
Burrows Wheeler Transform (BWT) 
 

• BWT was invented in 1983 in Cambridge by Wheeler. 
• Lossless reversible transformation (not a compression algorithm) applicable to sequence of 

symbols given as a block – like a block in DCT – but extension to 2 dimensional image has 
not yet been done. It is a hot research topic. 

• Compression system: (the bottom line of boxes denote inverse operation of the 
corresponding box in the upper line) 

 
 

• Not an on-line or streaming model algorithm. The entire block must be available to the 
transform. Typically the block size is 100kb to 900kb. 

• Informal description: 
Example 1:   T = abraca 
     M’     M 
        F    L  
     abraca    aabrac 
     aabrac   abraca <- id 
  caabra   acaabr 
  acaabr   bracaa 
  racaab   caabra 
  bracaa   racaab   
Output: (caraab,2) 
Note: text is decoded backwards. 
 

• L  with id is actually an expansion than compression. But it shows a pattern of 
concentration of a few symbols in any region. Note, except for the row id, the last column 
symbols precede the corresponding first column symbols in the original text. Thus, the 
symbols that have same forward context tend to cluster together in column L. This will be 
better illustrated with an example below: 

T =  swiss-miss 
1. –missswiss 
2. iss-misssw 
3. issswiss-m 
4. missswiss- 
5. s-missswis 
6. ss-missswi 
7. ssswiss-mi 
8. sswiss-mis 
9. swiss-miss   Output:(swm-siisss,9) 
10. wiss-misss 



Stated in other words, if a symbol ‘s’ appears at certain position in L, then other 
occurrences of ‘s’ are likely to be found nearby. This property means that L can be further 
decorrelated by Move-To-Front (MTF) algorithm. 
 

• Inverse transform: Given L, we can obtain F by sorting L in linear time. 
F  L

      1. a  c 
  2.  a  a  id=2 
   3. a  r 
  4. b  a  abraca 
  5.  c  a 
  6.  r  b 
Two properties have been utilized: 
1) Stable sort. 
2) L(j) precede F(j) in T,  except when j equals id  and L(id) = T(n), n  is the length of T. 
 
Define an index vector V providing a one-to-one mapping between the elements of L and 
F, the pair of indices corresponding to back arrows in the above diagram..  
 V = (5,1,6,2,3,4) 
That is V(j) = i  if F(i) = L(j)  or F(V(j)) = L(j). 
Given V and L, the algorithm to generate T can be written as: 
 
   .,...,2,1   ]],[[]1[ niidVLinT i ==−+
 

where ,      ssV =][1 .1  ]],[[][1 nssVVsV ii ≤≤=+

u=6   123456 
     T=abraca 
 i=1   aidLidVLT === )()]([]6[ 1

 i=2  cLidVLidVLT ==== )1())(()]([]5[ 2

 i=3  aLVLidVLT ==== )5())1(()]([]4[ 3

 i=4  rLVLidVLT ==== )3())5(()]([]3[ 4

 i=5  bLVLidVLT ==== )6())3(()]([]2[ 5

 i=6  aLVLidVLT ==== )4())6(()]([]1[ 6

 
Now, let’s take T = ababab 
 
 ababab <- id=1   a  b <- 
 ababab   a  b 
 ababab   a  b  
 bababa   b  a 
 bababa   b  a 
 bababa   b  a 
      T = …… bab 



The same thing will happen if T = “aaaa”. Unless we know the length of T, the algorithm 
will go into a loop. The problem can be resolved by putting an eof symbol ‘$’ sign, 
considered smallest. 
  
T=ababab$ 
 $ababab     $  b  
 ab$abab   a  b 
 abab$ab   a  b  
 ababab$ <- id=4 a  $ <- 
 b$ababa   b  a 
 bab$aba   b  a 
 babab$a   b  a 
 
As soon as it enters ‘$’ back, it stops. Note the ‘$’ delineate all the proper suffixes of T in 
lexicographic sorted order. Thus we can see now how BWT captures all forward context 
of arbitrary length in sorted order. This is of extreme significance or we will see later 
when we discuss PPM. 
 
T = abraca$ 
    V  Sorted suffix 
 1. $abraca 2  $ 
 2. a$abrac 6  a$ 
 3. abraca$ 1  abraca$ 
 4. aca$abr 7  aca$ 
 5. braca$a 3  braca$ 
 6. ca$abra 4  ca$ 
 7. raca$ab 5  raca$ 
V = (2,6,1,7,3,4,5) 
In practice, V is computed using two arrays. 
 
Character count array . = the number of occurrence in L of all the 
character preceding 

),...,,( ||21 Σ= cccC )(cC

cσ , the c-th symbol in ),,,($, rcba=Σ . Let 
 
 R(j) = the number of occurrence of L(j) in the prefix L(1,2,…j) of L. 
 
While computing R, we can also compute total count array total_count for all the 
characters in L.  C(c) can be obtained from total_count via cumulative count variable 
cum_count with O(|Σ|) time.  
L=M=ac$raab, M stands for the message that the decoder receives. 
 

Σ total_count in M cum_count    = cum_count - 1 
  

)(cC

 $    1      1      0 
 a    3      4      1 
 b    1      5      4 
 c    1      6      5 



 r    1      7      6 
 
It is also possible to compute C(c) as C(c) = (position(c ) -1), where position(c ) is the 
index in F where the group of characters cσ  start occurring. Thus,  
 
                                          V(i)= C(L(i))+ R(i),               i=1,..,n 
 
For our example L=M=ac$raab,  ),,,($, rcba=Σ ,C= (0,1,4,5,6), R=(1, 1,1,1,1,2,3,1), 
we get V=(2,6,1,7,3,4,5) 
 
 
 F  L  R=cum occurrence in M in the same group 
1 $  a  1 
2 a  c  1 
3 a  $  1 
4 a  r  1 
5 b  a  2 
6 c  a  3   
7 r b  1 
 
 
Given L=(ac$raab), we can obtain R and C vectors as follows: 
 
Given  /* alphabet is renamed as integers */ )||,...3,2,1( s=Σ=Σ
 for  i = 1 to s  do  total_count(i)=0; 
 for  j = 1 to n  do  
  // total_count contains the cumulative count until L(j)  
  total_count(L(j)) = total_count(L(j))+1;  
  R(j)=total_count(L(j));  

end 
 
cum_count = 0; 
for i = 1 to s do 
 C(i) = cum_count; 
 
end 

cum_count = cum_count + total_count(i); 

 
),,,($,)5,...,3,2,1( rcba==Σ   total_count(1)=…=total_count(5)=0 

L = ac$raab 
L(1) = a R(1) = 1 total_count(2)=1 /* argument denotes alphabet letter */ 
L(2) = c R(2) = 1 total_count(4)=1 
L(3) = $ R(3) = 1 total_count(1)=1 
L(4) = r R(4) = 1 total_count(5)=1 
L(5) = a R(5) = 2 total_count(2)=2 
L(6) = a R(6) = 3 total_count(2)=3 
L(7) = b R(7) = 1 total_count(3)=1 



 
 
 
   cum_count = 0  total_count 
C(1) = 0  cum_count = 0+1 =1   1 
C(2) = 1  cum_count = 1+3 =4   3 
C(3) =  4  cum_count =4 +1 =5   1 
C(4) = 5  cum_count = 5+1 =6   1 
C(5) = 6  cum_count = 6+1 = 7   1 
 
C = (0,1,4,5,6) 
 
Thus, given L we can obtain R and C by taking  time. Then we can compute V from 
V(i)=R(i)+C(L(i)), i = 1,..,n by taking O(n) time. Since F(V(j))=L(j), we can also obtain 
F in O(n) time from V. Thus, we can get F without sorting at the decoding side. The 
sorting of L would have taken  time. 
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Vectors H, Hr, and Hrs. 
 

F  L
      1. a  c 
  2.  a  a  id=2 
   3. a  r 
  4. b  a  abraca 
  5.  c  a 
  6.  r  b 
 
If we follow the back arrows in sequence and list the address in column F where it lands, 
we get a vector call H=(1,5,3,6,4,2). These indices give the output character sequence in 
reverse order. Thus:  

T = F(H(6)) F(H(5)) F(H(4)) F(H(3)) F(H(2)) F(H(1)) 
   = F(2) F(4) F(6) F(3) F(5) F(1) 

         a      b      r       a       c a 
Thus F(H(i)) gives text T in reverse order. If we reverse H to Hr, Hr = (2,4,6,3,5,1) then 
we get the text in correct order F(Hr(i)) 
 
Thus we get  
  T[i] = F[Hr[i]]   -(1) 
         = F[H[n+1-i]] 
  
How to obtain Hr from V? (Homework) 
 
  
 
 
 



Thus we know the following: 
    id   T  L  F  V  H  Hr  Hrs=suffix array 
     1   a  c  a  5  1  2    6 
     2   b  a  a  1  5  4    1 
     3   r  r  a  6  3  6    4  
     4   a  a  b  2  6  3    2 
     5   c  a  c  3  4  5    3 
     6   a  b  r  4  2  1    5 
 
 Hrs is another vector that such that Hrs(i) gives the index of row where i appears in Hr. 
In other words: 

 T[Hrs[i]] = F[i]   - (2) 
 
 
 
 
Equation (1) and (2) give ont-to-one mapping between F->T and T->F. 
 

T Hr F  T   Hrs F Hrs=(6,1,4,2,5,3) 
      1. a  a   a  a a 
  2.  b  a  b  a abraca 
  3. r  a  r  a aca 
  4. a  b  a  b braca   
  5.  c  c  c  c ca 
  6.  a  r  a  r rac 
 
 
 
 
Cyclic rotations: In actual implementation these rotations are not done explicitly – it is 
done via an array of m pointers, one to each character of the message. 
 
 In practice, to obtain the decoded text in natural order reverse lexicographic order 
beginning from second-to-last (SL) character. 
 
        L    F 
     abraca      bracaa : b 
     aabrac     abraca : a   <- id=2 
  caabra     caabra : c 
  acaabr ->    racaab : r 
  racaab     aabrac : a 
  bracaa     acaabr : a 
 
 
The column at the right hand side is the first column designated L in this reverse matrix 
which along with id is transmitted to the decoder. 
 



 
 
Rename the first column L and the last column F. The row containing the original 
message gets the id value as before (id=2). 
 F  L W 
 a  b 4 
 a  a 1 
 a  c 5  
  b  r 6 
  c  a 2 
  r  a 3 

L(j) precedes L(W(j)) in the text. .  ))(())...(())(()( 12 idWLidWLidWLidLT n−=
T = abraca 
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