
Huffman Coding 
Coding Preliminaries 

                                   Code:   Source  message --- -f-----> code words 

                                      (alphabet A)            (alphabet B) 

                              alphanumeric symbols               binary symbols 

                                          |A| = N     |B|=2 

 

A code is  

Distinct: mapping f is one-to-one. 

Block-to-Block  (ASCII – EBCDIC) 

Block-to-Variable or VLC (variable length code)(Huffman) 

Variable-to-Block (Arithmetic) 

Variable-to-Variable (LZ family) 

Average code length 

Let lj denote the length of the binary code assigned to some symbol aj with a probability 

pj, then the average code length  is given by l  

                                        ∑
=

=
n

j
jj lp

1
l  

Prefix Code:A code is said to have prefix property if no code word or bit pattern is a 

prefix of other code word. 

UD – Uniquely  decodable 

Let  and ),...,,( 211 naaaS = ),...,,( 212 mbbbS =  be two sequences of some letters from 

alphabeti α.  Let   be a variable length code. We say f is UD if and only if  qβpf α: →

  )()()()()()( 2121 mn bfbfbfafafaf ••••=••••  

implies that  is identically equal to . That is,   etc  naaa ,...,, 21 mbbb ,...,, 21 ,11 ba = ,22 ba =

and n=m. 
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Example Codes: 8 symbols ,  821 ,...,, aaa

             probabilities                                                         codes 

ai p(ai) Code A Code B Code C Code D Code E Code F 

a1 0.40 000 0 010 0 0 1 

a2 0.15 001 1 011 011 01 001 

a3 0.15 010 00 00 1010 011 011 

a4 0.10 011 01 100 1011 0111 010 

a5 0.10 100 10 101 10000 01111 0001 

a6 0.05 101 11 110 10001 011111 00001 

a7 0.04 110 000 1110 10010 0111111 000001 

a8 0.01 111 001 1111 10011 01111111 000000 

Avg.length   3 1.5 2.9 2.85 2.71 2.55 

 

 

Code A, violates Morse’s principle, not efficient (instantaneously decodable) 

Code B, not uniquely decodable 

Code C, Prefix code that violates Morse’s principle 

Code D, UD but not prefix 

Code E, not instantaneously decodable (need look-ahead to decode) 

Code F, UD, ID, Prefix and obeys Morse’s principle 

Note  

1. Code A is optimal if all probabilities are the same, each taking bits, 

where N is the number of symbols. 

 N2log

2. See code 5 and code 6 in K. Sayood, p29. Code 5 (a=0, b=01,c=11) is not prefix, 

not instantaneously decodable but is uniquely decodable, because there is only 

one way to decode a string ’01 11 11 11 11 11 11 11 11 ‘  which will not have left 

over dangling bits. But if we interpret as ‘0 11 11 11 11 11 11 11 11 1’ , a 

dangling left over ‘1’ will remain. 

3. Code 6 (a=0,b=01,c=10) decodable in two different ways without any decoding 

bit. The sequence ‘ 0 10 10 10 10 10 10 10 10’= acccccccc but can also be parsed 
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as ’01 01 01 01 01 01 01 01 0’= bbbbbbbba. Both are valid interpretation. So, it is 

not UD, not prefix 

 

Obviously, every prefix code is UD, but the converse is not true as we have seen.  

 

 

Sufficient condition for a prefix code 

    

            

If the code words are the leaf nodes of a binary tree , the code satisfies the prefix 

condition. In general this is true for any d-ary tree with d symbols in the alphabet. Why 

restrict to prefix code? Is it possible to find shorter code if we do not impose prefix 

property? Fortunately, the answer to this is NO. For any non-prefix uniquely decodable 

code, we can always find a prefix code with the same codeword lengths. 

The lengths of the code words of uniquely decodable codes ( by implication, the lengths 

of  any prefix code) can be characterized by what is called the Kraft-McMillan inequality 

which is presented next. 

 

The Kraft-McMillan Inequality: 

Theorem 1:  Let C be a code with N  symbols or codewords with length l . If C 

is uniquely decodable, then  

Nll ,...,, 21

12)(
1

≤= ∑
=

−
N

i

liCK  

Proof:   p.32  K.Sayood 

The proof is based on computing nth power of  K(C), where n is an arbitrary positive 

integer. If K(C) is greater than 1, this quantity will increase exponentially; if not  the 

inequality is justified.  
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The quantity l  is simply the sum of lengths of code words whose minimum 

value is n (if all the code words were of lengths 1). The maximum value of the exponent 

is nl where l= max( l ). Therefore, we can write the summation as 

niii ll +++ ...
21

ii ll ,...,,
21 ni

                                                 nCK )( = k
nl

nk
kA −

=
∑ 2  

where is the combinations of n codewords that have a combined length of k. kA

Example to illustrate the proof 

3,2,2,1 321 ==== nlll  (Note N is 5, not 3) 

6232)2,2,1max( ==== xnll  

)222)(222)(222(]2[ 2212212213
3

1

−−−−−−−−−

=

− ++++++=∑
i

li  

 =  ∑
=

−
nl

nk

k
kA 2 2543 28212262 −−−− •+•+•+=

                        , ,13 =A 64 =A 125 =A , 86 =A  

111    112*   112* 

121*  122     122 

121*  122     122 

211*  212     212 

221    222     222 

221    222     222 

211*  212     212 

221    222     222 

221    222     222 

 

The example illustrates how the sizes of A k are determined. The combinations, for 

example, marked with * contributes to the coefficient of  and there are 6 of them so 

 and so on. The number of possible binary sequences of length k is 2 . If the 

code is uniquely decodable, then each sequence can represent one and only one 

sequence of code words. Therefore, the number of possible combination of code words 

whose combined length is k cannot be greater than . Thus 

42−

64 =A k

k2
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k
kA 2<  

1)1(11222 +−=+−=≤⋅≤ ∑∑∑
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nl

nk
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nl
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k
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[ ] 1)1(2)( +−≤=∴ ∑
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− lnACK
nl

nk

k
k

n  

If is greater than 1, [  goes exponentially, but n(l-1)+1 goes linearly with n. )(CK ]nCK )(

Hence ,  Or  1)( ≤CK 12
1

≤∑
=

−
N

i

li

 

The converse of Theorem 1  is also true, as given in Theorem 2.. 

Theorem 2:  Given a set of integers l  such that , then we can find a 

prefix code with codeword length l  

Nll ,...,, 21

Nl,...,2

12
1

≤∑
=

−
N

i

li

l,1

See proof in Khalid Saywood, p.33. An example illustrating the proof is given below. 

Proof: Given the lengths satisfying the stated property, we will construct a prefix code. 

     Assume  54321 lllll ≤≤≤≤

________________________________________________________________________ 

4,4,3,2,1 54321 ===== lllll  

16
1

16
1

8
1

4
1

2
11 ++++≤  

 

Define a sequence of numbers  as follows: Nwww ,...,, 21
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such that j >1.. The binary representation of  for j >1 would take jw  jw2log

1w

 bits. We 

will use these binary representations to construct a prefix code. Note that the binary 

representation of is less than or equal to l . This is obviously true for . For j >1, jw j

                    j

j
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The last inequality is due to the given hypothesis of the theorem. The second item in the 

right hand side, the logarithm of a number less than 1 is negative, so that the summation 

of this with  has to be less than or equal to . jl jl

1512482222

14248222

64222

222

0

45352515

342414

2313

12

5

4

3

12
2

1

=+++=+++=
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−−−−

−−−

−−

−−

llllllll

llllll

llll
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w

w

w

w

w

 

 

 

 
1511115
1411104

61103
2)10(2

5

4

3

22

===
===

===
===

wlength
wlength
wlength
wlength

Using the binary representation of , we can devise a binary code as follows. If jw

  jj lw =2log , then the jth codeword  is the binary representation of . If jc jw

  jj lw <2log , then  is the concatenation of binary representation of  with jc jw

 jj wl 2log−  0’s appended at the end. The code thus formed C )N,...,,( 21 cc c=  is a 

prefix code. ( Formal proof : See Sayood, p.34). 

                           jw jl jw2log 0'log2 jj wl −    code 

               1   0 

2 2 1 0 100 

6 3 3 110 

14 4 4 1110 

15 4 4 1111 
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Note the proof assumes only UD property but not the prefix property. But the resulting 

code has the prefix property. If we know that the code is prefix then a much simpler proof 

exists. 

Theorem 3: Given a prefix code of codeword lengths l , show that ∑   

We prove the theorem by  using a binary tree embedding technique. Every prefix code 

can be represented in the paths of a binary tree. 

Nll ,...,, 21 12
1

≤
=

−
N

i

li

Example to illustrate the proof 

  { } { }4,4,3,2,2,2=jl  

                                                     
 

Proof: Given a binary prefix code with word length { }jl , we may embed it in a binary 

tree of depth L where { }jlL max≥ , since each of the prefix code must define a unique 

path in a binary tree. This embedding assigns to each codeword of length l  a node on 

level l  to serve as the terminal node. Then prune the entire sub-tree below that node, 

wiping out  nodes.  Since we cannot prune from a level-L tree more than 

j

j

jlL−2 L2  

nodes that were there to start with, we must have . Diving by , we get  

       which is the  Kraft Inequality. 

L
N

i

lL i 22
1

≤∑
=

− L2

12
1

≤∑
=

−
N

i

li

The proof of the converse is more interesting. 

 

Theorem 4: Given a set of integers { }jl  satisfying Kraft inequality, there is a binary 

prefix code with these lengths. 
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Proof: That is, for each level l we must show that after we have successfully embedded 

all words with lengths l , enough nodes at level l remain un-pruned so that we can 

embed a codeword there for each  such that 

lj <

j ll j = .  

         
That is, 

llj j
llj

lll

j

j =≥− ∑
<

− :{22
:

=c        …(1)                         

The right hand side is simply the number of nodes with l jl=  But          

                                 c=  ∑∑∑
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Dividing both sides by 2 , we have l ∑
≤

−≥
llj

l

j
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Since we have                             ∑∑
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−− ≥
llj
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jall
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≤≤ ∑∑ −

≤

−

jall

l

llj

l j

j

j  

(All derivations above  are valid for d-ary tree. Put to replace ) jld − jl−2 .

 

Examples of Prefix Code: 
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¾ Unary code(Salomon pp.47-48) 

¾ Variations (Salomon, p.49) 

¾ General Unary Code(Salomon,p.48) 

¾ Elias Code    

¾ Golomb Code (Salomon, p.53) 

¾ Fibonacci Code 

¾ Shannon-Fano Code  

¾ Huffman Code 

 

 

 

 

 

Elias Code 

Exact value of probabilities are not needed, only the ranking(in terms of its length) x is 

needed.The rank x is mapped to  x2log  number 0’s concatenated with the binary 

representation of x. 

    

Rank                       

1 1                     

2 0 1 0          

3 0 1 1                 

4 0 0 1 0 0             

5 0 0 1 0 1             

6 0 0 1 1 0             

32 0 0 0 0 0 1 0 0 0 0 0 
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Fibonacci Code 

 Express rank x in terms of a weighted number system where the Fibonacci 

number are the weights. Then x is encoded as the reverse Fibonacci sequence followed 

by binary’1’. 

N 21 13 8 5 3 2 1   Code             
1             1   1 1             

2           1 0   0 1 1           

3         1 0 0   0 0 1 1         

4         1 0 1   1 0 1 1         

5       1 0 0 0   0 0 0 1 1       

6       1 0 0 1   1 0 0 1 1       

7       1 0 1 0   0 1 0 1 1       

8       1 1 0 0   0 0 1 1 1       

16   1 0 0 1 0 0   0 0 1 0 0 1 1   

32 1 0 1 0 1 0 0   0 0 1 0 1 0 1 1 

 

Shannon-Fano Code: 

 i   pi             Code          
1 0.25   1 0       1 0       Average length = 2.7 bit/symbol

2 0.2   1 1       1 1       Entropy=2.67bit  

3 0.15   0 0 0     0 0 0     very good   

4 0.15   0 0 1     0 0 1        

5 0.1   0 1 0     0 1 0        

6 0.1   0 1 1 0   0 1 1 0      

7 0.05   0 1 1 1   0 1 1 1      

                 

1 0.25   1 1      Average length = 2.5 bit/symbol   
2 0.25   1 0      Entropy=2.5bit     

3 0.125   0 1 1    perfect code!     

4 0.125   0 1 0            

5 0.125   0 0 1            

6 0.125   0 0 0            
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The method produces best result if the splits are perfect which happens when the 

probabilities are and ∑ . This property is also true for Huffman code. k−2 =− 12 k

 

                                                                                      HHuuffffmmaann  CCooddee: 

¾ Shannon-Fano is top-down. If you draw a binary tree, the symbols near to the root 

get codes assigned to them first. 

¾ Huffman is bottom-up. It starts assigning codes from leaf nodes. 

 

 Huffman invented this code as an undergraduate at MIT and managed  to skip the final 

exam as a reward! 

 

Same offer: If you come up with an original idea in this course worth publishing in a 

reputable journal, you may skip the final exam.  

 

• Huffman code construction. (Encoding). 

• Complexity O(nlogn), storage O(n). 

• Huffman code decoding 

• Average code length  ii lpl ∑= . Variance of code ∑ −=
i

ii pllv 2)(  

                                      

36.12.2 == vl  
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The codes are a=000,b=001,c=10,d=11 and e=01. ( Draw this: combine (a,b), then (c,d). 

Then combone (ab,) with e and then (a,b,e) with (c,d). You will see the variance is 0.16 

although the average length is the same (2.2). The tree looks more bushy. 

 

Rule: During the iterative steps of ordering the probabilities, move as far right as 

possible for the composite symbols at higher level in the sort order. 

           0.2  (ab)                                                    0.4 (cd) 

    0.1             0.1                                         0.2        0.2        0.2         0.4 

    (a)              (b)                          (c)         (d)         (ab)         (e) 

                                        0.6 (abe)                                       1.0 

                          

                               0.2          0.4         0.4                0.6                 0.4 

                               (ab)          (e)        (cd)               (abe)              (cd) 

 

                                                           1.0 

0        1                     code 

0.6       0.4                        a= 000 

                                         0              1    0            1                  b=001 

                                           0.2       0.4     0.2     0.2                 c=10 

                                    0              1  (e)      (c)       (d)               d=11 and e=01 

 

                                  0.1                0.1 

                                   (a)            (b) 

 

What is the advantage of having a code with minimum variance? 

See discussion on pp.44-45 Sayood. 

 

 

• Optimality of Huffman code * 1+≤≤ ss HlH
r

 

• Non-binary Huffman code * Golomb and Rice code 

• Adaptive Huffman tree 
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• Canonical Huffman tree 

 

Optimality of Huffman Code 

Theorem 5 Huffman code is a minimum average length )( l binary prefix code. 

 

Lemma 1  If , then it must be that  )()( 21 apap ≥ 21 ll ≤  for the code to have minimum 

average )(l codelength. 

 ∑
=

++=
n

i
ii lplaplapl

2
2211 )()(  

   Qlaplap ++=  2211 )()(

For the sake of contradiction, assume l . Then, we can exchange the codes for a and 

, giving modified average length: 

21 l> 1

2a

                                             Qlaplapl ++= 1221
* )()(  

Therefore,                           ))(())(( 122211
* llapllapl −+−=−l  

                              ))(())(( 212211 llapllap −−−=  

                              2121 ,)]()([ llCapapC −=−=  

           Thus,  *l>l   So l is not a minimum, a contradiction. 

 

Lemma 2  A minimum average length l binary code has at least two codes of 

maximum length . Ml

Proof: Let C  be a minimum ),,,( 21 MCCC K= l binary prefix code, such that 

. Let l be the length of the least likely source symbol whose 

code is and has length l . So, the leaf node sits at the deepest level of the 

binary tree. It cannot be a lone node at that level, because, if it were, we can 

replace it by its ancestor on the previous level. Since shuffling the code words to 

nodes on any fixed level does not affect 

Mpp ≥≥≥ ,,2 K

MC

p1 M

M

l , we may assume that C and 

stem from the same ancestor, with , say, encoding in 0 and C encoding 

in 1.That is we put these two leaf nodes on consecutive positions of the Huffman 

1−M

MC 1−MC M
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tree. Let’s redefine l  to be the depth of the node that is the common ancestor 

of and C , while  letting each for 1

1−M

MC 1−M jl 2−≤≤ Mj  retain the original 

meaning. 

]11 +−M+jj lp=

1,* ≤j

*
1 =−M

−≤ M

1 +− p 1 ≤≤ jp j

*
1−M

}1

1( −Ml
*+ Mj p

p

jl

≤ M

 

This converts the problem to construct a binary tree with M-1 terminal nodes so as to 

minimize )[( 1

2

2
+−

−

=
∑ MM

M

j
lppl . 

Now, define modified probabilities as  

{ }1jp  

2, * −= Mppp jMM  

Then 
1

1

*
1

2

1

* )1
−

=
−

−

=

+=+= ∑∑
M

j
j

M

j
j pplpl  

But  is a constant of the problem and does not affect how we construct the tree. 

This has converted our original problem to that of finding a tree with M-1 terminal nodes 

that is optimum for probabilities { . This, in turn, can be reduced to an 

(M-2) node problem by assigning the code words corresponding to the smallest two of 

modified probabilities  to a pair of terminal nodes that share a common immediate 

ancestor. But, that is, precisely what the next merge operation in Huffman algorithm 

does! Iterating this argument M-1 times establishes that Huffman algorithm produces 

minimum average length prefix binary codes.  

1
*

−Mp

1,* −≤ jp j

j
*

This argument is also valid for d-ary codes! 

 

Theorem 6 The entropy H of  { satisfies 0}1, njp j ≤≤ nH log≤≤  
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(The proof is the same as we did in our last lecture on Information Theory) 

 

-------------------------------------------------------------------------------------------------------- 

 

We need the relations: 

 ln  ( ln  if ).      Substituting x by 1−≤ xx 1−= xx 1=x
x
1 , we get 

x
x 11ln −≥  

[
xx

xx
xx

x
xx

11)1ln(11)ln()ln()11()1ln(11)ln()1ln(,111ln −≥+−≥∴≤−−∴−≤−−≤ ] 

Again, equality hold if x=1. 

----------------------------------------------------------------------------------------------------------- 

Proof :  Left equality (H=0) holds if for some j, 1=jp  and all the . Right 

equality holds if 

0' =spi

np j
1= , j∀ . To obtain the left inequality, note −  for  

  with equality iff 

0log ≥pp

10 ≤≤ p 1=p , Hence  0≥H

 To obtain the right inequality, we use the fact 1=∑
j

jp  to derive 

  Hn −log

ek
np

pk

np
ep

npp

pnp

ppnp

j
j

j j
j

j
jj

j
jj

j
jj

j
j

2

2

log)1(

))11((log

)(log

)log(log

loglog)(

=−≥

−≥

=

+=

+=

∑

∑

∑

∑∑

 

and equality holds iff np j
1= , j∀ . Then, 0)11()1( =−=−≥−log ∑∑ knpkHn

jj
j  

This proves  nH log0 ≤≤
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Lower Bound for average length 

 Hl −  

∑

∑

∑∑

=

+=

−−=

i

l
ii

i
iii

i
ii

i
ii

ipp

plp

pplp

)2log(

)log(

)log(

 

 Let px 2= . Using the relation il
i )11(log xex x −≥log ,we then have 

   )
2

11(log)2log( 2 i
i

l
i

l
i p

ep −≥  

 Thus, Hl −  

  

]1[

]2[log

)2(log

)21(log

2

2

2

CK

pe

pe

ppe

i

l

i
i

i

l
i

i

l

i
i

i

i

i

−=

−=

−≥

−≥

∑∑

∑

∑

−

−

−

  

where C    (By Kraft inequality). Thus, ∑ ≤= −

i

li 12 0≥− Hl .Equality holds when x = 1 

Thus, H≥

il−2

l . The average code length for any binary prefix code is at least as large as 

the entropy of the source. [The above derivation is also true for d-ary prefix code. 

Replace  by and log by log .] ild − e2 ed

Upper Bound 

See Sayood, pp.46-51. ( Reading Assignment) 

Theorem 7: 1)()( +〈≤ SHlSH  

 

Canonical Huffman Code 
 Huffman code has some major disadvantages. If the alphabet size is large, viz. 

word based Huffman need to code each word of a large English dictionary. 
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1. Space: with n symbols leaf nodes, there are n-1 internal nodes. Each internal 

node has two pointers, each leaf stores a pointer to a symbol value and a flag 

saying it is a leaf node. Thus needs around 4n words. 

2. Decoding is slow – it has to traverse the whole tree with a lot of pointer 

chasing with no locality of storage access. Each bit needs a memory access 

during decoding. 

Consider the following example of probability distribution: 

 
 

As we know, if there are n-1 internal nodes, we can create  new Huffman 

codes by re-labeling (at each internal node there are two choices of labeling with 0 

and 1). So, we should have Huffman codes. But, let us create the codes as 

00x, 10x, 01, and 11 where x = 0 or 1. let A=00, B=10, C=01, D=11. The codes are 

Ax, Bx, C, D. Any permutation of A, B, C, D will lead to a valid Huffman code. 

There are 4! permutation and x has two possible values – hence a total of 96 

Huffman codes! (Actually 94 if we do the enumeration.) This means that there are 

Huffman codes that cannot be generated by Huffman tree. Canonic Huffman code 

is one such Huffman code. 

12 −n

3225 =

  a 000  

  b 001 

  c 010 
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  d 011 

  e 10 

  f 11 

is one such example. Note all the codes of same length are consecutive binary 

integers of given length. Given the length of the Huffman words, these codes can 

be generated as follows. 

 

 

 Algorithm to Generate the Canonical Huffman Codes 

1. Take the largest length group with length l . If there are k words of this 

length, generate the first  binary numbers of length . 

max 1

1k maxl

2. If the next length is l , extract l bit prefix of the last code of the previous 

group. Add 1 times, where is the number of words of length , to get 

the code for the group. 

2 2

2k2k 2l

3. Iterate the process for all groups l .  i

Example : The lengths are (5,5,5,5,3,2,2,2) 

 0 0 0 0 0 

 0 0 0 0 1 

0 0 0 1 0 

0 0 0 1 1 

0 0 1 

01 

10 

11 

Note, not all length sequences are valid. For example, there cannot be a Huffman 

code for (5,5,5,5,3,2,2,2,2). Problem: why? 

 

. 
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The algorithm to generate the codes seems very straight forward as 

described above in the code generation steps. If the first number using  bits is 

somehow figured out for the code group of length l , then we know the remaining 

codes in this group are consecutive numbers. Let us denote by first(l) be the first 

number in the code group of length l. For encoding purpose we only need first(l) 

for values of l equal to  l which are the lengths of the codes. But, we 

will compute first(l)  for all values of l in the range l

il

i

1

max21 ,,, ll K

maxll ≤≤ since, as we will 

see later, we will need this for the purpose of decoding.Let numl(l) denote the 

number of codes of length l, l maxl1 l ≤≤ . The computation of first(l) is given by 

the two line code: 

 ------------------------------------------------------------------------------ 

  first( l ):=0; max

  for l := l -1 down to 1 do max

   first(l) := ( ) 2/)1()1( +++ lnumllfirst ; 

           --------------------------------------------------------------------------------- 

 

           Given the lengths as (6,6,6,6,6,6,6,5,5,5,5,5,3,3,3,3) 

 

  We have          l 1   2   3   4   5   6  

                numl(l) 0   0   4   0   5   7 

                             first(l)          2  4   3   5    4   0 

    0)6( =first

42/)70()5( =+=first  

  52/)54()4( =+=first  

  32/)05()3( =+=first  

  42/)43()2( =+=first  

    22/)04()1( =+=first  
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 Therefore, 

l 1 2 3 4 5 6

numl(l) 0 0 4 0 5 7

first(l) 2 4 3 5 4 0

       

 need the values for encoding     

            Given the array first(l), the algorithms steps can now be followed to obtain the 

canonical codes. 

The expression  ( 2/)1()1( ) +++ lnumllfirst

1)1 n=+ Nlnuml

 guarantees that the resulting code is a 

prefix. If  and (lfirst =+ )1( . 2/)( 1 Nn +  is right shifted by one bit and 

ceiling operation add a 1 to it if it is an odd number. Convince yourself that implies prefix 

property. 

 

Decoding 

Canonical Huffman is very useful when the alphabet is large but fast decoding is 

necessary. The code is stored in consecutive memory addresses, along with symbol. 

 

 Let’s do the example (5,5,5,5,3,2,2,2) again 

  

 

 

 

 

 

 

 

 

 

 

 20



    l  1 2 3 4 5    

numl  0 3 1 0 4    

first(l)  2 1 1 2 0    

          

 Address  Symbol  Code    

0  a  0 0 0 0 0

1  b  0 0 0 0 1

2  c  0 0 0 1 0

3  d  0 0 0 1 1

4  e  0 0 1    

5  f  0 1     

6  g  1 0     

7  h  1 1     

   

 

22/)31()1(
12/)11()2(
12/)02()3(
22/)40()4(

0)5(

=+=
=+=
=+=
=+=

=

first
first
first
first
first

 

 

Compute an array called first_address(l) 

Begin 

 ;0)(_ max ←laddressfirst ; 
)(0__ maxlnumladdressavailablenext +← ; 

for l = l -1 down to 1 do { max

 if 0)( ≠lnum   then { 
  addressavailablenextladdressfirst __)(_ ← ; 
  next )()(___ lnumlladdressfirstaddressavailable +← ; 
            } else  
  0)(_ ←laddressfirst ; 
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} 
 End 

So, the result is: (you may verify the addresses for lengths are 5,3,2 are 0,4,5 

respectively, in the above table).   

l 1 2 3 4 5 

first_address(l) 0 5 4 0 0 

 

 

Now, we are ready to perform the decoding operation given an input bit string. We define 
a bit string variable v which stuffs bits into it as long as the binary number is less than 
first(l) . Note here we need the values of first(l) even if there is no code with length l. 
As soon as v becomes greater than or equal to first(l), we know we are in the middle of 
some group, so we need to have the off-set address in this group to access the symbol 
stored in an array in a  RAM. 
Decode  
 While input is not exhausted do { 
  l = 1; 
  input bit v; 
  while v < first(l)  { 
   append next input bit to v; 
   l = l+1; 
  } 
  difference = v – first(l); 
  output symbol at first_address(l) + difference; 
 } 
Note for each symbol that is only one memory access, while for Huffman tree the 

memory access will be for each bit. For the example shown below, Huffman decoder will 

need 10 memory access as opposed to only 3 for canonic Huffman code. 

 
Address  Symbol  Code    

0  a  0 0 0 0 0

1  b  0 0 0 0 1

2  c  0 0 0 1 0

3  d  0 0 0 1 1

4  e  0 0 1    
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5  f  0 1     

6  g  1 0     

7  h  1 1     

 

Input: 0 0 1 1 0 0 0 0 1 0 

  e     g        c 

 

Now that we have a Huffman code that has a very fast decoding algorithm, the question 

is: given the probabilities, how do you obtain the lengths of the codes? One way will be 

to develop the regular Huffman tree, extract the length information and then don’t use the 

code of the tree. Instead design a canonic codes using the length information. But, this 

actually defeats the original purpose where we were confronted with a large alphabet like 

the words in the English dictionary and we need good amount of storage and computation 

overhead to generate the length information. It is possible to obtain the lengths directly 

from probabilities by using a fairly complex data structure and algorithm ( heap and a 

linear array for full binary tree , which you must have studied if you took a course on 

advanced data structure or design and analysis of algorithms) which will not be presented 

now.  I would like to assign this  as optional reading: from Witten, Moffat and 

Bell,pp.41-51 and David Salomon, pp.73-76. 

 

Non-Binary Huffman Code  ( See  Section 3.3, Sayood) 

Adaptive Huffman Code  ( See Section 3.4, Sayood) 
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