
Lecture notes on Data Compression

Arithmetic Coding

2

Contents

Huffman coding revisited
History of arithmetic coding
Ideal arithmetic coding
Properties of arithmetic coding

3

Huffman Coding Revisited
-- How to Create Huffman Code

Construct a Binary Tree of Sets of Source Symbols.
Sort the set of symbols with non-decreasing probabilities.
Form a set including two symbols of smallest probabilities.
Replace these by a single set containing both the symbols
whose probability is the sum of the two component sets.

Repeat the above steps until the set contains all the symbols.
Construct a binary tree whose nodes represent the sets.
The leaf nodes representing the source symbols.
Traverse each path of the tree from root to a symbol,
assigning a code 0 to a left branch and 1 to a right branch.
The sequence of 0’s and 1’s thus generated is the code
for the symbol.

4

Properties of Huffman Coding

Huffman codes are minimum redundancy codes for a
given probability distribution of the message.
Huffman coding guarantees a coding rate lH within one
bit of the entropy H.

Average code length lH of the Huffman coder on the source S is
bounded by H(S)<= lH <= H(S) + 1

Studies showed that a tighter bound on the Huffman
coding exists.

Average code length lH < H(S) + pmax +0.086, where pmax is the
probability of the most frequently occurring symbol.
So, if the pmax is quite big (in case that the alphabet is small and the
probability of occurrence of the different symbols is skewed),
Huffman coding will be quite inefficient.

5

Properties of Huffman Coding
(continued)

Huffman code does not achieve ‘minimum redundancy’
because it does not allow fractional bits.

Huffman needs at least one bit per symbol.
For example, given alphabet containing two symbols with
probability:
The optimal length for the first symbol is:
The Huffman coding, however, will assign 1 bit to this
symbol.

If the alphabet is large and probabilities are not
skewed, Huffman rate is pretty close to entropy.

1 20.99, 0.01p p= =
log(0.99) 0.0145− =

6

Properties of Huffman Coding
(continued)

If we block m symbols together, the average code
length lH of the Huffman coder on the source S is
bounded by

H(S)<= lH <= H(S) + 1/m

However, the problem here is that we need a big
codebook. If the size of the original alphabet is K, then
the size of the new code book is Km.

Thus, Huffman’s performance becomes better at the
expense of exponential codebook size.

7

Another View of Huffman
Coding

Huffman code re-interpreted
here by mapping the symbols to
subintervals of [0,1) at the base
value of the subintervals.

The code words, if regarded as
binary fractions, are pointers to
the particular interval in the
binary code.

An extension to this idea is to
encode the symbol sequence as
a subinterval leads to arithmetic
coding.

symbol probability code
binary

fraction

W 0.5 1 0.1

X 0.25 01 0.01

Y 0.125 001 0.001

Z 0.125 000 0.000

8

Arithmetic Coding

The idea is to code string as a binary fraction
pointing to the subinterval for a particular symbol
sequence.

Arithmetic coding is especially suitable for small
alphabet (binary sources) with highly skewed
probabilities.

Arithmetic coding is very popular in the image and
video compression applications.

9

A Bit of History

The idea that code string can be a binary fraction
pointing to the subinterval for a particular symbol
sequence is due to Shannon [1948]; and was used
by Elias [1963] to successive subdivision of the
intervals.

Shannon observed that if the probabilities were
treated as high precision binary numbers, then it may
be possible to decode messages unambiguously.

David Huffman invented his code around the same
time and the observation was left unexplored until it
re-surfaced in 1975.

10

A Bit of History (continued)

The idea of arithmetic coding was suggested by
Rissanen [1975] from the theory of enumerative
coding by Pasco [1976].

The material of this notes is based on the most
popular implementation of arithmetic coding by Witten,
etc., published in Communications of the Association
for Computing Machinery (1987).

Moffat, etc (1998) also proposed some improvements
upon the 1987 paper; however, the basic idea remains
same.

11

Static Arithmetic Coding

Consider an half open interval [low,high). Initially, interval is
set as [0,1) and range= high -low = 1-0 = 1.
Interval is divided into cumulative probabilities of n symbols.
For this example, n=3; p(a)=1/2, p(b)=1/4 and p(c)=1/4.

_

_

a

b

c

0

1

_

_

_
b

c

a

_

_

a

b

c
_

_

_

a

b

c

Any value in the range [47/64,96/128)) encodes ‘bcca’

1/2

3/4

3/4

1/2

5/8

11/16

11/16

23/32

47/64

3/4

47/64

96/128

12

Adaptive Arithmetic Coding

Consider an half open interval [low,high). Initially, interval is
set as [0,1) and range= high -low = 1-0 = 1.
Interval is divided into cumulative probabilities of n symbols,
each having the same probability 1/n at the beginning.

_

_

_

_

a

b

c

0

1/3

2/3

1

_

_

_

b

c

a

_

_

_

_

a

b

c

_

_

_

a

b

c

1/3

1/3

1/3

1/4

2/4

1/4

1/5

2/5

2/5

1/6

2/6

3/6

.3333

.4167

.5834

.6667

.5834

.6001

.6334

.6667

.6334

.6390

.6501

.6667

Any value in the range [.6334,.6390) encodes ‘bcca’

13

Update Frequency in Arithmetic
Encoding

A static zero-order model is used in the
first example.
Dynamic (second example) update is
more accurate.

Initially we have a frequency distribution.
Every time we process a new symbol,
update the frequency distribution.

14

Properties of Arithmetic Coding

• The dynamic version is not more complex than the static version.

• The algorithm allocates -logpi number of bits to a symbol of probability pi
whether or not this value is low or high. Unlike Huffman codes which is a
fixed-to-variable coding scheme, arithmetic coding is variable -to-fixed
coding scheme, and is capable of allocating non-integral number of bits to
symbols, producing a near-optimal coding. It is not absolutely optimal

due to limited precision of arithmetic operations.

• Incremental transmission of bits are possible, avoiding working with
higher and higher precision numbers.

15

Update Interval in Arithmetic
Encoding

Two main parts in the arithmetic coding
Update frequency distribution
Update subinterval

Initially we have the interval [L=Low,
L+R=Range) as [0, 1)
Symbols of the alphabet are mapped to the
integers 1,2,…s, ,n. For each incoming symbol
s, the interval is updated as

Low:
Range:

1

1
 L = L + R []s

j
P j−

=
×∑

R = R P[s]×

This summation can be pre-
calculated. When s=1, the second
term is set to 0.

16

Ideal Static Arithmetic Encoder

1. ALGORITHM ARITHMETIC_IDEAL_ENCODE(M)
/* M is the message to be encoded */

1. set L= 0 and R = 1
2. FOR i = 1 to |M| DO

set s = M[i]
set
set

3. END FOR
4. /*If the algorithm has to be adaptive, code has to be inserted

before the above ‘end’ statement to re-compute probabilities*/.
5. transmit the shortest (fewest bits) binary fractional number that

lies in the interval [L, L+R)
6. END ALGORITHM

1

1
 L = L + R []s

j
P j−

=
×∑

R = R P[s]×

17

Ideal Static Arithmetic Decoder

1. ALGORITHM ARITHMETIC_IDEAL_DECODE(m)
2. /* Let V be the fractional value transmitted by the encoder. Let the

message length m be also be transmitted . The probabilities of the
symbols are same as that of the decoder. For adaptive algorithm, the
probabilities are updated following the same algorithm as used by the
encoder*/

3. FOR i = 1 to m DO
Determine s such that

Recover L and R from s

Update V = (V-L)/R

Output M[i]=s
4. END FOR
5. RETRUN message M
6. END ALGORITHM

1

1 1
[] []s s

j j
P j V P j−

= =
≤ <∑ ∑

∑
−

=

=
1

1

][
s

j

jPL][sPR =

18

Ideal Static Arithmetic Coding

The basic idea of the arithmetic coding is to use a high-precision
fractional number to encode the probability of the message.

Message M = [abaaaeaaba], alphabet
Probability distribution P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
Probability of the message is
P[a] * P[b] * P[a] * P[a] * P[a] * P[e] * P[a] * P[a] * P[b] * P[a]
= 0.67 * 0.11 * 0.67* 0.67* 0.67 * 0.05 * 0.67* 0.67 * 0.11 * 0.67
= 0.00003666730521220415.
However, we can not simply use this probability to encode the
message, because we know there exist many messages which have
exactly the same probability, such as M1 = [b, a, a, a, a, e, a, a, b, a],
or M2 = [a, a, b, a, a, e, a, a, b, a], etc.
In fact, all permutations of the symbols in the message M have the
same probability as the message M. So, to encode this message, we
need to enforce some order (=<) of the letters in M.
This ordering will allow the computation of Cumulative Probability
PC(s) for symbols up to s-1 but not including s .

{ , , , , , }a b c d e f∑ =

19

Cumulative Probability

Alphabet
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].

For simplicity, we denote it by a vector
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

{ }
{ }
{ }
{ }
{ }
{ }

0.00
0.67

0.78 ,

() 0.85 , ,

0.91 , , ,

0.96 , , , ,

1.00 , , , , ,

X

x
x a

x a b

F x x a b c

x a b c d

x a b c d e

x a b c d e f

⎧ ∉Σ
⎪

∈⎪
⎪ ∈⎪
⎪= ∈⎨
⎪ ∈⎪
⎪ ∈⎪
⎪ ∈⎩

{ , , , , , }a b c d e f∑ =

20

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[1] = a,
LOW = 0.0
RANGE = P[a] =0.67

{ , , , , , }a b c d e f∑ =

21

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[2] = b,
LOW = LOW + PC[b] * RANGE = 0.0 + 0.67 * 0.67

= 0.44890000000000
RANGE = RANGE * P[b] = 0.67 * 0.11

= 0.07370000000000

{ , , , , , }a b c d e f∑ =

22

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[3] = a,
LOW = LOW + PC[a] * RANGE

= 0.44890000000000 + 0.0 * 0.07370000000000
= 0.44890000000000

RANGE = RANGE * P[a]
= 0.07370000000000 * 0.67
= 0.04937900000000

{ , , , , , }a b c d e f∑ =

23

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[4] = a,
LOW = LOW + PC[a] * RANGE

= 0.44890000000000 + 0.0 * 0.04937900000000
= 0.44890000000000

RANGE = RANGE * P[a]
=0.04937900000000 * 0.67
= 0.03308393000000

{ , , , , , }a b c d e f∑ =

24

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[5] = a,
LOW = LOW + PC[a] * RANGE

= 0.44890000000000 + 0.0 * 0.04937900000000
= 0.44890000000000

RANGE = RANGE * P[a]
=0.03308393000000 * 0.67
= 0.02216623310000

{ , , , , , }a b c d e f∑ =

25

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[6] = e,
LOW = LOW + PC[e] * RANGE

= 0.44890000000000 + 0.91 * 0.02216623310000
= 0.46907127212100

RANGE = RANGE * P[e]
= 0.02216623310000 * 0.05
= 0.00110831165500

{ , , , , , }a b c d e f∑ =

26

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[7] = a,
LOW = LOW + PC[a] * RANGE

= 0.46907127212100 + 0.0 * 0.00110831165500
= 0.46907127212100

RANGE = RANGE * P[a]
= 0.00110831165500 * 0.67
= 0.00074256880885

{ , , , , , }a b c d e f∑ =

27

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[8] = a,
LOW = LOW + PC[a] * RANGE

= 0.46907127212100 + 0.0 * 0.00074256880885
= 0.46907127212100

RANGE = RANGE * P[a]
= 0.00074256880885 * 0.67
= 0.0004975211019295

{ , , , , , }a b c d e f∑ =

28

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[9] = b,
LOW = LOW + PC[b] * RANGE

= 0.46907127212100 + 0.67 * 0.0004975211019295
= 0.469404611259293

RANGE = RANGE * P[b]
= 0.0004975211019295 * 0.11
= 0.000054727321212245

{ , , , , , }a b c d e f∑ =

29

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

M[10] = a,
LOW = LOW + PC[a] * RANGE

= 0.469404611259293 + 0.0 * 0. 0737
= 0.469404611259293

RANGE = RANGE * P[a]
= 0.000054727321212245 * 0.67
= 0.00003666730521220415

{ , , , , , }a b c d e f∑ =

30

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a]
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
LOW = 0.469404611259293
RANGE = 0.00003666730521220415
OUTPUT 0.46942

{ , , , , , }a b c d e f∑ =

31

Decode the Message
--- Example

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]

V = 0.46942

Recover symbol #1.
LOW = 0.0
RANGE = 1.0
V=0.46942, lies in the interval [0.0, 0.67)
Output symbol a
we have the interval [newLOW, newRANGE) = [0.0, 0.67)
Update the V: V = (V-newLOW) / newRANGE.
We have V = 0.46942/0.67 = 0.70062686567164

{ , , , , , }a b c d e f∑ =

32

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #2.

LOW = 0.0
RANGE = 1.0
V= 0.70062686567164, lies in the interval [0.67, 0.78). Output
symbol b
we have the interval [newLOW, newRANGE) = [0.67, 0.11)
Update the V: V = (V-newLOW) / newRANGE.
We have V = (0.70062686567164 -0.67)/ 0.11 =
0.27842605156036

{ , , , , , }a b c d e f∑ =

33

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #3.

V=0.27842605156036, check the CDF, lies in the interval
[0.0, 0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0,
0.67).
We have V = (0.27842605156036 -0.0)/ 0.67
=0.41556127098561

{ , , , , , }a b c d e f∑ =

34

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #4.

V=0.41556127098561, check the CDF, lies in the interval [0.0,
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0,
0.67).
We have V = (0.41556127098561-0.0)/ 0.67 =
0.62024070296360

{ , , , , , }a b c d e f∑ =

35

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #5.

V=0.62024070296360, check the CDF, lies in the interval [0.0,
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0,
0.67).
We have V = (0.62024070296360-0.0)/ 0.67 =
0.92573239248299

{ , , , , , }a b c d e f∑ =

36

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #6.

V=0.92573239248299, check the CDF, lies in the interval
[0.91, 0.96), so target symbol is e.
Now, we have the interval [newLOW, newRANGE) = [0.91,
0.05).
We have V = (0.92573239248299-0.91)/ 0.05 =
0.31464784965980

{ , , , , , }a b c d e f∑ =

37

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #7.

V=0.31464784965980, check the CDF, lies in the interval [0.0,
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0,
0.67).
We have V = (0.31464784965980-0.0)/ 0.67 =
0.46962365620866

{ , , , , , }a b c d e f∑ =

38

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #8.

V=0.46962365620866, check the CDF, lies in the interval [0.0,
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0,
0.67).
We have V = (0.46962365620866-0.0)/ 0.67 =
0.70093083016218

{ , , , , , }a b c d e f∑ =

39

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #9.

V=0.70093083016218, check the CDF, lies in the interval
[0.67, 0.78), so target symbol is b.
Now, we have the interval [newLOW, newRANGE) = [0.67,
0.11).
We have V = (0.70093083016218-0.67)/ 0.11 =
0.28118936511073

{ , , , , , }a b c d e f∑ =

40

Decode the Message
--- Example (continued)

Alphabet
|M| = 10
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00]
Recover symbol #10.

V=0.28118936511073, check the CDF, lies in the
interval [0.0, 0.67), so target symbol is a.
Now, we have recovered all the symbols. STOP
decoding here.

{ , , , , , }a b c d e f∑ =

41

Reference: Moffat and Turpin, p.95

The same process is followed for each symbol of
the message M. At any given point in time the
internal potential of the coder is given by -log2 R.
The potential is a measure of the eventual cost of
coding the message, and counts bits. If R' is used
to denote the new value of R after an execution of
step 3 (Slide #16), then R' = R x P[s], and -log2 R' =
(-log2 R) + (-log2 P[s]). That is, each iteration of
the “for" loop increases the potential by exactly
the information content of the symbol being
coded.

42

Reference: Moffat and Turpin, p.95

“At the end of the message the transmitted code is any
number V such that

L ≤V < L + R.
By this time
where M[i] is the ith of the m input symbols. The potential
has thus increased to
, and to guarantee that the number V is within the specified
range between L and L + R, it must be at least this many bits
long.
For example, consider the sequence of L and R values that
arises when the message M = [1,2,1,1,1,5,1,1,2,1] is coded
according to the static probability distribution P =
[0.67,0.11,0.07,0.06,0.05,0.04] that was used in the example “

∏=
=

m

i
iMPR

1
]][[

]][[log
1 2 iMPm

i∑ =
−

43

The L and R values with binary
Representations

44

Obtaining the value V

“As each symbol is coded, R gets smaller, and L and L + R
move closer together. By the time the 10 symbols of the
example message M have been fully coded, the quantities L
and L + R agree to four decimal digits, and to thirteen binary
digits. This arrangement is shown in the last line of Table 5.1.
Any quantity V that lies between L and L + R must have
exactly the same prefix, so thirteen bits of the compressed
representation of the message are immediately known.
Moreover, three more bits must be added to V before a
number is achieved that, irrespective of any further bits that
follow in the coded bits tream, is always between L and L +
R:

L + R : 0.0111 1000 00101 101010011
V : 0.0111 1000 00101 100
L : 0.0111 1000 00101 010111010

45

Information content of the range

High probability events do not decrease the interval
Range very much, but low probability events result in a
much smaller next interval requiring large number of
digits.

A large interval needs only a few digits. The number of
digits required is –log(size of interval).

The size of the final interval is the product of the
probabilities of the symbols encoded. Thus a symbol s
with probability p(s) contributes –log p(s) bits to the
output which is the symbol’s self-information.

46

Information content
“At the conclusion of the processing R has the value 3.67 x 10-5, the product
of the probabilities of the symbols in the message. The minimum number of
bits required to separate R and L + R is thus given by -log2 R = 14.74 = 15,
one less than the number of bits calculated above for V. A minimum-
redundancy code for the same set of probabilities would have codeword
lengths of [1,3,3,3,4,4] for a message length of 17 bits. The one bit difference
between the arithmetic code and the minimum-redundancy code might
seem a relatively a small amount to get excited about, but when the
message is long, or when one symbol has a very high probability, an
arithmetic code can be much more compact than a minimum-redundancy
code.
As an extreme situation, consider the case when n = 2, P = [0.999,0.001], and
a message containing 999 "1 "s and one "2" is to be coded. At the end of the
message R = 3.7 x 10-4, and V will contain just

-log2 3.7 x 10-41 = 12 or -log2 3.7 x 10-41 + 1 = 13 bits,

far fewer than the 1,000 bits necessary with a minimum-redundancy code.
On average, each symbol In this hypothetical message is coded in just 0.013
bits! “

47

Arithmetic Coding Advantages

“There are workarounds to prefix codes that give
improved compression effectiveness, such as
grouping symbols together into blocks over a larger
alphabet, in which individual probabilities are smaller
and the redundancy reduced; or extracting runs of "1 "
symbols and then using a Golomb code; or using the
interpolative code. But they cannot compare with the
sheer simplicity and elegance of arithmetic coding. As
a further point in its favor, arithmetic coding is
relatively unaffected by the extra demands that arise
when the probability estimates are adjusted
adaptively. “

48

Efficiency of the Ideal Arithmetic
Coding

The average length per symbol using the
arithmetic coding is
H(X)<=lA<=H(X)+2/m,

where m is the length of the message.
Proved in the text book (Sayood, page 91).

So, it is guaranteed that the encoding
rate is close to the entropy, given a long
enough message.

49

Compare Huffman Coding and
Arithmetic Coding

Huffman coding: Creates binary (Huffman)
tree such that path lengths correspond to
symbol probabilities. Uses path labels as
encodings.
Arithmetic coding: Combine probabilities of
subsequent symbols into a single fixed-point
high precision number. Encode that number in
binary. Variable-to-fixed length encoding.
Arithmetic coding is slower than Huffman
coding.

50

Compare Huffman Coding and
Arithmetic Coding (continued)

Arithmetic coding efficiency:
H(X)<=lA<=H(X)+2/m
m is the length of the message

Huffman coding efficiency:
H(S)<= lH <= H(S) + 1/m
m is size of the block

Is Huffman coding more efficient than
arithmetic coding?

51

Compare Huffman Coding and
Arithmetic Coding (continued)

It seems that Huffman coding is more efficient
than the arithmetic coding.

However, in this case, the size of the codebook
will be exponentially big, making Huffman
encoding not practical.

If the probabilities of the symbols are powers
of two, Huffman coding can achieve the
entropy bound. In this case, we cannot do any
better with arithmetic coding, no matter how
long a sequence we pick.

52

Compare Huffman Coding and
Arithmetic Coding (continued)

Also, Average code length for Huffman coding
lH < H(S) + pmax +0.086

pmax is the probability of the most frequently
occurring symbol.
If the alphabet size is relatively large and the
probabilities are not too skewed, pmax will be
generally small. In this case, the Huffman coding
is better than the arithmetic coding in favor of the
speed.
However, if the alphabet size is small, and the
probabilities are highly unbalanced, arithmetic
coding is generally worth the added complexity.

53

Compare Huffman Coding and
Arithmetic Coding (continued)

Arithmetic coding can handle adaptive
coding without much increase in
algorithm complexity. It calculates the
probabilities on the fly and less primary
memory is required for adaptation.
Canonical Huffman is also fast but use
only static or semi-static models.

54

Compare Huffman Coding and
Arithmetic Coding (continued)

It is not possible to start decoding in the
middle of a compressed string which is
possible in Huffman by indexing “starting
points”.
So, from random access point of view
and from the point of view of
compressed domain pattern matching,
arithmetic coding is not suitable.

55

Compare Huffman Coding and
Arithmetic Coding (continued)

For text using static model, Huffman is
almost as good as Arithmetic.
Arithmetic is better suited for image and
video compression.
Once again, Huffman is faster than
Arithmetic.
Moffat’s implementation (1998) is slightly
better than Witten’s (1987).

56

Ideal Arithmetic Coding
---- Remarks

Theoretically, therefore, arithmetic code can achieve
compression identical to the entropy bound. But, finite
precision of computer limits the maximum
compression achievable.

Note, the algorithm does not output anything until
encoding is completed.

In practice, it is possible to output most significant
digits sequentially during the execution while at the
same time utilize the finite precision of the machine
effectively.

57

Binary Implementation

We need an arbitrary precision floating point arithmetic
machine to implement the ideal schemes. In practice,
we only have finite precision machines.
Decoding cannot start until the data value V is
communicated to the decoder.

Both problems will be fixed in the binary implementation.
As it turns out, arithmetic coding is best accomplished
using standard 32 bit or 64 bit integer arithmetic. No
floating point arithmetic is required, nor would it help to use
it.
What is used instead is a an incremental transmission
scheme, where an integer is formed with new bits in at the
least significant end and shift them out from the most
significant end, forming a single number that can be as
many bits as the computer's storage will permit.

58

Ideal Arithmetic Coding
---- Underflow

During the encoding, every time we read the next
symbol, we scale the [L, L+R) to the new (smaller)
value according to the probability of the symbol.
Suppose RANGE is very small, such that different
symbols will be mapped to the same interval [L, L+R).
In this case, it is impossible for the decoder to recover
the symbol correctly.
Instead of decreasing RANGE, we can expand the
interval [L, L+R).
In the seminal implementation of arithmetic encoding,
it is enforced that RANGE is always no less than 0.25
(Witten et al, 1987).
The material here is based on Witten’s implementation.

59

Binary Arithmetic Coding
---- Scaling

Why do scaling?
Cope with the limited-precision of integer
operations.

When?
Whenever R<0.25

How?
Shift the common prefix of {L, L+R} left
In each shifting we only process one bit.

60

The Common Prefix of {L, L+R}

Use binary representation.
Some facts:

All the values in interval [0, 0.01) has common
prefix: 0.00
All the values in interval [0.01, 0.10) has common
prefix: 0.01
All the values in interval [0.10, 0.11) has common
prefix: 0.10
All the values in interval [0.11, 1.00) has common
prefix: 0.11

61

Shifting one bit left

If [L, L+R) is in [0.00, 0.10),
we have the common prefix 0.0
Shift a 0 left
E1 mapping

If [L, L+R) is in [0.10, 1.00),
we have the common prefix 0.1
Shift a 1 left
E2 mapping

If [L, L+R) straddles point 0.10
we may not have the common prefix
E3 mapping

62

Straddling Midpoint 0.10

If [L, L+R) straddles point 0.10
we may not have the common prefix

However, any value bigger than 0.10 and
close to 0.10 has form 0.1{0}n, where
parameter n gives the precision.
Similarly, any value smaller than 0.10
and close to 0.10 has form 0.0{1}n,
where parameter n gives the precision.

63

Straddling Midpoint 0.10

After certain steps, E3 mapping will either be
reduced to E1 mapping or E2 mapping,
definitely.
If it is reduced to E1 mapping, L and L+R have
the common prefix 0.0{1}n, the output is a 0
followed by n 1s.
Similarly, If E3 mapping is reduced to E2
mapping, L and L+R have the common prefix
0.1{0}n, the output is a 1 followed by n 0s.

64

Binary Arithmetic Coding
---- E1 Mapping

When the interval [L, L+R) lies
in the lower half [0.0, 0.5), we
can expand this lower half to
make it occupy the full interval
[0.0, 1.0)
And adjust

LOW = 2 * LOW
RANGE = 2 * RANGE.

65

Binary Arithmetic Coding
---- E2 Mapping

When the interval [L, L+R) lies
in the upper half, we can
expand this upper half to make
it occupy the full interval [0.0,
1.0),
and adjust

LOW = 2 * (LOW – 0.5)
RANGE = 2 * RANGE.

66

Binary Arithmetic Coding
---- Basic Idea

Shift the L and R left whenever L and L+R have the same
prefix.
When we shift out (and output) the prefix, the range should be
re-normalized by shifting the LOW and double the RANGE
which must straddle the midpoint.

0.0

1.0

0.5

0.0

1.0

0.5
L

L+R

a)

0.0

1.0

0.5

0.0

1.0

0.5
L

L+R

b)

0.0

1.0

0.5

0.0

1.0

0.5
L

L+R

c)

000000

111111

100000

000000

111111

100000

L

L+R

A)

000000

111111

100000

000000

111111

100000

L

L+R

B)

000000

111111

100000

000000

111111

100000

L

L+R

C)

BINARY

67

E3 Mapping

When the interval [L, L+R) straddles the middle point
0.5, we cannot decide which bit (0, or 1) should be
output only based on the current information. “The
polarity of the immediately next output bit cannot be
known, as it depends upon future symbols that have
not yet been coded. What is known is that the bit after
that immediately next bit will be of opposite polarity to
the next bit, because all binary numbers in the range
(0.25, 0.75) start either with [01] or [10]. Hence, in this
case, the renormalization can still take place, provided
a note is made using the variable bits_outstanding to
output an additional opposite bit the next time a bit of
unambiguous polarity is produced. In this case, L is
translated by 0.25 before L and R are doubled. So, we
adjust LOW = 2 * (LOW – 0.25) and RANGE = 2 *
RANGE.”

68

For example, if the next bit turns out to be zero (i.e., the
subinterval [LOW, LOW+RANGE) lies in [0.0, 0.5) --- [0.25,
0.5), more specifically --- and [0, 0.5) is expanded to [0.0, 1)),
the bit after that will be one, since the subinterval has to be
above the midpoint of the expanded interval. Conversely, if
the next bit happens to be one, the one after that will be zero.
Therefore the interval can safely be expanded right now, if
only we remember that, whatever bit actually comes next, its
opposite must be transmitted afterwards as well. Variable
bits_outstanding is used to denote that the bit that is output
next must be followed by an opposite bit.

69

Binary Arithmetic Coding
---- E3 Mapping

When the interval [L, L+R) straddles
the middle point 0.5, L is translated by
0.25 before L and R are doubled.
So, we adjust

LOW = 2 * (LOW – 0.25)
RANGE = 2 * RANGE.

But, what to output?
For example,

Output 0[1]n, if in interval [0.25, 0.50)
Output 1[0]n, if in interval [0.5, 0.75)
But, the new scaled interval may
straddle 0.5 again?

70

E3 Mapping, new scaled interval straddles 0.5
again

One bit is output for each scaling
But what if, after this operation, it is still true that the interval [L, L+R) straddles the
middle point 0.5 again? Suppose the current subinterval has been expanded a total
of three times. Suppose the next bit turns out to be zero, which means it lies in [0.0,
0.5). Then the next three bits will be ones, since the arrow is not only in the top half
of the bottom half of the original range --- [0.25, 0.5), with binary encoding starting
with 01, more specifically ---, but in the top quarter--- [0.375, 0.5), with binary
encoding starting with 011, more specifically ---, and moreover the top eighth---
[0.4375, 0.5), with binary encoding starting with 0111, more specifically ---, of that
half-this is why the expansion can occur three times. Similarly, as Figure (b) shows,
if the next bit turns out to be a one, it will be followed by three zeros. Consequently,
we need only count the number of expansions and follow the next bit by that number
of opposites.

71

E3 Mapping, new scaled interval straddles
0.5 again

Suppose the current subinterval has been expanded a total of three
times
Similarly, if the next bit turns out to be a one, it will be followed by
three zeros. Consequently, we need only count the number of
expansions and follow the next bit by that number of opposites.

72

Implementation

Both L and R are taken to be integers of some fixed number of bits b.
Typical values of b are 32 or 64 and 0<=L,R<2b. The actual values are
assumed to be fractions normalized by 2b so that they lie in the range 0
and 1.The next slide shows the integer values and the fractions. The
algorithm maintains a loop whose loop invariant is R>2b-2 which
corresponds to fraction 0.25 in scaled terms.

73

Binary Arithmetic Coding
----Pseudo Code

Both L and R are taken to be integers of some fixed number of bits
b.Typical values of b are 32 or 64 and 0<=L,R<2b. The actual values are
assumed to be fractions normalized by 2b so that they lie in the range 0and
1.The next slide shows the integer values and the fractions. The algorithm
maintains a loop whose loop invariant is R>2b-2 which corresponds to fraction
0.25 in scaled terms. The corresponding values for arithmetic coding, real-
number interpretation and scaled integer interpretations.

.

74

Encoding One Symbol

The algorithm given in next page encodes one symbol s. It passes three
parameters to the program l, h and t which define the position of the symbol in
the probability range. As a pre-processing step, the probabilities are computed
by pre-scanning the message M and accumulating the frequency count of
each symbol (the un-normalized self-frequencies in M of the jth symbol P[j],
for all j). More formally,

For example, given the message M = [a, b, a, a, a, e, a, a, a, a] (m=|M|=10)
on alphabet (a,b,c,d,e,f) with size n = 6. We collect the frequency distribution P
= [8, 1, 0, 0, 1, 0], and PC = [0, 8, 9, 9, 9, 10, 10] (notice that PC[0] is not
used). When encoding the first symbol ‘a’, we pass l=0, h=8 and t=10. When
encoding the second symbol, we pass l=8, h=9 and t=10 and so on.
Note the algorithm also computes the variable value bits_outstanding which
is used by the program in the following page to generate the actual bits.

∑ ∑
= =

==+==
1-s

1j

n

1j
mp[j] tP[s],lh P[j],l

75

Binary Arithmetic Coding
----Encoding One Symbol

//Normalization is done only if range falls below 0.25. Otherwise do nothing//

//Range is in lower half (0-0.5); output ‘0’//

// Range is in upper half; output ‘1’; Shift to lower half//

//Range straddles the midpoint; Shift by 0.25 //

76

Binary Arithmetic Coding
----E3, Output Outstanding Bits

77

Encoding the Message

In order to encode a message, the encoding one symbol
routine has to be called m times. Before that the encoder
must have all the necessary ‘prelude’ viz. symbol
frequency count, alphabet size, the message size , the
frequency distribution and cumulative frequency
distribution . The code for all these tasks
are rather straightforward.

The next two algorithms shown in succeeding pages does
the reverse operations - decoding one symbol and
decoding the entire message given the value V received by
the decoder from the encoder. The concatenation of the
bits generated by the routine bit_plus_follow(x) in the
encoder is creating this value.

78

Binary Arithmetic Coding
----Encoding the Message

79

Binary Arithmetic Coding
----Decoding One Symbol

//The three components of the “if” statement are for three
cases: range in lower, Upper halves or straddling the
midpoint. The code maps the range and the value V //

80

Binary Arithmetic Coding
----Decoding the Message

// Target gets the cumulative frequency of the symbol

// Finds the location of the symbol in in PC(s) domain //

//Update V //
// decoded output symbol is retrieved //

81

Binary Arithmetic Coding
----Example

Now, we go through one example step-by-step to illustrate how to
encode and decode a message.
Given the message M = [a, b, a, a, a, e, a, a, a, a] (|M|=10) on alphabet ,
n = 6.
Suppose b = 8, that is, the size of the integer is 8.
Encode the message
First, we call ALGORITHM ARITHMETIC_ENCODE_SEQUENCE(M).
We collect the frequency distribution P = [8, 1, 0, 0, 1, 0], and PC = [0, 8,
9, 9, 9, 10, 10] (notice that PC[0] is not used).
Next, we need to encode and transmit |M| and n as the bit stream: [0000
1010, 0000 0110]
Next, we encode and transmit PCs, as the bit stream: [0000 1001, 0000
1010, 0000 1010, 0000 1010, 0000 1011, 0000 1011]
Next, we set L = 0, R = 128, bits_outstanding = 0
Next, we encode the message M.

82

Example (cntd.)

i = 1, s = M[i] =a, l = 0, h = 8, t = 10. L = 0, R = 128. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 0, R = 102.
Since R is not small enough (greater than 64), so no scaling
adjust is necessary.
i = 2, s = M[i] =b, l = 8, h = 9, t = 10. L = 0, R = 102. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 81, R = 10.
Since R is small enough (less than 64), scaling is performed. First,
the range lies in the lower part [0.0, 0.5), we output bit [0] to the
output stream, shift L and R left by one bit, and have L = 162, R =
20. Now the range lies in the upper part [0.5, 1.0), we output bit [1]
to the output stream, clear the leftmost bit of L, and have L = 34,
shift L and R left by one bit, and have L = 68, R = 40. We do
another scaling, the range in the lower part [0.0, 0.5), we output
bit [0] to the output stream, shift L and R left by one bit, and have
L = 136, R = 80.

83

Example (cntd.)

i = 3, s = M[i] =a, l = 0, h = 8, t = 10. L = 136, R = 80. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 136, R = 64.
Since R is small enough (less equal to 64), scaling is performed.
First, the range lies in the upper part [0.5, 1.0), we output bit [1] to
the output stream, clear the leftmost bit of L, and have L = 8, shift
L and R left by one bit, and have L = 16, R = 128. i = 3, s = M[i]
=a, l = 0, h = 8, t = 10. L = 136, R = 80. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 136, R = 64.
Since R is small enough (less equal to 64), scaling is performed.
First, the range lies in the upper part [0.5, 1.0), we output bit [1] to
the output stream, clear the leftmost bit of L, and have L = 8, shift
L and R left by one bit, and have L = 16, R = 128.
i = 4, s = M[i] =a, l = 0, h = 8, t = 10. L = 16, R = 128. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 16, R = 102.
i = 5, s = M[i] =a, l = 0, h = 8, t = 10. L = 16, R = 102. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 16, R = 81.

84

Example (cntd.)

i = 6, s = M[i] =e, l = 9, h = 10, t = 10. L = 16, R = 81. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 88, R = 9. Since R
is small enough (less than 64), scaling is performed. First, the range lies
in the lower part [0.0, 0.5), we output bit [0] to the output stream, shift L
and R left by one bit, and have L = 176, R = 18. Now the range lies in the
upper part [0.5, 1.0), we output bit [1] to the output stream, clear the
leftmost bit of L, and have L = 48, shift L and R left by one bit, and have
L = 96, R = 36. The polarity of the immediately next output bit cannot be
known, as it depends upon future symbols that have not yet been coded.
What is known is that the bit after that immediately next bit will be of
opposite polarity to the next bit, because all binary numbers in the range
(0.25, 0.75) start either with [01] or [10]. Hence, in this case, the
renormalization can still take place, provided a note is made using the
variable bits_outstanding to output an additional opposite bit the next
time a bit of unambiguous polarity is produced. In this case, L is
translated by 0.25 before L and R are doubled. So, bits_outstanding = 1,
L = 32, L = 64, R = 72.

85

Example (cntd.)

i = 7, s = M[i] =a, l = 0, h = 8, t = 10. L = 64, R = 72. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 64, R = 57.
Since R is small enough (less than 64), scaling is performed. First,
the range lies in the lower part [0.0, 0.5), we output bit [0] to the
output stream, - Because of the bits_outstanding, bit [1] is also
output -shift L and R left by one bit, and have L = 128, R = 114.
i = 8, s = M[i] =a, l = 0, h = 8, t = 10. L = 128, R = 114. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 128, R = 91.
i = 9, s = M[i] =a, l = 0, h = 8, t = 10. L = 128, R = 91. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 128, R = 72.
i = 10, s = M[i] =a, l = 0, h = 8, t = 10. L = 128, R = 72. We call
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 128, R = 57.
Since R is small enough (less than 64), scaling is performed. First,
the range lies in the upper part [0.5, 1.0), we output bit [1] to the
output stream, clear the leftmost bit of L, and have L = 0, shift L
and R left by one bit, and have L = 0, R = 114.

86

Example (cntd.)

The last step, we need to encode and transmit L as one integer. We
output bit stream [0000 0000].
We output the bit stream:
|M| and n as the bit stream: [0000 1010, 0000 0110]
PCs, as the bit stream: [0000 1001, 0000 1010, 0000 1010, 0000 1010,
0000 1011, 0000 1011]
i = 2, output [010]
i = 3, output [1]
i = 6, output [01]
i = 7, output [01]
i = 10, output [1]
transmit L, output bit stream [0000 0000].
So, the output bit stream is:
[0000 1010, 0000 0110 0000 1001, 0000 1010, 0000 1010, 0000 1010,
0000 1011, 0000 1011 010 1 01 01 1 0000 0000].

87

Example (cntd.)

Decode the message
We have the bit stream [0000 1010, 0000 0110 0000 1001, 0000
1010, 0000 1010, 0000 1010, 0000 1011, 0000 1011 010 1 01 01
1 0000 0000].
First, receive and decode m and n, m = 0x 0000 1010 = 10, n =
0x 0000 0110 = 6.
Now, the bit stream is [0000 1001, 0000 1010, 0000 1010, 0000
1010, 0000 1011, 0000 1011 010 1 01 01 1 0000 0000].
Next, receive and decode PCs, input stream is [0000 1001, 0000
1010, 0000 1010, 0000 1010, 0000 1011, 0000 1011], restored
PC = [0, 8, 9, 9, 9, 10, 10]
Now, the bit stream is [010 1 01 01 1 0000 0000].
Next, we set R = 128, L = 0, get bit stream [010 1 01 01], V = 85
Now, the bit stream is [1 0000 0000].
Next, we decode the message M.

88

Example (cntd.)

i = 1, R = 128, L = 0, V = 85, target = (((V – L + 1) * m) – 1) / R = 6, s = 1,
l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t),
L = L + R * l / t =0, R = R * h / t – R * l / t = 102.
Recover M[1]= a.
i = 2, R = 102, L = 0, V = 85, target = (((V – L + 1) * m) – 1) / R = 8, s = 2,
l = 8, h = 9, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t),
L = L + R * l / t =81, R = R * h / t – R * l / t = 10. Since R is small enough
(less than 64), scaling is performed. First, the range lies in the lower part
[0.0, 0.5), shift L and R left by one bit, and have L = 162, R = 20. Read
one bit [1] from the stream, Now, the bit stream is [0000 0000]. V = 171.
Now the range lies in the upper part [0.5, 1.0), we clear the leftmost bit of
L and V, and have L = 34, V = 43, shift L and R left by one bit, and have
L = 68, R = 40. Read one bit [0] from the stream, Now, the bit stream is
[000 0000]. V = 86. We do another scaling, the range in the lower part
[0.0, 0.5), shift L and R left by one bit, and have L = 136, R = 80. Read
one bit [0] from the stream, Now, the bit stream is [00 0000]. V = 172.
Recover M[2]= b.

89

Example (cntd.)

i = 3, R = 80, L = 136, V = 172, target = (((V – L + 1) * m) – 1) / R = 4, s =
1, l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h,
t), L = L + R * l / t =136, R = R * h / t – R * l / t = 64. Since R is small
enough (less equal to 64), scaling is performed. First, the range lies in
the upper part [0.5, 1.0), we clear the leftmost bit of L and V, and have L
= 8, V = 44, shift L and R left by one bit, and have L = 16, R = 128. Read
one bit [0] from the stream, Now, the bit stream is [0 0000]. V = 88.
Recover M[3]= a.
i = 4, R = 128, L = 16, V = 88, target = (((V – L + 1) * m) – 1) / R = 5, s =
1, l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h,
t), L = L + R * l / t =16, R = R * h / t – R * l / t = 102.
Recover M[4]= a.
i = 5, R = 102, L = 16, V = 88, target = (((V – L + 1) * m) – 1) / R = 7, s =
1, l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h,
t), L = L + R * l / t =16, R = R * h / t – R * l / t = 81.
Recover M[5]= a.

90

Example (cntd.)

i = 6, R = 81, L = 16, V = 88, target = (((V – L + 1) * m) – 1) / R = 9, s = 5,
l = 9, h = 10, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t),
L = L + R * l / t =88, R = R * h / t – R * l / t = 9. Since R is small enough
(less equal to 64), scaling is performed. First, the range lies in the lower
part [0.0, 0.5), shift L and R left by one bit, and have L = 176, R = 18.
Read one bit [0] from the stream, Now, the bit stream is [0000]. V = 176.
Since R is small enough (less than 64), scaling is performed. First, the
range lies in the upper part [0.5, 1.0), we clear the leftmost bit of L and V,
and have L = 48, V = 48, shift L and R left by one bit, and have L = 96, R
= 32. Read one bit [0] from the stream, Now, the bit stream is [000]. V =
96. Since R is small enough (less than 64), scaling is performed. In this
case, the interval straddles 0.5. We adjust L and V, and have L = 32, V
= 32, shift L and R left by one bit, and have L = 64, R = 64. Read one bit
[0] from the stream, Now, the bit stream is [00]. V = 64. Since R is small
enough (equal to 64), scaling is performed. First, the range lies in the
lower part [0.0, 0.5), shift L and R left by one bit, and have L = 128, R =
128. Read one bit [0] from the stream, Now, the bit stream is [0]. V = 128
Recover M[6]= e.

91

Example (cntd.)

i = 7, R = 128, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t =
10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t –
R * l / t = 102.
Recover M[7]= a.
i = 8, R = 102, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t =
10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t –
R * l / t = 81.
Recover M[8]= a.
i = 9, R = 81, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t = 10,
call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t – R * l
/ t = 64.
Recover M[9]= a.
i = 10, R = 64, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t =
10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t –
R * l / t = 51.
Recover M[10]= a.
So, we have reconstructed the message M= abaaaeaaaa
One limitation of this arithmetic coding scheme presented here is that it is static. We must
collect the frequency information before the coding. The algorithm cannot adjust the frequency
information on the fly.

92

Application Arithmetic Coding

Image compression
Video compression
Lossless/lossy
Why?

The size of the alphabet is small, and the
probabilities are highly unbalanced.

	Lecture notes on Data Compression � Arithmetic Coding
	Contents
	Huffman Coding Revisited�-- How to Create Huffman Code
	Properties of Huffman Coding
	Properties of Huffman Coding� (continued)
	Properties of Huffman Coding� (continued)
	Another View of Huffman Coding
	Arithmetic Coding
	A Bit of History
	A Bit of History (continued)
	Static Arithmetic Coding
	Adaptive Arithmetic Coding
	Update Frequency in Arithmetic Encoding
	Properties of Arithmetic Coding
	Update Interval in Arithmetic Encoding
	Ideal Static Arithmetic Encoder
	Ideal Static Arithmetic Decoder
	Ideal Static Arithmetic Coding
	Cumulative Probability
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Decode the Message�--- Example
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Decode the Message�--- Example (continued)
	Reference: Moffat and Turpin, p.95
	Reference: Moffat and Turpin, p.95
	The L and R values with binary Representations
	Obtaining the value V
	Information content of the range
	Information content
	Arithmetic Coding Advantages
	Efficiency of the Ideal Arithmetic Coding
	Compare Huffman Coding and Arithmetic Coding
	Compare Huffman Coding and Arithmetic Coding (continued)
	Compare Huffman Coding and Arithmetic Coding (continued)
	Compare Huffman Coding and Arithmetic Coding (continued)
	Compare Huffman Coding and Arithmetic Coding (continued)
	Compare Huffman Coding and Arithmetic Coding (continued)
	Compare Huffman Coding and Arithmetic Coding (continued)
	Ideal Arithmetic Coding �---- Remarks
	Binary Implementation
	Ideal Arithmetic Coding �---- Underflow
	Binary Arithmetic Coding �---- Scaling
	The Common Prefix of {L, L+R}
	Shifting one bit left
	Straddling Midpoint 0.10
	Straddling Midpoint 0.10
	Binary Arithmetic Coding �---- E1 Mapping
	Binary Arithmetic Coding �---- E2 Mapping
	Binary Arithmetic Coding �---- Basic Idea
	E3 Mapping
	Slide Number 68
	Binary Arithmetic Coding �---- E3 Mapping
	E3 Mapping, new scaled interval straddles 0.5 again
	E3 Mapping, new scaled interval straddles 0.5 again
	Implementation
	Binary Arithmetic Coding �----Pseudo Code
	Encoding One Symbol
	Binary Arithmetic Coding �----Encoding One Symbol
	Binary Arithmetic Coding �----E3, Output Outstanding Bits
	Encoding the Message
	Binary Arithmetic Coding �----Encoding the Message
	Binary Arithmetic Coding �----Decoding One Symbol
	Binary Arithmetic Coding �----Decoding the Message
	Binary Arithmetic Coding �----Example
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Example (cntd.)
	Application Arithmetic Coding

