Unbounded Length Contexts for PPM

JOHN G. CLEARY AND W. J. TEAHAN

Department of Computer Science, University of Waikato, Hamilton, New Zealand
Email: jcleary@cs.waikato.ac.nz, wjt@cs.waikato.ac.nz

The PPM data compression scheme has set the performance standard in lossless compression of
text throughout the past decade. PPM is a finite-context statistical modelling technique that can
be viewed as blending together several fixed-order context models to predict the next character
in the input sequence. This paper gives a brief introduction to PPM, and describes a variant of
the algorithm, called PPM*, which exploits contexts of unbounded length. Although requiring
considerably greater computational resources (in both time and space), this reliably achieves
compression superior to the benchmark PPMC version. Its major contribution is that it shows that
the full information available by considering all substrings of the input string can be used effectively
to generate high-quality predictions. Hence, it provides a useful tool for exploring the bounds of
compression.

Received June 28, 1996; revised July 25, 1997

INTRODUCTION

The prediction by partial matching (PPM) data compression
scheme has set the performance standard in lossless com-
pression of text throughout the past decade. The original
algorithm was first published in 1984 by Cleary and Witten
[1], and a series of improvements was described by Mof-
fat, culminating in a careful implementation, called PPMC,
which has become the benchmark version [2]. This still
achieves results superior to virtually all other compression
methods, despite many attempts to better it. Other meth-
ods such as those based on Ziv—Lempel coding [3, 4] are
more commonly used in practice, but their attractiveness
lies in their relative speed rather than any superiority in
compression—indeed, their compression performance gen-
erally falls distinctly below that of PPM in practical bench-
mark tests [5].

Prediction by partial matching, or PPM, is a finite-context
statistical modelling technique that can be viewed as blend-
ing together several fixed-order context models to predict the
next character in the input sequence. Prediction probabilities
for each context in the model are calculated from frequency
counts which are updated adaptively, and the symbol that ac-
tually occurs is encoded relative to its predicted distribution
using arithmetic coding [6, 7]. The maximum context length
is a fixed constant, and it has been found that increasing
it beyond about 5 does not generally improve compression
[1,2,8].

The present paper! describes an algorithm, PPM*, which
exploits contexts of unbounded length. It reliably achieves
compression superior to the benchmark PPMC version, al-
though our current implementation uses considerably greater
computational resources (in both time and space). The
next section describes the basic PPM compression scheme.

!A preliminary form of this paper [25] was presented at the 1995 IEEE
Data Compression Conference.

Following that we give our motivation for the use of con-
texts of unbounded length, introduce the new method and
show how it can be implemented using a trie data structure.
Then we give some results that demonstrate an improve-
ment of about 6% over the benchmark PPMC. Finally, other
seemingly unrelated compression schemes are related to the
unbounded-context idea that forms the essential innovation
of PPM*.

This paper uses the compression achieved on the standard
Calgary text compression corpus [5] as a measure of how
good the PPM* model is. The importance of this goes
beyond the incremental improvement in the size of the com-
pressed text. Having a computer model that achieves close
to human performance is critical in areas such as speech
recognition, spell-checking, OCR and language identifica-
tion. Teahan and Cleary [9] show how the PPM scheme
can be used to build a character-based computer model that
can predict English text almost as well as humans. They
performed experiments on the same text that Claude E. Shan-
non used in a famous experiment to estimate the entropy
of English [10], and found that performance was close to,
and in some cases superior to, human-based results. It is
also well-known in cryptography that removing redundancy
is important prior to encryption to prevent statistical attacks
[11]. It is important here that there are no models (human or
otherwise) that are significantly better than the model used to
remove the redundancy.

2. PPM: PREDICTION BY PARTIAL MATCH

The basic idea of PPM is to use the last few characters in
the input stream to predict the upcoming one. Models that
condition their predictions on a few immediately preceding
symbols are called ‘finite-context’ models of order k, where
k is the number of preceding symbols used. PPM employs a
suite of fixed-order context models with different values of

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

68

J. G. CLEARY AND W. J. TEAHAN

TABLE 1. PPMC model after processing the string abracadabra (maximum order 2)

Order k =2 Orderk =1 Orderk =0 Order k = —1
Predictions ¢ p Predictions ¢ p Predictions ¢ p Predictions ¢ p
ab - r 2 % a —-> b 2 2 -5 a 5 2 - A 1 1/|A]

— Esc ! — c 1! - b 2
- d 1 4 — c 1 &
ac —> a 1 — Esc 3 3 - d 1 L
— Esc 1 % — r 2 %
b — r 2 % — Esc 5 %
ad — a 1 4 — Esc 1 %
— Esc 1 %
c a 14
br — a 2 — Esc 1 %
— Esc %
d — a 1 4
ca — d 1 % — Esc 1 %
— Esc 1 %
r - a2 1
da — b 1 % — Esc %
— Esc 1 %
ra — c 14
— Esc 1 %

k, from O up to some pre-determined maximum, to predict
upcoming characters.

For each model, a note is kept of all characters that have
followed every length-k subsequence observed so far in
the input, and the number of times that each has occurred.
Prediction probabilities are calculated from these counts.
The probabilities associated with each character that has
followed the last k characters in the past are used to predict
the upcoming character. Thus from each model, a separate
predicted probability distribution is obtained.

These distributions are effectively combined into a single
one, and arithmetic coding is used to encode the character
that actually occurs, relative to that distribution. The combi-
nation is achieved through the use of ‘escape’ probabilities.
Recall that each model has a different value of k. The
model with the largest k is, by default, the one used for
coding. However, if a novel character is encountered in
this context, which means that the context cannot be used
to encode it, an ‘escape’ symbol is transmitted to signal the
decoder to switch to the model with the next smaller value
of k. The process continues until a model is reached in
which the character is not novel, at which point it is encoded
with respect to the distribution predicted by that model. To
ensure that the process terminates, a model is assumed to be
present below the lowest level, containing all characters in
the coding alphabet. This mechanism effectively blends the

different-order models together in a proportion that depends
on the values actually used for escape probabilities.

As an illustration of the operation of PPM, Table 1 shows
the state of the four models with k = 2, 1, 0 and —1
after the input string abracadabra has been processed. For
each model, all previously occurring contexts are shown with
their associated predictions, along with occurrence counts ¢
and the probabilities p that are calculated from them. By
convention, k = —1 designates the bottom-level model that
predicts all characters equally; it gives them each probability
1/]A| where A is the alphabet used.

Some policy must be adopted for choosing the proba-
bilities to be associated with the escape events. There is
no sound theoretical basis for any particular choice in the
absence of some a priori assumption on the nature of the
symbol source; some alternatives are evaluated in [8, 12].
The method used in the example, commonly called ‘Method
C’, gives a count to the escape event equal to the number of
different symbols that have been seen in the context so far
[2]; thus, for example, in the order-O column of Table 1 the
escape symbol receives a count of 5 because five different
symbols have been seen in that context.

Sample encodings using these models are shown in
Table 2. As noted above, prediction proceeds from the
highest-order model (k = 2). If the context successfully pre-
dicts the next character in the input sequence, the associated

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

UNBOUNDED LENGTH CONTEXTS FOR PPM 69

TABLE 2. Encodings for three sample characters using the model in Table 1

Probabilities encoded

(without (with
Char. exclusions) exclusions) Code space occupied
c 3 3 —log, 3 = 1 bit
d s 1t —log, (3 - ¢) = 3.6 bits
t 53 VAL 5.5 5 VIAI=5) —logy(5- 5 - 35 - 537) = 11.2bits

probability p is used to encode it. For example, if ¢ followed
the string abracadabra, the prediction ra — ¢ would be used
to encode it with a probability of %, that is, in one bit.

Suppose instead that the character following abracadabra
was d. This is not predicted from the current k = 2 context
ra. Consequently, an escape event occurs in context ra,
which is coded with a probability of % and then the k =
1 context a is used. This does predict the desired symbol
through the prediction a — d, with probability % In fact, a
more accurate estimate of the prediction probability in this
context is obtained by noting that the character ¢ cannot
possibly occur, since if it did it would have been encoded at
the kK = 2 level. This mechanism, called ‘exclusion’, corrects
the probability to % as shown in the third column of Table 2.
Finally, the total number of bits needed to encode the d can
be calculated to be 3.6.

If the next character was one that had never been encoun-
tered before, say #, escaping would take place repeatedly
right down to the base level k = —1. Once this level is
reached, all symbols are equiprobable —except that, through
the exclusion device, there is no need to reserve probability
space for symbols that already appear at higher levels. As-
suming a 256-character alphabet, the ¢ is coded with proba-
bility ﬁ at the base level, leading to a total requirement of
11.2 bits including those needed to specify the three escapes.

It may seem that PPM’s performance should always
improve when the maximum context length is increased,
because the predictions are more specific. Figure 1 shows
how the compression ratio varies when different maximum
context lengths are used, for the text of Thomas Hardy’s
novel Far from the Madding Crowd (file bookl in the
Calgary text compression corpus [5]). The graph shows that
the best compression is achieved when a maximum context
length of 5 is chosen and that it deteriorates slightly when the
context is increased beyond this.

This general behaviour is quite typical. The reason is that
while longer contexts do provide more specific predictions,
they also stand a much greater chance of not giving rise to
any prediction at all. This causes the escape mechanism to
operate more frequently to reduce the context length down to
the point where predictions start to appear, and each escape
operation carries a small penalty in coding efficiency.

3. PPM*: EXPLOITING LONGER CONTEXTS

An alternative to PPM’s policy of imposing a universal fixed
maximum upper bound on context length is to allow the

Bits per character

FIGURE 1. How the PPM compression ratio varies with maximum
context length.

context length to vary depending on the coding situation. It
is possible to store the model in a way that gives rapid access
to predictions based on any context, eliminating the need for
an arbitrary bound to be imposed. We call this approach, in
which there is no a priori bound on context length, PPM*.
It bestows the freedom to choose any policy for determining
the context to be used for prediction, subject only to the
constraint that the decoder must be able to make the same
choice despite the fact that it does not know the upcoming
character.

The results in Figure 1 show that there is a likely problem
with extending the length of contexts in this way. Although
there is more information available in the PPM* model than
in any finite-context model, this is of no use if it cannot be
employed effectively. The fact that the performance worsens
beyond a certain order implies that the probability estimates
are being computed in a sub-optimal way.

In the remainder of this paper, we use the following
simple escape strategy based on the PPMC mechanism. A
context is defined to be ‘deterministic’ when it gives only
one prediction. We have found in experiments that for
such contexts the observed frequency of the novel characters
is much lower than expected based on a uniform prior
distribution [13]. This can be exploited by using such
contexts for prediction. The strategy that we recommend is
to choose the shortest deterministic context currently in the
context list. If there is no deterministic context, then the

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

70 J. G. CLEARY AND W. J. TEAHAN

160000 T T T T T

140000 B

120000 B

100000 - b

80000

T
!

Frequency

T
!

60000

40000

T
!

20000

T
!

0 ! ! N N N

15 20
Context length

FIGURE 2. Histogram of the length of shortest deterministic
contexts of file book1.

longest context is chosen instead. The PPMC mechanism is
then used, starting from this context.

A histogram of the context lengths chosen by this strategy
is shown in Figure 2 for the file book 1. The histogram peaks
sharply at a context length of 5-6; not surprisingly the best
context length (for this file) is 5 (Figure 1). Notwithstanding
this peak, however, the length of the shortest deterministic
context varies widely: Figure 3 plots it for the first 40 000
character positions in the file book1l. The graph demon-
strates that deterministic contexts much longer than 5 or 6
occur frequently and gradually increase in length as more
input is seen.

A key problem associated with the use of unbounded
contexts is the amount of memory and time necessary to
maintain them. It has often been noted that it is impractical
to extend PPM to models with a substantially higher order
because of the exponential growth of the memory that is
required as k increases. For PPM¥*, the problem is even
more daunting, as it demands the ability to access all possible
contexts right back to the very first character. Although
this can be done by simply scanning back through the input
string, the O(N 2y execution time incurred rules that out in
practice.

3.1. Context tries

A key insight in solving this problem is that the trie structure
used to store PPM models can operate in conjunction with
pointers back into the input string. In particular, a leaf
node can point into the input string whenever a context is
unique. Then, if the context needs to be extended, it is only
necessary to move the input pointer forward by one position.
To update the trie, a linked list of pointers to the currently
active contexts can be maintained (these correspond to the
‘excited states’ in the suffix-tree implementation of PPM and
PPM* of Bunton [8]) with the longest context at the top. We
call the resulting data structure a ‘context trie’.

25 T T T T T T T

20 | B

Length of chosen context

! ! ! ! ! ! !

0
0 5000 10000 15000 20000 ~ 25000 30000 35000 40000
Position in input string

FIGURE 3. Length of the deterministic context at each character
position of file book1.

Figure 4 illustrates the context trie for the string abra-
cadabra. The root node of the trie (the null string ‘A’) is at
the top. Contexts that have occurred previously in the input
string extend downward until they become unique, at which
point a pointer, shown by a dashed line in the diagram, is
stored back into the input string to the start of the context.
For example, looking to the very left of the tree, none of a,
ab, abr, abra is unique —they all appear two or more times in
the input string— whereas abrac is unique. Consequently, it
is at this level that a pointer into the input string is substituted
for further refinement of the trie structure.

The context list is shown at the lower right. It relates to
the current position in the input string, and contains pointers
to the contexts that are currently active. These are labelled 0
to 4 in the boxes on the left, and the corresponding nodes are
marked with numbered arrows. The longest active context
abra is placed at the top of the list, and each context below
it is missing one further character. The number of elements
in the context list is the length of the longest context, plus
one for the root node. The list always contains at least one
node — the root.

As each character is processed, the context trie is updated
by updating each node pointed at by the context list. There
are four possibilities when updating a node, depending on the
new symbol in the input string and the state of the node.

The first two cases correspond to a situation where the
next character is already predicted by the context trie. If
there is a link to a lower node in the trie for the new symbol,
the context pointer is replaced by a pointer to that node.
Suppose, in Figure 4, that the next character is c. Because
this has occurred before in all the contexts, the structure can
be updated by moving each of the five context pointers down
one level to the corresponding nodes for the letter c; however,
if the link points into the input string instead of to a lower
node in the trie, then the pointer is redirected to a new node
which in turn points to the same position in the input string.
Both the original link and the context are updated to point to

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

UNBOUNDED LENGTH CONTEXTS FOR PPM 71

1
vy VY

¢ ¥ 9 ¥
|a|b|r|a|c|a|d|a|b|r|a|...|i”p“t

string

FIGURE 4. Context trie for the string abracadabra.

the new node. Suppose that the next character after the c is
a; this is already predicted by the abrac context to the left of
the trie, as well as by the brac, rac, ac and c contexts, so that
five new nodes are created and their input pointers remain
unchanged.

The second pair of cases corresponds to the situation
where the next character is new in this context; that is, when
there is no prediction out of the current node corresponding
to that character. Suppose first that there are links to lower
levels in the trie, but that they correspond to other characters.
Then a new node is created for the new character, containing
that symbol and the input pointer copied from the parent
node, and it is dropped from the context list. For example,
in Figure 4, if the next character is b then the contexts at
pointers 2, 3 and 4 will be updated by adding child nodes for
the character b. The contexts at positions 0 and 1, however,
already have b predictions and so do not need to be changed.
Finally, if there is a link out of the current node into the input
string, but the next character is not the expected one, then two
new trie nodes will have to be created, one for the expected
character and the other for the new one. Both of these will
have pointers into the input string, the former a copy of the
parent node’s original input position, and the latter to the start
position of the new context. For example, if first ¢ and then
x were added to Figure 4, the five ¢ nodes at the leaves of the
trie would each gain two children, an a child with a copy of
the parent node’s input pointer and an x child pointing to the
start of each new context.

3.2. Implementation issues

3.2.1. Using a PATRICIA-style trie
Substantial space can be saved in the context trie by col-
lapsing non-branching sub-paths into single nodes, just as

in the standard PATRICIA trie data structure [14]. For each
collapsed node, only one branch emanates from it. In Fig-
ure 4 there are three such paths, two with the letters brac and
the third with rac. These collapsed sub-paths are shown in
Figure 5.

Collapsing non-branching paths requires two extra point-
ers to be stored with each node: the length of the string that
the node represents, and a pointer to where it starts in the
input string. In addition, an extra pointer associated with
each position in the context list gives the current position
in the non-branching path. The effect of collapsing all such
paths into single nodes is to make the number of nodes in
the trie linear with the size of the input string. Note that
deterministic contexts, defined earlier, correspond to the non-
branching paths in the context trie.

3.2.2. Memory requirements

Using the collapsed-node representation of the PATRICIA
trie, there will be at most 2N nodes in the trie for N inputs.
There are at most N leaves as each leaf points to a unique
position in the input, and each internal node points to at least
two descendants, so that there are at most N — 1 internal
nodes.

Bunton [8] showed how the techniques introduced in this
paper can also be used to reduce the memory requirements
of PPM implementations, thus making higher-order PPM
implementations more feasible.

3.2.3. Using a suffix trie

As described, inserting the next symbol into a PATRICIA trie
can take time up to O(N) (this worst case occurs when the
input contains a string where the same symbol is repeated N
times). As shown by Ukkonen [15], the addition of ‘suffix

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

J. G. CLEARY AND W. J. TEAHAN

nodes in current O
context list
trie pointer <t

input pointer <t - -
suffix pointer €——

1 input string

FIGURE 5. Suffix trie for the string abracadabral].

M w Mm”
abracadabral] [Jabracadabra [l a
[labracadabra a[labracadabr r
a[Jabracadabr abra[]abracad d
ra[]Jabracadab abracadabral] [l
bra[]labracada acadabra[]abr r
abra[]abracad _| adabra[]abrac c
dabra[]abraca sort | bra[labracada [rearrange a
adabra[]abrac bracadabra[]a a
cadabra[]abra cadabra[]abra a
acadabra[]abr dabra[]abraca a
racadabra[]ab ra[Jabracadab b
bracadabra[]a racadabra[]ab b

L L

FIGURE 6. BW compression of the string abracadabral].

pointers’ to each node can provide an amortized O(1) inser-
tion time. A suffix pointer points from the node representing
string s153 . . . 5, to the node representing the string with the
leftmost symbol deleted: s3s3...s,. (That is, the suffix
pointers point up the tree.) Figure 5 shows the tree of Fig-
ure 4 with collapsed nodes and suffix pointers included, and
with the end of string symbol [] appended to the input string.

The nodes on the context list lie along a single chain of
suffix pointers. Thus it is unnecessary to store the context
list separately; a single pointer to the current longest context
suffices. The use of a unique terminating symbol emphasizes
the one-to-one correspondence between input positions and
leaves and also corresponds more closely to the example of
Figure 6.

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

UNBOUNDED LENGTH CONTEXTS FOR PPM 73

TABLE 3. PPM*C model after processing the string abracadabra

Predictions ¢ p Predictions ¢ p Predictions ¢ p

Order k = 5: Order k = 2: c — a 1 3

abrac — a 1 1 ab — r 2 2 — Esc 1 3

— Esc 1 % — Esc 1 % d — a 1 %

ac. —- a 1 } — Esc 1 3

Order k = 4: - Esc 1 } r - a 2 2

=aba — ¢ 1 } ad —- a 1 1 — Esc 3 1
— Esc 1 % — Esc 1 %

brac — a 1 1 br — a 2 2 Order k = 0:

— Esc 1 % — Esc 1 % = - a 5 %

sra —> ¢ 1 1 - b 2 Z

Order k = 3: - Esc 1 } — c 1 =

abr —> a1 } - d 1 +

- Esc 1 } Order k = I: - r 2 Z

=ba —- ¢ 1 4 =a —> b 2 2 — Esc 5 2
— Esc 1 % — c 1 %

rac — a 1 3 - d 1 1 Order k = —1:
— Esc 1 % — Esc 3 % = — A 1 1/]4]

b — r 2
— Esc 1 %

Larsson [16] shows that Ukkonen’s algorithm can be
extended so that only a window of the most recent M inputs
is used. Given that there will be at most 2M — 1 nodes, this
permits the total memory used to be fixed precisely, which
is of great importance for large files on small computers.
Larsson’s algorithm deletes the appropriate nodes as the
input drops out of the window, and it has been shown to take
amortized O(1) time for the deletions.

Unfortunately, the Ukkonen—Larsson algorithm ignores
the need to update counts and to perform escape calculations.
Because in the worst case these require a scan from the leaf
to the root of the tree, they add an O(N) component back
into the computation time. It is unclear whether there exist
effective probability estimation techniques that can avoid
this O(N) scan time.

The use of suffix pointers for PPM* was inspired by
the work of Bunton [8, 17], which applies suffix trees as
a common representation for a large class of compression
techniques including PPM and PPM*.

3.24. Encoding the counts

Prediction in PPM* is based upon the frequencies of the
characters that follow each context. These counts are stored
with each node in the context trie, and are incremented
whenever the node is updated. A representation of the PPM*
model with escape method C is shown in Table 3 after
the string abracadabra has been processed. The contexts
correspond to the nodes in the context trie of Figure 4, and
are listed from the bottom up, moving from left to right.

Each currently active context on the context list is marked
by = in the table. Prediction proceeds from the shortest
deterministic context (i.e. only one prediction) on the list,
if there is one, otherwise from the highest-order model at
the head of the list (¢ = 4). In this case, there are three
deterministic contexts (the contexts abra, bra and ra), so
ra is chosen. If this context successfully predicts the next
character in the input sequence, the associated probability p
is used to encode it. For example, if ¢ followed the string
abracadabra, the prediction ra — ¢ would be used to encode
it with a probability of % Sample encodings in this example
are the same as for the PPMC model given in Table 2.

4. RESULTS

Table 4 shows the result of running PPM* on the Calgary
corpus [5], along with the benchmark PPMC implementation
which uses order 3, and a recently published, and extremely
competitive, non-adaptive scheme labelled BW (Burrows
and Wheeler [18]) (described in the following section). The
best figure for each file is printed in bold. The present
PPM*C implementation uses the context trie data structure
with the escape algorithm C and the deterministic state-
selection strategy.

Averaged over the entire corpus, PPM*C yields a 5.6%
improvement over PPMC and a 3.7% improvement over BW.
It performs relatively poorly on just three files—obj1, geo
and pic. It tends to perform less well on smaller files (e.g.
ob3jl) and on files that are binary rather than character based
(e.g. geo and pic). It is interesting to note that of all the

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

74 J. G. CLEARY AND W. J. TEAHAN

TABLE 4. Compression ratios for the Calgary corpus

Size PPMC PPM*C BW

File (bytes) (bpc) (bpe) (bpe)
bib 111261 2.11 191 2.07
book1l 768771 2.48 2.40 2.49
book2 610856 2.26 2.02 2.13
geo 102 400 4.78 4.83 4.45
news 377109 2.65 242 2.59
objl 21504 3.76 4.00 3.98

obj2 246814 2.69 2.43 2.64
paperl 53161 2.48 2.37 2.55
paper?2 82199 2.45 2.36 2.51
pic 513216 1.09 0.85 0.83
progc 39611 2.49 2.40 2.58

progl 71646 1.90 1.67 1.80
progp 49379 1.84 1.62 1.79
trans 93 695 1.77 1.45 1.57

Weighted average 2.27 2.09 2.18
Average 248 2.34 243

compression schemes listed in [5], PPMC is the only one that
ever outperforms either BW or PPM*C, and then only on a
single file (obj1).

A number of experiments with much larger English texts
than those in the Calgary corpus are reported in [13]. They
show that execution speeds and compression performance
for PPM* are comparable to higher-order PPM implemen-
tations (order 5 and above), although with greater memory
requirements. A word-based variation of the algorithm de-
scribed in [13] requires much less memory than word trigram
models commonly used in speech recognition and machine
translation, but still at the same time provides access to word-
based contexts of unbounded length.

5. RELATED WORK

PPM* encodes in its model an explicit list of minimal strings
that have occurred one or more times in the input. In a
sense, this is all the information that can be extracted from
the input. This information is sufficient to implement all
compression techniques that have the finite-context property
(that is, the probability estimate depends only on some finite
length of preceding context). This includes a very wide range
of compression techniques. DMC is a technique originally
described in [19] and has been shown to be a finite-context
model in [20].

The archetypical compression schemes that use
unbounded contexts are LZ77 and LZ78, which parse
the text into non-overlapping phrases from the input [3, 4].
These schemes are known to be asymptotically optimal
for an ergodic source, although convergence is slow and
in practice the method does not perform particularly well.
Much effort has gone into devising improvements to the
basic method, and one of the later ones, LZFG [21], is not
too far behind PPMC in compression performance (and
greatly superior to it in speed).

Recently, a novel block-sorting algorithm has been de-
scribed that achieves compression as good as context-based
methods such as PPM but at execution speeds closer to Ziv—
Lempel techniques [18]; we call this BW after its inventors,
Burrows and Wheeler. This method, unlike all others consid-
ered in the present paper, is not adaptive: first the complete
input sequence is transformed and then the resulting output is
encoded. The algorithm is effective because the transformed
string contains more regularities than the original one.

At first glance, BW seems completely different to the
context-based approach taken by PPM*. However, it can
indeed be viewed as a context-based method, with no
predetermined upper bound to context length. We illustrate
it using ‘abracadabral]’ again (note the inclusion of [] as the
end of string symbol).

Using the algorithm described in [18], first generate the
matrix of strings M in Figure 6, then sort the strings alphabet-
ically to produce M’. Two parameters are extracted from the
sorted matrix. The first, 7, is an integer that records which
row number corresponds to the original string. The second,
L, is the character string that constitutes the last column. In
this example, I = 4 and L = ard[]rcaaaabb. Strange as it
may seem, the input string is completely specified by / and
L: the reverse transformation for reconstructing the original
is explained in [18]. Moreover, L can be transmitted very
economically because it has the property that the same letters
often fall together into long runs.

M" is the same as M’ but with L highlighted and symbols
not needed to form unique contexts suppressed. It is
clear then that the unique strings in M” have a one-to-
one correspondence with the leaves of the trie in Figure 5.
The characters in L are those that lie immediately before
each of the unique contexts—thus BW can be seen as very
similar to the process of predicting from right to left—always
predicting the next character to the left and using the same
contexts as PPM*.

In summary, whereas BW can be viewed as exploiting
contexts of unbounded length by sorting them after the whole
input string has been processed, PPM* works adaptively
by predicting the next character from previous, unbounded-
length, contexts.

6. CONCLUSIONS

A new lossless compression mechanism, PPM*, has been
described. Its major contribution is that it shows that the
full information available by considering all substrings of
the input string can be used effectively to generate high-
quality predictions. The information in the PPM* model
subsumes that used in many current high-quality models
including the LZ family [3, 4], DMC [19] and BW [18].
Significant work remains to be done in effectively extracting
this information, however. In another paper in this issue,
Bunton [8] shows a number of significant improvements
to the escape mechanism used in this paper, and further
improves performance with a new information-theoretic
state-selection technique. Aberg ef al. [22] also investigate
several ways of improving the escape probabilities in PPM.

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

UNBOUNDED LENGTH CONTEXTS FOR PPM 75

Bloom [23] reports a result of 2.19 bpc for the Calgary corpus
using an order bound of 8. There is clearly a need for a better
understanding of what is possible; for example, a strong
lower bound on the compression of a PPM* model would be
very interesting.

Despite the foregoing, there are classes of information that
are not taken into account by PPM* (or by other related
techniques). There is evidence, for example, that in English
text there are words which show strong recency effects [24].
If the word occurs once then there is a high probability that it
will occur again soon. It is unclear, at this time, what models
and estimation techniques can effectively take advantage of
such information.

REFERENCES

[1] Cleary, J. G. and Witten, I. H. (1984) Data compression using
adaptive coding and partial string matching. IEEE Trans.
Commun., COM-32, 396-402.

[2] Moffat, A. (1990) Implementing the PPM data compression
scheme. IEEE Trans. Commun., COM-38, 1917-1921.

[3] Ziv, J. and Lempel, A. (1977) A universal algorithm for
sequential data compression. I[EEE Trans. Inform. Theory, I'T-
23, 337-343.

[4] Ziv, J. and Lempel, A. (1978) Compression of individual
sequences via variable rate coding. [EEE Trans. Inform.
Theory, IT-24, 530-536.

[5] Bell, T. C., Cleary, J. G. and Witten, I. H. (1990) Text
Compression. Prentice-Hall, Englewood Cliffs, NJ.

[6] Moffat, A., Neal, R. and Witten, 1. H. (1995) Arithmetic cod-
ing revisited. Proc. Data Compression Conf. IEEE Computer
Society Press, Los Alamitos, CA.

[7] Witten, I. H., Neal, R. M. and Cleary, J. G. (1987) Arithmetic
Coding for Data Compression. Commun. ACM, 30, 520-540.

[8] Bunton, S. (1997) Semantically motivated improvements for
PPM variants. Comp. J., 40, in press.

[9] Teahan, W. J. and Cleary, J. G. (1996) The entropy of English
using PPM based models. Proc. Data Compression Conf.,
pp. 53-62. IEEE Computer Society Press, Los Alamitos, CA.

[10] Shannon., C. E. (1951) Prediction and entropy of printed
English. Bell Syst. Tech. J., 30, 50-64.

[11] Wilson, W. J. (1994) Chinks in the armor of public key
cryptosystems. Technical Report 94/3, University of Waikato,
Hamilton, New Zealand.

[12] Witten, I. H. and Bell, T. C. (1991) The zero-frequency
problem: estimating the probabilities of novel events in
adaptive text compression. /[EEE Trans. Inform. Theory, I'T-
37, 1085-1094.

[13] Teahan, W. J. (1997) Modelling English Text. D.Phil. Thesis,
University of Waikato, New Zealand.

[14] Sedgewick, R. (1988) Algorithms. Addison-Wesley, Reading,
MA.

[15] Ukkonen, E. (1995) On-line construction of suffix trees.
Algorithmica, 14, 249-260.

[16] Larsson, N. J. (1996) Extended application of suffix trees to
data compression. Proc. Data Compression Conf., pp. 190—
199. IEEE Computer Society Press, Los Alamitos, CA.

[17] Bunton, S. (1996) On-line Stochastic Process in Data Com-
pression. Ph.D. Thesis, University of Washington.

[18] Burrows, M. and Wheeler, D. J. (1994) A block-sorting loss-
less data compression algorithm. Technical Report, Digital
Equipment Corporation, Palo Alto, CA.

[19] Horspool, R. N. and Cormack, G. V. (1986) Dynamic Markov
modelling—a prediction technique. Proc. Int. Conf. on the
System Services, Honolulu, Hawaii.

[20] Bell, T. C. and Moffat, A. M. (1989) A note on the DMC data
compression scheme. Comp. J., 32, 16-20.

[21] Fiala, E. R. and Green, D. H. (1989) Data compression with
finite windows. Commun. ACM, 32, 490-505.

[22] Aberg, J., Shtarkov, Y. M. and Smeets, B. J. M. (1997)
Towards understanding and improving escape probabilities in
PPM. Proc. Data Compression Conf. IEEE Computer Society
Press, Los Alamitos, CA.

[23] Bloom, C. (1996) PPMZ. http://wwwvms.utexas.edu/
~cbloom

[24] DeMori, R. and Kuhn, R. (1990) A cache-based natural
language model for speech recognition. IEEE Trans. Patt.
Anal. Machine Intell., PAMI-12, 570-583.

[25] Cleary, J. G., Teahan, W. J. and Witten, I. H. (1995) Un-
bounded length contexts for PPM. Proc. Data Compression
Conf., pp. 52-61 IEEE Computer Society Press, Los Alami-
tos, CA.

THE COMPUTER JOURNAL,

Vol. 40, No. 2/3, 1997

