1110
e 1/32 11110
f 1/32 11111

Huffman Code
1. Construct a Binary Tree of Sets of Source
Symbols.
• Sort the set of symbols with non-decreasing probabilities.
•Form a set including two symbols of smallest probabilities.
•Replace these by a single set containing both the symbols
whose probability is the sum of the two component sets.
•Repeat the above steps until the set contains all the
symbols.
•Construct a binary tree whose nodes represent the sets.
The leaf nodes representing the source symbols.

2. Traverse each path of the tree from root to a symbol,
assigning a code 0 to a left branch and 1 to a right branch.
The sequence of 0’s and 1’s thus generated is the code for
the symbol.

Example

(a,b,c,d,e)

(a,b,d) (c,e)

(a,b)

(a) (b)
10

19

0

1

1

1

10

0

039 27

66

(e)(c)(d)
171020

Symbol Code
a 000
b 001
c 10
d 01
e 11

9

Text compression

Original text Compressed text

Data compression Data decompression

Compressed text Original text

Decoding
Decoding is performed by reading the code word left to right. The tree
is traversed beginning from the root of the tree, moving left or right at
each node corresponding to code bit being 0 or 1, respectively. Once it
reaches the leaf node, a symbol of the source code is decoded and the
traversal path starts again from the root of the tree .

Thus, if the input bit is ‘00001111111010111001’, the decoded message
is ‘ggee_ca’, assuming the decoder also has the same Huffman tree as
the encoder has. In fact, the same probability distribution is used by both
the encoder and decoder based on the distribution of symbol
probabilities for a given text corpus. Note, the Huffman code is a prefix
code which makes it possible to decode messages in only one pass over
the codeword.

Properties of Huffman Code

• Huffman codes are minimum redundancy codes
for a given probability distribution of the message.

• Huffman code is not ‘optimal’ unless the
probability distribution of all possible n-grams are
used to build the tree, which is unrealistic.

• Huffman code does not achieve ‘minimum
redundancy’ because it does not allow fractional
bits.

Models

• Static: probabilities are determined using
some representative text corpus.

• Semi-static: two-pass, one to gather
statistics and the second to encode data. The
model must also be transmitted with
compressed text; appropriate for fixed text.

• Adaptive: probabilities are adjusted based
on already processed input symbols.

Adaptive Huffman Code

Huffman tree has the following properties

•Each node except root node has a sibling.
•If the nodes (excluding root) are listed in order of non-increasing
weight,then each node is adjacent to its sibling.

Procedure: Whenever the count of a node is incremented, the new count is
compared with the two counts of the next higher sibling pair (if any) in the
ordered list. If the new count becomes larger than any one of these two counts,
the two nodes must be interchanged (or the two subtrees must be interchanged)
and the new counts computed until no further interchange can take place.

33

19

7

11

14

8

4 4

1 3
a b

cde

f

0 1

0 1

0 1 0 1

0 1
a: 0100
b: 0101
c: 011
d: 001
e: 000
f: 1

Sibling pairs:(x,f)(y,e)(z,d)(c,j)(a,b)

31

17

10

6

4

14

7

2

1 1

0 1

0 1

0 1

0 1

0 1c

a b

x

y

z

j

3

4

8

f

e

4a: 00010
b: 00011
c: 0000
d: 001
e: 01
f: 1

4 d

Entropy Coding

• Huffman coding: Create binary (Huffman)
tree such that path lengths correspond to
symbol probabilities. Use path labels as
encodings.

• Arithmetic coding: Combine probabilities
of subsequent symbols into a single fixed-
point of high precision. Encode that number
in binary.

Arithmetic Coding
Consider an half open interval [low,high). Initially, interval is set
as [0,1) and range= high -low = 1-0 = 1.
Interval is divided into cumulative probabilities of n symbols, each
having the same probability 1/n at the beginning.

_

_

_

_

a

b

c

0

1/3

2/3

1

_

_

_

b

c

a

_

_

_

_

a

b

c

_

_

_

a

b

c

1/3

1/3

1/3

1/4

2/4

1/4

1/5

2/5

2/5

1/6

2/6

3/6

.3333

.4167

.5834

.6667

.5834

.6001

.6334

.6667

.6334

.6390

.6501

.6667

Any value in the range [.6334,.6390) encodes ‘bcca’

Encoding Algorithm
Assume the source symbols have been numbered 1 through n
and the probability of i -th symbol is pi . The k-th symbol is
encoded by a number between [low,high) as follows:

•Calculate the probabilities dynamically with the k-th symbol
• low_bound=Cumulative(k-1) ⇐ ∑ pi
• high_bound=Cumulative(k) ⇐∑ pi
•range⇐ high - low (from the previous iteration or initial
values[which is 1-0=1])
• high ⇐ low + range∗ high_bound
•low ⇐ low + range ∗ low_bound1

-

k

1

Decoding Algorithm
Assume the initial probability of each symbol is 1/n.

1. Calculate the vector (c1,c2,…,cn) where ci corresponds to cumulative
probabilities up to and including the i-symbol within the high/low range
(this is initialized to be 1).

2. Given the received value v, find ck and ck+1 such that ck<v≤ck+1.
3. Reset low to be ck and high to be ck+1.
4. Output symbol k and calculate the new probability distribution of all

symbols.
5. Repeat the process until the numbers produced are within the bounds of

the arithmetic precision agreed by both the encoder and decoder jointly.

Properties of Arithmetic Coding
• The dynamic version is not more complex than the static version.

• The algorithm allocates -logpi number of bits to a symbol of probability pi
whether or not this value is low or high. Unlike Huffman codes which is a
fixed-to-variable coding scheme, arithmetic coding is variable -to-fixed
coding scheme, and is capable of allocating non-integral number of bits to
symbols, producing a near-optimal coding. It is not absolutely optimal due to
limited precision of arithmetic operations.

• Incremental transmission of bits are possible, avoiding working with
higher and higher precision numbers.

	Coding
	Modeling and Coding
	Entropy as a Measure of Information
	Entropy
	Information and Compression
	Models Improve Entropy Computations
	Finite Context Models
	Finite State Models (Markov Models)
	Order 1 Fixed Context Model as a Finite State Model
	Grammar Models
	Ergodic Models
	Entropy and Redundancy
	Entropy and Encoding
	Example
	Shannon-Fano Code
	Huffman Code
	Example
	Text compression
	Decoding
	Properties of Huffman Code
	Models
	Adaptive Huffman Code
	Entropy Coding
	Arithmetic Coding
	Encoding Algorithm
	Decoding Algorithm
	Properties of Arithmetic Coding

