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Huffman Coding Revisited
-- How to Create Huffman Code

Construct a Binary Tree of Sets of Source Symbols.
Sort the set of symbols with non-decreasing probabilities.
Form a set including two symbols of smallest probabilities.
Replace these by a single set containing both the symbols 
whose probability is the sum of the two component sets. 

Repeat the above steps until the set contains all the symbols. 
Construct a binary tree whose nodes represent the sets.  
The leaf nodes representing the source symbols. 
Traverse each path of the tree from root to a symbol, 
assigning a code 0 to a left branch and 1 to a right branch. 
The sequence of 0’s and 1’s thus generated is the code 
for the symbol.
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Properties of Huffman Coding

Huffman codes are minimum redundancy codes for a 
given probability distribution of the message.
Huffman coding guarantees a coding rate lH within one 
bit of the entropy H. 

Average code length lH of the Huffman coder on the source S is 
bounded by            H(S)<= lH <= H(S) + 1

Studies showed that a tighter bound on the Huffman 
coding exists.

Average code length lH < H(S) + pmax +0.086, where pmax is the 
probability of the most frequently occurring symbol. 
So, if the pmax is quite big (in case that the alphabet is small and the 
probability of occurrence of the different symbols is skewed), 
Huffman coding will be quite inefficient.
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Properties of Huffman Coding
(continued)

Huffman code does not achieve ‘minimum redundancy’ 
because it does not allow fractional bits. 

Huffman needs at least one bit per symbol. 
For example, given alphabet containing two symbols with 
probability: 
The optimal length for the first symbol is:
The Huffman coding, however, will assign 1 bit to this 
symbol. 

If the alphabet is large and probabilities are not 
skewed, Huffman rate is pretty close to entropy. 

1 20.99, 0.01p p= =
log(0.99) 0.0145− =
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Properties of Huffman Coding
(continued)

If we block m symbols together, the average code 
length lH of the Huffman coder on the source S is 
bounded by

H(S)<= lH <= H(S) + 1/m

However, the problem here is that we need a big 
codebook. If the size of the original alphabet is K, then 
the size of the new code book is Km. 

Thus, Huffman’s performance becomes better at the 
expense of exponential codebook size.
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Another View of Huffman 
Coding

Huffman code re-interpreted 
here by mapping the symbols to 
subintervals of [0,1) at the base 
value of the subintervals. 

The code words, if regarded as 
binary fractions, are pointers to 
the particular interval in the 
binary code.

An extension to this idea is to 
encode the symbol sequence as 
a subinterval leads to arithmetic 
coding. 

symbol probability code
binary 

fraction

W 0.5 1 0.1

X 0.25 01 0.01

Y 0.125 001 0.001

Z 0.125 000 0.000
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Arithmetic Coding

The idea is to code string as a binary fraction 
pointing to the subinterval for a particular symbol 
sequence.

Arithmetic coding is especially suitable for small 
alphabet (binary sources) with highly skewed
probabilities.

Arithmetic coding is very popular in the image and 
video compression applications.
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A Bit of History

The idea that code string can be a binary fraction 
pointing to the subinterval for a particular symbol 
sequence is due to Shannon [1948]; and was used 
by Elias [1963] to successive subdivision of the 
intervals. 

Shannon observed that if the probabilities were 
treated as high precision binary numbers, then it may 
be possible to decode messages unambiguously. 

David Huffman invented his code around the same 
time and the observation was left unexplored until it 
re-surfaced in 1975. 
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A Bit of History (continued)

The idea of arithmetic coding was suggested by 
Rissanen [1975] from the theory of enumerative 
coding by Pasco [1976].

The material of this notes is based on the most 
popular implementation of arithmetic coding by Witten, 
etc., published in Communications of the Association 
for Computing Machinery (1987). 

Moffat, etc (1998) also proposed some improvements 
upon the 1987 paper; however, the basic idea remains 
same. 
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Static Arithmetic Coding

Consider an half open interval [low,high). Initially, interval is 
set as [0,1) and  range= high -low = 1-0 = 1.
Interval is divided into cumulative probabilities of n symbols. 
For this example, n=3; p(a)=1/2, p(b)=1/4 and p(c)=1/4.
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Adaptive Arithmetic Coding

Consider an half open interval [low,high). Initially, interval is 
set as [0,1) and  range= high -low = 1-0 = 1.
Interval is divided into cumulative probabilities of n symbols, 
each having the same probability 1/n at the beginning.
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Update Frequency in Arithmetic 
Encoding

A static zero-order model is used in the 
first example.
Dynamic (second example) update is 
more accurate.

Initially we have a frequency distribution.
Every time we process a new symbol, 
update the  frequency distribution.
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Properties of Arithmetic Coding

• The dynamic version is not more complex than the static version.

• The algorithm allocates -logpi number of bits to a symbol of probability pi    
whether or not  this value is low or high. Unlike Huffman codes which is a 
fixed-to-variable coding scheme,  arithmetic coding is variable -to-fixed 
coding scheme, and is capable of allocating non-integral number of bits to 
symbols, producing a  near-optimal coding. It is not absolutely optimal 

due to limited  precision of arithmetic operations.

• Incremental transmission of bits are possible, avoiding working with 
higher and higher precision numbers.
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Update Interval in Arithmetic 
Encoding

Two main parts in the arithmetic coding
Update frequency distribution
Update subinterval

Initially we have the interval [L=Low, 
L+R=Range) as [0, 1)
Symbols of the alphabet are mapped to the 
integers 1,2,…s,   ,n. For each incoming symbol 
s, the interval is updated as

Low:
Range:

1

1
 L = L + R [ ]s

j
P j−

=
×∑

R = R  P[s]×

This summation can be pre-
calculated. When s=1, the second 
term is set to 0.
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Ideal Static Arithmetic Encoder 

1. ALGORITHM ARITHMETIC_IDEAL_ENCODE(M)
/* M is the message to be encoded */

1. set  L= 0 and R = 1
2. FOR i = 1 to |M| DO

set s = M[i]
set 
set 

3. END FOR
4. /*If the algorithm has to be adaptive, code has to be inserted 

before the above ‘end’ statement to re-compute probabilities*/.
5. transmit the shortest (fewest bits) binary fractional number that 

lies in the interval [L, L+R)
6. END ALGORITHM

1

1
 L = L + R [ ]s

j
P j−

=
×∑

R = R  P[s]×
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Ideal Static Arithmetic Decoder

1. ALGORITHM ARITHMETIC_IDEAL_DECODE(m)
2. /* Let V be the fractional value transmitted by the encoder. Let the 

message length m be also be transmitted . The probabilities of the 
symbols are same as that of the decoder. For adaptive algorithm, the 
probabilities are updated following the same algorithm as used by the 
encoder*/

3. FOR i = 1 to m DO
Determine s such that 

Recover L and R from s

Update V = (V-L)/R

Output M[i]=s
4. END FOR
5. RETRUN message M
6. END ALGORITHM

1

1 1
[ ] [ ]s s

j j
P j V P j−

= =
≤ <∑ ∑

∑
−

=

=
1

1

][
s

j

jPL ][ sPR =
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Ideal Static Arithmetic Coding

The basic idea of the arithmetic coding is to use a high-precision
fractional number to encode the probability of the message.

Message M = [abaaaeaaba], alphabet
Probability distribution P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
Probability of the message is  
P[a] * P[b] * P[a] * P[a] * P[a] * P[e] * P[a] * P[a] * P[b] * P[a] 
= 0.67 * 0.11 * 0.67* 0.67* 0.67 * 0.05 * 0.67* 0.67 * 0.11 * 0.67 
= 0.00003666730521220415. 
However, we can not simply use this probability to encode the
message, because we know there exist many messages which have
exactly the same probability, such as M1 = [b, a, a, a, a, e, a, a, b, a],
or M2 = [a, a, b, a, a, e, a, a, b, a], etc.
In fact, all permutations of the symbols in the message M have the
same probability as the message M. So, to encode this message, we
need to enforce some order (=<) of the letters in M.
This ordering will allow the computation of Cumulative Probability
PC(s) for symbols up to s-1 but not including s .

{ , , , , , }a b c d e f∑ =
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Cumulative Probability

Alphabet
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].

For simplicity, we denote it by a vector 
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

{ }
{ }
{ }
{ }
{ }
{ }

0.00             
0.67             

0.78             ,

( ) 0.85             , ,

0.91             , , ,

0.96             , , , ,

1.00             , , , , ,

X

x
x a

x a b

F x x a b c

x a b c d

x a b c d e

x a b c d e f

⎧ ∉Σ
⎪

∈⎪
⎪ ∈⎪
⎪= ∈⎨
⎪ ∈⎪
⎪ ∈⎪
⎪ ∈⎩

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[1] = a, 
LOW = 0.0
RANGE = P[a] =0.67 

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[2] = b, 
LOW = LOW + PC[b] * RANGE = 0.0 + 0.67 * 0.67 

= 0.44890000000000
RANGE = RANGE * P[b] = 0.67 * 0.11 

= 0.07370000000000

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[3] = a, 
LOW = LOW + PC[a] * RANGE 

= 0.44890000000000 + 0.0 * 0.07370000000000
= 0.44890000000000

RANGE = RANGE * P[a] 
= 0.07370000000000 * 0.67 
= 0.04937900000000

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[4] = a, 
LOW = LOW + PC[a] * RANGE 

= 0.44890000000000 + 0.0 * 0.04937900000000
= 0.44890000000000

RANGE = RANGE * P[a] 
=0.04937900000000 * 0.67 
= 0.03308393000000

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[5] = a, 
LOW = LOW + PC[a] * RANGE 

= 0.44890000000000 + 0.0 * 0.04937900000000
= 0.44890000000000

RANGE = RANGE * P[a] 
=0.03308393000000 * 0.67 
= 0.02216623310000 

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[6] = e, 
LOW = LOW + PC[e] * RANGE 

= 0.44890000000000 + 0.91 * 0.02216623310000 
= 0.46907127212100 

RANGE = RANGE * P[e] 
= 0.02216623310000 * 0.05 
= 0.00110831165500  

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[7] = a, 
LOW = LOW + PC[a] * RANGE 

= 0.46907127212100 + 0.0 * 0.00110831165500 
= 0.46907127212100  

RANGE = RANGE * P[a] 
= 0.00110831165500 * 0.67 
= 0.00074256880885  

{ , , , , , }a b c d e f∑ =



27

Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[8] = a, 
LOW = LOW + PC[a] * RANGE 

= 0.46907127212100 + 0.0 * 0.00074256880885 
= 0.46907127212100  

RANGE = RANGE * P[a] 
= 0.00074256880885 * 0.67 
=  0.0004975211019295   

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[9] = b, 
LOW = LOW + PC[b] * RANGE 

= 0.46907127212100 + 0.67 * 0.0004975211019295 
= 0.469404611259293   

RANGE = RANGE * P[b] 
= 0.0004975211019295 * 0.11 
=  0.000054727321212245    

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

M[10] = a, 
LOW = LOW + PC[a] * RANGE 

= 0.469404611259293 + 0.0 * 0. 0737 
= 0.469404611259293   

RANGE = RANGE * P[a] 
=  0.000054727321212245 * 0.67 
=  0.00003666730521220415

{ , , , , , }a b c d e f∑ =
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Example

Alphabet
M = [a, b, a, a, a, e, a, a, b, a] 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
LOW      = 0.469404611259293   
RANGE  = 0.00003666730521220415
OUTPUT 0.46942

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 

V = 0.46942

Recover symbol #1.
LOW = 0.0
RANGE = 1.0
V=0.46942, lies in the interval [0.0, 0.67)
Output symbol a
we have the interval [newLOW, newRANGE) = [0.0, 0.67) 
Update the V: V = (V-newLOW) / newRANGE. 
We have V = 0.46942/0.67 = 0.70062686567164

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #2.

LOW = 0.0
RANGE = 1.0
V= 0.70062686567164, lies in the interval [0.67, 0.78). Output 
symbol b
we have the interval [newLOW, newRANGE) = [0.67, 0.11) 
Update the V: V = (V-newLOW) / newRANGE. 
We have V = (0.70062686567164 -0.67)/ 0.11 = 
0.27842605156036

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #3.

V=0.27842605156036, check the CDF, lies in the interval 
[0.0, 0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0, 
0.67). 
We have V = (0.27842605156036 -0.0)/ 0.67 
=0.41556127098561 

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #4.

V=0.41556127098561, check the CDF, lies in the interval [0.0, 
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0, 
0.67). 
We have V = (0.41556127098561-0.0)/ 0.67 = 
0.62024070296360

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #5.

V=0.62024070296360, check the CDF, lies in the interval [0.0, 
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0, 
0.67). 
We have V = (0.62024070296360-0.0)/ 0.67 = 
0.92573239248299 

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #6.

V=0.92573239248299, check the CDF, lies in the interval 
[0.91, 0.96), so target symbol is e.
Now, we have the interval [newLOW, newRANGE) = [0.91, 
0.05). 
We have V = (0.92573239248299-0.91)/ 0.05 = 
0.31464784965980

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #7.

V=0.31464784965980, check the CDF, lies in the interval [0.0, 
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0, 
0.67). 
We have V = (0.31464784965980-0.0)/ 0.67 = 
0.46962365620866 

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #8.

V=0.46962365620866, check the CDF, lies in the interval [0.0, 
0.67), so target symbol is a.
Now, we have the interval [newLOW, newRANGE) = [0.0, 
0.67). 
We have V = (0.46962365620866-0.0)/ 0.67 = 
0.70093083016218

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #9.

V=0.70093083016218, check the CDF, lies in the interval 
[0.67, 0.78), so target symbol is b.
Now, we have the interval [newLOW, newRANGE) = [0.67, 
0.11). 
We have V = (0.70093083016218-0.67)/ 0.11 = 
0.28118936511073

{ , , , , , }a b c d e f∑ =
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Decode the Message
--- Example (continued)

Alphabet
|M| = 10 
P=[0.67, 0.11, 0.07, 0.06, 0.05, 0.04].
PC = [0.0, 0.67, 0.78, 0.85, 0.91, 0.96, 1.00] 
Recover symbol #10.

V=0.28118936511073, check the CDF, lies in the 
interval [0.0, 0.67), so target symbol is a.
Now, we have recovered all the symbols. STOP 
decoding here. 

{ , , , , , }a b c d e f∑ =
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Reference: Moffat and Turpin, p.95

The same process is followed for each symbol of 
the message M. At any given point in time the 
internal potential of the coder is given by -log2 R. 
The potential is a measure of the eventual cost of 
coding the message, and counts bits. If R' is used 
to denote the new value of R after an execution of 
step 3 (Slide #16), then R' = R x P[s], and -log2 R' = 
( -log2 R) + ( -log2 P[s]). That is, each iteration of 
the “for" loop increases the potential by exactly 
the information content of the symbol being 
coded.
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Reference: Moffat and Turpin, p.95

“At the end of the message the transmitted code is any 
number V such that 

L ≤V < L + R. 
By this time                     
where M[i] is the ith of the m input symbols. The potential 
has thus increased to  
, and to guarantee that the number V is within the specified 
range between L and L + R, it must be at least this many bits 
long. 
For example, consider the sequence of L and R values that 
arises when the message M = [1,2,1,1,1,5,1,1,2,1] is coded 
according to the static probability distribution P = 
[0.67,0.11,0.07,0.06,0.05,0.04] that was used in the example “

∏=
=

m

i
iMPR

1
]][[

]][[log
1 2 iMPm

i∑ =
−
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The L and R values with binary 
Representations
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Obtaining the value V

“As each symbol is coded, R gets smaller, and L and L + R 
move closer together. By the time the 10 symbols of the 
example message M have been fully coded, the quantities L 
and L + R agree to four decimal digits, and to thirteen binary 
digits. This arrangement is shown in the last line of Table 5.1. 
Any quantity V that lies between L and L + R must have 
exactly the same prefix, so thirteen bits of the compressed 
representation of the message are immediately known. 
Moreover, three more bits must be added to V before a 
number is achieved that, irrespective of any further bits that 
follow in the coded bits tream, is always between L and L + 
R: 

L + R :   0.0111 1000 00101 101010011  
V :    0.0111 1000 00101 100
L :    0.0111 1000 00101 010111010
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Information content of the range

High probability events do not decrease the interval 
Range very much, but low probability events result in a 
much smaller next interval requiring large number of 
digits. 

A large interval needs only a few digits. The number of 
digits required is –log(size of interval).

The size of the final interval is the product of the 
probabilities of the symbols encoded. Thus a symbol s 
with probability p(s) contributes –log p(s) bits to the
output which is the symbol’s self-information. 
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Information content
“At the conclusion of the processing R has the value 3.67 x 10-5, the product 
of the probabilities of the symbols in the message. The minimum number of 
bits required to separate R and L + R is thus given by -log2 R = 14.74 = 15, 
one less than the number of bits calculated above for V. A minimum-
redundancy code for the same set of probabilities would have codeword 
lengths of [1,3,3,3,4,4] for a message length of 17 bits. The one bit difference 
between the arithmetic code and the minimum-redundancy code might 
seem a relatively a small amount to get excited about, but when the 
message is long, or when one symbol has a very high probability, an 
arithmetic code can be much more compact than a minimum-redundancy 
code.
As an extreme situation, consider the case when n = 2, P = [0.999,0.001], and 
a message containing 999 "1 "s and one "2" is to be coded. At the end of the 
message R = 3.7 x 10-4, and V will contain just

-log2 3.7 x 10-41 = 12 or  -log2 3.7 x 10-41 + 1 = 13 bits,

far fewer than the 1,000 bits necessary with a minimum-redundancy code. 
On average, each symbol In this hypothetical message is coded in just 0.013 
bits! “
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Arithmetic Coding Advantages

“There are workarounds to prefix codes that give 
improved compression effectiveness, such as 
grouping symbols together into blocks over a larger 
alphabet, in which individual probabilities are smaller 
and the redundancy reduced; or extracting runs of "1 " 
symbols and then using a Golomb code; or using the 
interpolative code. But they cannot compare with the 
sheer simplicity and elegance of arithmetic coding. As 
a further point in its favor, arithmetic coding is 
relatively unaffected by the extra demands that arise 
when the probability estimates are adjusted 
adaptively. “
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Efficiency of the Ideal Arithmetic 
Coding

The average length per symbol using the 
arithmetic coding is  
H(X)<=lA<=H(X)+2/m, 

where m is the length of the message. 
Proved in the text book (Sayood, page 91). 

So, it is guaranteed that the encoding 
rate is close to the entropy, given a long 
enough message.
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Compare Huffman Coding and 
Arithmetic Coding

Huffman coding: Creates binary (Huffman) 
tree such that path lengths correspond to 
symbol probabilities. Uses path labels as 
encodings.
Arithmetic coding: Combine probabilities of 
subsequent symbols into a single fixed-point  
high precision number. Encode that number in 
binary. Variable-to-fixed length encoding.
Arithmetic coding is slower than Huffman 
coding.
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Compare Huffman Coding and 
Arithmetic Coding (continued)

Arithmetic coding efficiency: 
H(X)<=lA<=H(X)+2/m
m is the length of the message

Huffman coding efficiency: 
H(S)<= lH <= H(S) + 1/m
m is size of the block

Is Huffman coding more efficient than 
arithmetic coding?
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Compare Huffman Coding and 
Arithmetic Coding (continued)

It seems that Huffman coding is more efficient 
than the arithmetic coding. 

However, in this case, the size of the codebook 
will be exponentially big, making Huffman 
encoding not practical.

If the probabilities of the symbols are powers 
of two, Huffman coding can achieve the 
entropy bound. In this case, we cannot do any 
better with arithmetic coding, no matter how 
long a sequence we pick. 
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Compare Huffman Coding and 
Arithmetic Coding (continued)

Also, Average code length for Huffman coding 
lH < H(S) + pmax +0.086

pmax is the probability of the most frequently 
occurring symbol. 
If the alphabet size is relatively large and the 
probabilities are not too skewed, pmax will be 
generally small. In this case, the Huffman coding 
is better than the arithmetic coding in favor of the 
speed. 
However, if the alphabet size is small, and the 
probabilities are highly unbalanced, arithmetic 
coding is generally worth the added complexity.
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Compare Huffman Coding and 
Arithmetic Coding (continued)

Arithmetic coding can handle adaptive
coding without much increase in 
algorithm complexity. It calculates the 
probabilities on the fly and less primary 
memory is required for adaptation. 
Canonical Huffman is also fast but use 
only static or semi-static models.
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Compare Huffman Coding and 
Arithmetic Coding (continued)

It is not possible to start decoding in the 
middle of a compressed string which is 
possible in Huffman by indexing “starting 
points”. 
So, from random access point of view 
and from the point of view of 
compressed domain pattern matching, 
arithmetic coding is not suitable.
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Compare Huffman Coding and 
Arithmetic Coding (continued)

For text using static model, Huffman is 
almost as good as Arithmetic. 
Arithmetic is better suited for image and 
video compression.
Once again, Huffman is faster than 
Arithmetic.
Moffat’s implementation (1998) is slightly
better than Witten’s (1987).
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Ideal Arithmetic Coding 
---- Remarks 

Theoretically, therefore, arithmetic code can achieve 
compression identical to the entropy bound. But, finite 
precision of computer limits the maximum 
compression achievable. 

Note, the algorithm does not output anything until 
encoding is completed. 

In practice, it is possible to output most significant 
digits sequentially during the execution while at the 
same time utilize the finite precision of the machine 
effectively.
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Binary Implementation 

We need an arbitrary precision floating point arithmetic 
machine to implement the ideal schemes. In practice, 
we only have finite precision machines.
Decoding cannot start until the data value V is  
communicated to the decoder.

Both problems will be fixed in the binary implementation. 
As it turns out, arithmetic coding is best accomplished 
using standard 32 bit or 64 bit integer arithmetic. No 
floating point arithmetic is required, nor would it help to use 
it. 
What is used instead is a an incremental transmission
scheme, where an integer is formed with new bits in at the 
least significant end and shift them out from the most 
significant end, forming a single number that can be as 
many bits as  the computer's storage will permit.
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Ideal Arithmetic Coding 
---- Underflow 

During the encoding, every time we read the next
symbol, we scale the [L, L+R) to the new (smaller)
value according to the probability of the symbol.
Suppose RANGE is very small, such that different
symbols will be mapped to the same interval [L, L+R).
In this case, it is impossible for the decoder to recover
the symbol correctly.
Instead of decreasing RANGE, we can expand the
interval [L, L+R).
In the seminal implementation of arithmetic encoding,
it is enforced that RANGE is always no less than 0.25
(Witten et al, 1987).
The material here is based on Witten’s implementation.
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Binary Arithmetic Coding 
---- Scaling 

Why do scaling?
Cope with the limited-precision of integer 
operations.

When?
Whenever R<0.25

How?
Shift the common prefix of {L, L+R} left
In each shifting we only process one bit.
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The Common Prefix of {L, L+R}

Use binary representation. 
Some facts:

All the values in interval [0, 0.01) has common 
prefix: 0.00
All the values in interval [0.01, 0.10) has common 
prefix: 0.01
All the values in interval [0.10, 0.11) has common 
prefix: 0.10
All the values in interval [0.11, 1.00) has common 
prefix: 0.11
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Shifting one bit left

If [L, L+R) is in [0.00, 0.10), 
we have the common prefix 0.0
Shift a 0 left
E1 mapping

If [L, L+R) is in [0.10, 1.00), 
we have the common prefix 0.1
Shift a 1 left
E2 mapping

If [L, L+R) straddles point 0.10
we may not have the common prefix
E3 mapping
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Straddling Midpoint 0.10

If [L, L+R) straddles point 0.10
we may not have the common prefix

However, any value bigger than 0.10 and 
close to 0.10 has form 0.1{0}n, where 
parameter n gives the precision.
Similarly, any value smaller than 0.10 
and close to 0.10 has form 0.0{1}n, 
where parameter n gives the precision.
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Straddling Midpoint 0.10

After certain steps, E3 mapping will either be 
reduced to E1 mapping or E2 mapping, 
definitely.
If it is reduced to E1 mapping, L and L+R have 
the common prefix 0.0{1}n, the output is a 0 
followed by n 1s.
Similarly, If E3 mapping is reduced to E2 
mapping, L and L+R have the common prefix 
0.1{0}n, the output is a 1 followed by n 0s.
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Binary Arithmetic Coding 
---- E1 Mapping 

When the interval [L, L+R) lies
in the lower half [0.0, 0.5), we
can expand this lower half to
make it occupy the full interval
[0.0, 1.0)
And adjust

LOW = 2 * LOW
RANGE = 2 * RANGE.
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Binary Arithmetic Coding 
---- E2 Mapping 

When the interval [L, L+R) lies
in the upper half, we can
expand this upper half to make
it occupy the full interval [0.0,
1.0),
and adjust

LOW = 2 * (LOW – 0.5)
RANGE = 2 * RANGE.
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Binary Arithmetic Coding 
---- Basic Idea 

Shift the L and R left whenever L and L+R have the same
prefix.
When we shift out (and output) the prefix, the range should be
re-normalized by shifting the LOW and double the RANGE
which must straddle the midpoint.
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E3 Mapping

When the interval [L, L+R) straddles the middle point 
0.5, we cannot decide which bit (0, or 1) should be 
output only based on the current information. “The 
polarity of the immediately next output bit cannot be 
known, as it depends upon future symbols that have 
not yet been coded. What is known is that the bit after 
that immediately next bit will be of opposite polarity to 
the next bit, because all binary numbers in the range 
(0.25, 0.75) start either with [01] or [10]. Hence, in this 
case, the renormalization can still take place, provided 
a note is made using the variable bits_outstanding to 
output an additional opposite bit the next time a bit of 
unambiguous polarity is produced. In this case, L is 
translated by 0.25 before L and R are doubled. So, we 
adjust LOW = 2 * (LOW – 0.25) and RANGE = 2 * 
RANGE.”
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For example, if the next bit turns out to be zero (i.e., the 
subinterval [LOW, LOW+RANGE) lies in [0.0, 0.5) --- [0.25, 
0.5), more specifically --- and [0, 0.5) is expanded to [0.0, 1)), 
the bit after that will be one, since the subinterval has to be 
above the midpoint of the expanded interval. Conversely, if 
the next bit happens to be one, the one after that will be zero. 
Therefore the interval can safely be expanded right now, if 
only we remember that, whatever bit actually comes next, its 
opposite must be transmitted afterwards as well. Variable 
bits_outstanding is used to denote that the bit that is output 
next must be followed by an opposite bit.
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Binary Arithmetic Coding 
---- E3 Mapping 

When the interval [L, L+R) straddles
the middle point 0.5, L is translated by
0.25 before L and R are doubled.
So, we adjust

LOW = 2 * (LOW – 0.25)
RANGE = 2 * RANGE.

But, what to output?
For example,

Output 0[1]n, if in interval [0.25, 0.50)
Output 1[0]n, if in interval [0.5, 0.75)
But, the new scaled interval may
straddle 0.5 again?
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E3 Mapping, new scaled interval straddles 0.5 
again

One bit is output for each scaling
But what if, after this operation, it is still true that the interval [L, L+R) straddles the 
middle point 0.5 again? Suppose the current subinterval has been expanded a total 
of three times. Suppose the next bit turns out to be zero, which means it lies in [0.0, 
0.5). Then the next three bits will be ones, since the arrow is not only in the top half 
of the bottom half of the original range --- [0.25, 0.5), with binary encoding starting 
with 01, more specifically ---, but in the top quarter--- [0.375, 0.5), with binary 
encoding starting with 011, more specifically ---, and moreover the top eighth---
[0.4375, 0.5), with binary encoding starting with 0111, more specifically ---, of that 
half-this is why the expansion can occur three times. Similarly, as Figure (b) shows, 
if the next bit turns out to be a one, it will be followed by three zeros. Consequently, 
we need only count the number of expansions and follow the next bit by that number 
of opposites.
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E3 Mapping, new scaled interval straddles 
0.5 again

Suppose the current subinterval has been expanded a total of three
times
Similarly, if the next bit turns out to be a one, it will be followed by
three zeros. Consequently, we need only count the number of
expansions and follow the next bit by that number of opposites.
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Implementation

Both L and R are taken to be integers of some fixed number of bits b.
Typical values of b are 32 or 64  and 0<=L,R<2b. The actual values are
assumed to be fractions normalized by 2b so that they lie in the range 0
and 1.The next slide shows the integer values and the fractions. The 
algorithm maintains a loop whose loop invariant is R>2b-2 which 
corresponds to fraction 0.25 in scaled terms.
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Binary Arithmetic Coding 
----Pseudo Code

Both L and R are taken to be integers of some fixed number of bits 
b.Typical values of b are 32 or 64  and 0<=L,R<2b. The actual values are 
assumed to be fractions normalized by 2b so that they lie in the range 0and 
1.The next slide shows the integer values and the fractions. The algorithm 
maintains a loop whose loop invariant is R>2b-2 which corresponds to fraction 
0.25 in scaled terms. The corresponding values for arithmetic coding, real-
number interpretation and scaled integer interpretations.

.



74

Encoding One Symbol

The algorithm given in next page encodes one symbol s. It passes three 
parameters to the program l, h and t which define the position of the symbol in 
the probability range. As a pre-processing step, the probabilities are computed 
by pre-scanning the message M and accumulating the frequency count of 
each symbol ( the un-normalized self-frequencies  in M of the jth symbol P[j], 
for all j). More formally,

For example, given the message M = [a, b, a, a, a, e, a, a, a, a] (m=|M|=10) 
on alphabet (a,b,c,d,e,f) with size n = 6. We collect the frequency distribution P 
= [8, 1, 0, 0, 1, 0], and PC = [0, 8, 9, 9, 9, 10, 10] (notice that PC[0] is not 
used). When encoding the first symbol ‘a’, we pass l=0, h=8 and t=10. When 
encoding the second symbol, we pass l=8, h=9 and t=10 and so on.
Note the algorithm also computes the variable value bits_outstanding which 
is used by the program in the following page to generate the actual bits.

∑ ∑
= =

==+==
1-s

1j

n

1j
mp[j]    tP[s],lh   P[j],l
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Binary Arithmetic Coding 
----Encoding One Symbol

//Normalization is done only if range falls below 0.25. Otherwise do nothing//

//Range is in lower half (0-0.5); output ‘0’//

// Range is in upper half; output ‘1’; Shift to lower half//

//Range straddles the midpoint; Shift by 0.25 //
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Binary Arithmetic Coding 
----E3, Output Outstanding Bits
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Encoding the Message

In order to encode a message, the encoding one symbol 
routine has to be called m times. Before that the encoder 
must have all  the necessary ‘prelude’ viz. symbol 
frequency count, alphabet size, the message size , the 
frequency distribution and cumulative frequency 
distribution . The code for all these tasks 
are rather straightforward.

The next two algorithms shown in succeeding pages does 
the reverse operations - decoding one symbol and 
decoding the entire message given the value V received by 
the decoder from the encoder. The concatenation of the 
bits generated by the routine bit_plus_follow(x) in the 
encoder is creating this value.
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Binary Arithmetic Coding 
----Encoding the Message
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Binary Arithmetic Coding 
----Decoding One Symbol

//The three components of the “if” statement are for three 
cases: range in lower, Upper halves or straddling the 
midpoint. The code maps the range and the value V  //
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Binary Arithmetic Coding 
----Decoding the Message

// Target gets the cumulative frequency of the symbol

// Finds the location of the symbol in in PC(s) domain //

//Update V //
// decoded output symbol is retrieved //
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Binary Arithmetic Coding 
----Example

Now, we go through one example step-by-step to illustrate how to 
encode and decode a message.
Given the message M = [a, b, a, a, a, e, a, a, a, a] (|M|=10) on alphabet , 
n = 6.
Suppose b = 8, that is, the size of the integer is 8.
Encode the message
First, we call ALGORITHM ARITHMETIC_ENCODE_SEQUENCE(M). 
We collect the frequency distribution P = [8, 1, 0, 0, 1, 0], and PC = [0, 8, 
9, 9, 9, 10, 10] (notice that PC[0] is not used).
Next, we need to encode and transmit |M| and n as the bit stream: [0000 
1010, 0000 0110]
Next, we encode and transmit PCs, as the bit stream: [0000 1001, 0000 
1010, 0000 1010, 0000 1010, 0000 1011, 0000 1011]
Next, we set L = 0, R = 128, bits_outstanding = 0
Next, we encode the message M.
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Example (cntd.)

i = 1, s = M[i] =a, l = 0, h = 8, t = 10. L = 0, R = 128. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 0, R = 102. 
Since R is not small enough (greater than 64), so no scaling 
adjust is necessary. 
i = 2, s = M[i] =b, l = 8, h = 9, t = 10. L = 0, R = 102. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 81, R = 10. 
Since R is small enough (less than 64), scaling is performed. First, 
the range lies in the lower part [0.0, 0.5), we output bit [0] to the 
output stream, shift L and R left by one bit, and have L = 162, R = 
20. Now the range lies in the upper part [0.5, 1.0), we output bit [1] 
to the output stream, clear the leftmost bit of L, and have L = 34, 
shift L and R left by one bit, and have L = 68, R = 40. We do 
another scaling, the range in the lower part [0.0, 0.5), we output 
bit [0] to the output stream, shift L and R left by one bit, and have 
L = 136, R = 80. 
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Example (cntd.)

i = 3, s = M[i] =a, l = 0, h = 8, t = 10. L = 136, R = 80. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 136, R = 64. 
Since R is small enough (less equal to 64), scaling is performed. 
First, the range lies in the upper part [0.5, 1.0), we output bit [1] to 
the output stream, clear the leftmost bit of L, and have L = 8, shift 
L and R left by one bit, and have L = 16, R = 128. i = 3, s = M[i] 
=a, l = 0, h = 8, t = 10. L = 136, R = 80. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 136, R = 64. 
Since R is small enough (less equal to 64), scaling is performed. 
First, the range lies in the upper part [0.5, 1.0), we output bit [1] to 
the output stream, clear the leftmost bit of L, and have L = 8, shift 
L and R left by one bit, and have L = 16, R = 128. 
i = 4, s = M[i] =a, l = 0, h = 8, t = 10. L = 16, R = 128. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 16, R = 102. 
i = 5, s = M[i] =a, l = 0, h = 8, t = 10. L = 16, R = 102. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 16, R = 81. 
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Example (cntd.)

i = 6, s = M[i] =e, l = 9, h = 10, t = 10. L = 16, R = 81. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 88, R = 9. Since R 
is small enough (less than 64), scaling is performed. First, the range lies 
in the lower part [0.0, 0.5), we output bit [0] to the output stream, shift L 
and R left by one bit, and have L = 176, R = 18. Now the range lies in the 
upper part [0.5, 1.0), we output bit [1] to the output stream, clear the 
leftmost bit of L, and have L = 48, shift L and R left by one bit, and have 
L = 96, R = 36. The polarity of the immediately next output bit cannot be 
known, as it depends upon future symbols that have not yet been coded. 
What is known is that the bit after that immediately next bit will be of 
opposite polarity to the next bit, because all binary numbers in the range 
(0.25, 0.75) start either with [01] or [10]. Hence, in this case, the 
renormalization can still take place, provided a note is made using the 
variable bits_outstanding to output an additional opposite bit the next 
time a bit of unambiguous polarity is produced. In this case, L is 
translated by 0.25 before L and R are doubled. So, bits_outstanding = 1, 
L = 32, L = 64, R = 72. 
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Example (cntd.)

i = 7, s = M[i] =a, l = 0, h = 8, t = 10. L = 64, R = 72. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 64, R = 57. 
Since R is small enough (less than 64), scaling is performed. First, 
the range lies in the lower part [0.0, 0.5), we output bit [0] to the 
output stream, - Because of the bits_outstanding, bit [1] is also 
output -shift L and R left by one bit, and have L = 128, R = 114. 
i = 8, s = M[i] =a, l = 0, h = 8, t = 10. L = 128, R = 114. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 128, R = 91. 
i = 9, s = M[i] =a, l = 0, h = 8, t = 10. L = 128, R = 91. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 128, R = 72. 
i = 10, s = M[i] =a, l = 0, h = 8, t = 10. L = 128, R = 72. We call 
ARITHMETIC_ENCODE_ONE_SYMBOL(l, h, t), L = 128, R = 57. 
Since R is small enough (less than 64), scaling is performed. First, 
the range lies in the upper part [0.5, 1.0), we output bit [1] to the 
output stream, clear the leftmost bit of L, and have L = 0, shift L 
and R left by one bit, and have L = 0, R = 114.
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Example (cntd.)

The last step, we need to encode and transmit L as one integer. We 
output bit stream [0000 0000].
We output the bit stream: 
|M| and n as the bit stream: [0000 1010, 0000 0110]
PCs, as the bit stream: [0000 1001, 0000 1010, 0000 1010, 0000 1010, 
0000 1011, 0000 1011]
i = 2, output [010]
i = 3, output [1]
i = 6, output [01]
i = 7, output [01]
i = 10, output [1]
transmit L, output bit stream [0000 0000].
So, the output bit stream is: 
[0000 1010, 0000 0110 0000 1001, 0000 1010, 0000 1010, 0000 1010, 
0000 1011, 0000 1011 010 1 01 01 1 0000 0000].
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Example (cntd.)

Decode the message
We have the bit stream [0000 1010, 0000 0110 0000 1001, 0000 
1010, 0000 1010, 0000 1010, 0000 1011, 0000 1011 010 1 01 01 
1 0000 0000].
First, receive and decode m and n, m = 0x 0000 1010 = 10, n = 
0x 0000 0110 = 6. 
Now, the bit stream is [0000 1001, 0000 1010, 0000 1010, 0000 
1010, 0000 1011, 0000 1011 010 1 01 01 1 0000 0000].
Next, receive and decode PCs, input stream is [0000 1001, 0000 
1010, 0000 1010, 0000 1010, 0000 1011, 0000 1011], restored 
PC = [0, 8, 9, 9, 9, 10, 10]
Now, the bit stream is [010 1 01 01 1 0000 0000].
Next, we set R = 128, L = 0, get bit stream [010 1 01 01], V = 85
Now, the bit stream is [1 0000 0000].
Next, we decode the message M.
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Example (cntd.)

i = 1, R = 128, L = 0, V = 85, target = (((V – L + 1) * m) – 1) / R = 6, s = 1, 
l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), 
L = L + R * l / t =0, R = R * h / t – R * l / t = 102. 
Recover M[1]= a.
i = 2, R = 102, L = 0, V = 85, target = (((V – L + 1) * m) – 1) / R = 8, s = 2, 
l = 8, h = 9, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), 
L = L + R * l / t =81, R = R * h / t – R * l / t = 10. Since R is small enough 
(less than 64), scaling is performed. First, the range lies in the lower part 
[0.0, 0.5), shift L and R left by one bit, and have L = 162, R = 20. Read 
one bit [1] from the stream, Now, the bit stream is [0000 0000]. V = 171. 
Now the range lies in the upper part [0.5, 1.0), we clear the leftmost bit of 
L and V, and have L = 34, V = 43, shift L and R left by one bit, and have 
L = 68, R = 40. Read one bit [0] from the stream, Now, the bit stream is 
[000 0000]. V = 86. We do another scaling, the range in the lower part 
[0.0, 0.5), shift L and R left by one bit, and have L = 136, R = 80. Read 
one bit [0] from the stream, Now, the bit stream is [00 0000]. V = 172.
Recover M[2]= b.
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Example (cntd.)

i = 3, R = 80, L = 136, V = 172, target = (((V – L + 1) * m) – 1) / R = 4, s = 
1, l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, 
t), L = L + R * l / t =136, R = R * h / t – R * l / t = 64. Since R is small 
enough (less equal to 64), scaling is performed. First, the range lies in 
the upper part [0.5, 1.0), we clear the leftmost bit of L and V, and have L 
= 8, V = 44, shift L and R left by one bit, and have L = 16, R = 128. Read 
one bit [0] from the stream, Now, the bit stream is [0 0000]. V = 88.
Recover M[3]= a.
i = 4, R = 128, L = 16, V = 88, target = (((V – L + 1) * m) – 1) / R = 5, s = 
1, l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, 
t), L = L + R * l / t =16, R = R * h / t – R * l / t = 102. 
Recover M[4]= a.
i = 5, R = 102, L = 16, V = 88, target = (((V – L + 1) * m) – 1) / R = 7, s = 
1, l = 0, h = 8, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, 
t), L = L + R * l / t =16, R = R * h / t – R * l / t = 81. 
Recover M[5]= a.
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Example (cntd.)

i = 6, R = 81, L = 16, V = 88, target = (((V – L + 1) * m) – 1) / R = 9, s = 5, 
l = 9, h = 10, t = 10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), 
L = L + R * l / t =88, R = R * h / t – R * l / t = 9. Since R is small enough 
(less equal to 64), scaling is performed. First, the range lies in the lower 
part [0.0, 0.5), shift L and R left by one bit, and have L = 176, R = 18. 
Read one bit [0] from the stream, Now, the bit stream is [0000]. V = 176. 
Since R is small enough (less than 64), scaling is performed. First, the 
range lies in the upper part [0.5, 1.0), we clear the leftmost bit of L and V, 
and have L = 48, V = 48, shift L and R left by one bit, and have L = 96, R 
= 32. Read one bit [0] from the stream, Now, the bit stream is [000]. V = 
96. Since R is small enough (less than 64), scaling is performed. In this 
case, the interval straddles 0.5. We adjust L and V, and have L = 32, V 
= 32, shift L and R left by one bit, and have L = 64, R = 64. Read one bit 
[0] from the stream, Now, the bit stream is [00]. V = 64. Since R is small 
enough (equal to 64), scaling is performed. First, the range lies in the 
lower part [0.0, 0.5), shift L and R left by one bit, and have L = 128, R = 
128. Read one bit [0] from the stream, Now, the bit stream is [0]. V = 128
Recover M[6]= e.
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Example (cntd.)

i = 7, R = 128, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t = 
10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t –
R * l / t = 102. 
Recover M[7]= a.
i = 8, R = 102, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t = 
10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t –
R * l / t = 81. 
Recover M[8]= a.
i = 9, R = 81, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t = 10, 
call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t – R * l 
/ t = 64. 
Recover M[9]= a.
i = 10, R = 64, L = 128, V = 128, target = (((V – L + 1) * m) – 1) / R = 0, s = 1, l = 0, h = 8, t = 
10, call ARITHMETIC_DECODE_ONE_SYMBOL(l, h, t), L = L + R * l / t =128, R = R * h / t –
R * l / t = 51. 
Recover M[10]= a.
So, we have reconstructed the message M= abaaaeaaaa
One limitation of this arithmetic coding scheme presented here is that it is static. We must 
collect the frequency information before the coding. The algorithm cannot adjust the frequency 
information on the fly. 
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Application Arithmetic Coding 

Image compression
Video compression
Lossless/lossy
Why?

The size of the alphabet  is small, and the 
probabilities are highly unbalanced.
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