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Basic computational unit of Neural Network  

Inputs (x1, x2) : Data you want to model. 

x1 = 2 

x2 = 5Weights (w1, w2) :  Model Parameters

w1 = .5 

w2 = -0.3 

Bias (b) : Model parameter to account for Noise

b = .1
Computation step 1 - Weighted Summation to 
perform Linear modelling 

z  = w1 * x1 + w2 * x2 + b or 

z = w1*x1 + w2*x2 + b
z = .5*2 + 5*(-0.3) + .1
z = -0.4

a = σ(z)

a = 0.598

Output - ŷ

a = ŷ

General Structure
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Computation step 2 - Adding Non Linearity  

a = σ(z), where sigma is 

The Vertical Segment  is the reminder to do the Non-linear step. 



Activation Function
Adds Non-Linearity to the Neural Network to fit Non-Linear patterns

g(z) = max(0,z) g(z) = max(0.01z,z)

Sigmoid Tanh

Each Activation Function has pros and cons (http://cs231n.github.io/neural-networks-1/#intro)

http://cs231n.github.io/neural-networks-1/#intro
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How to train a neural network?
Example: design a binary classifier which outputs 1 if the 
absolute difference in the inputs is an odd number.

Sample data:

abs(2 - 5) = 3, output = 1

abs(5 - 3) = 2, output = 0

We start with random weights.

Note: a1,a2,.. denote single neuron’s output,

whereas, ŷ/out denotes the final network’s output.
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Forward Pass
Bias: b1 = 0.1, b2 = 0.2

Weights = Random generated

For each neuron, we calculate:

a1 =  

a1 = σ(0.2*2+0.8*9+0.1)

a1 = σ(7.7)

a1 = 0.99 [putting 7.7 in the s igmoid function                                      ] 
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Forward Pass
Bias: b1 = 0.1, b2 = 0.2

Weights = Random generated

For each neuron, we calculate:

a =  

a2 = σ(0.6*2+0.3*9+0.1) = σ(4) = 0.9820

a3 = σ(0.1*2+0.7*9+0.1) = σ(6.6) =0.9986

2

9

0.9995

0.9820

0.9986



Forward Pass
Bias: b1 = 0.1, b2 = 0.2

Weights = Random generated

For each neuron, we calculate:

a =  

a2 = σ(0.6*2+0.3*9+0.1) = σ(4) = 0.9820

a3 = σ(0.1*2+0.7*9+0.1) = σ(6.6) =0.9986

ŷ = σ(0.9995*0.4 + 0.9820*0.5 + 0.9986*0.9 + 0.2) = σ(1.9895) = 0.8796 
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Calculating the error
The true label for output = 1

We have two input numbers and two classes:

Odd (1) and Even (0)

we need to alter weights to make our inputs(e.g., 2 
and 9) equal to the corresponding output(i.e., 1). 

This is done through a method called 
backpropagation.

Works by using a loss function to calculate how far 
the network was  from the target output.
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Loss Function 

● Calculates error between the actual output and the predicted output.
● The error is back-propagated to update the weights.
● Ideally, if model (the weights and bias) is perfect then the error should be 

zero. 
● We choose loss function based on the application. 
● For example

○ Binary Classification - Cross Entropy (or log loss)
○ Multiclass Classification - Multi-class Cross Entropy  
○ Regression - Mean Square Error 



Gradient Descent (GD) 
● A gradient measures how much the output of a function changes if you change the inputs a little bit.
● Commonly used optimization algorithm while training a machine learning model. 
● It tweaks model parameters iteratively to minimize a given function to its local minimum.
● As shown, at each step GD tries to converge to minimum.

Source: https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0

Steps in GD: 
● Perform forward pass. 
● Calculate error. 
● Back propagate error as gradients. 
● These gradients at each step update weights using the 

equation (Wk+1 = Wk - learning_rate*(gradient))
● Perform above steps iteratively until error reaches minimal 

value. 



Learning Rate
● A major component of Gradient descent is learning rate. 
● Learning rate decides how big the steps are that the GD takes in the direction of the local-minimum. 
● In order for Gradient Descent to reach the local minimum, we have to set the learning rate to an 

appropriate value, which is neither too low nor too high.

● If the steps it takes are too big, it maybe will not 
reach the local minimum because it just bounces 
back and forth between the convex function of 
gradient descent

● If you set the learning rate to a very small value, 
gradient descent will eventually reach the local 
minimum but it might take too much time as you 
can see (may happen)  on the right side of the 
figure.

Source: https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0



Back to our example: Calculating the error
We can now calculate the error for each output neuron using the squared error 
function and sum them to get the total error:

In our case, we have single output neuron. The target output = 1, but the neural 
network output = 0.8796

Therefore, its error is E = (1/2)(1- 0.8796)2 = 0.00724808

backpropagation: to update each of the weights in the network so that they cause 
the actual output to be closer to the target output, thereby minimizing the error for 
each output neuron and the network as a whole.

http://en.wikipedia.org/wiki/Backpropagation#Derivation


The Backward Pass
Remember the update step in the Gradient 
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● To calculate gradients :

○ We want to know how much a change in weights  affects
the error.
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The Backward Pass
Remember the update step in the Gradient 
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● To calculate gradients :

○ We want to know how much a change in weights  affects  
the error.

○ In this  example, we will jus t s how backpropagation for 
the highlighted s ubgraph.

○ You can complete res t of the calculation as  an exercis e.
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The Backward Pass
Remember the update step in the Gradient 
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1

● Us ing chain rule:   ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7
● ∂E/ ∂out = ∂[1/ 2(target - out)2]/∂out

∂E/ ∂out = ½ * 2(target - out)2-1(-1)+0
= -(target - out) = - (1 - 0.8796) = - 0.1204

z    aw7 out

Chain rule illustration
z = a1*w7 + a2*w8 + a3*w9 + b2 * 1
z1 = w1*x1 + w4* x2 + b1*1
(refer to s lide 18 for full example)

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

x1, x2 are inputs.

w7w1

0.40.2



The Backward Pass
Remember the update step in the Gradient 
descent algorithm.

● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1

● Us ing chain rule:   ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7

● Out = Sigmoid function =

● ∂σ/ ∂z = σ(1-σ)
● [For complete derivation, s ee this  link: 

https :/ / beckernick.github.io/ s igmoid-derivative-neural-network/ ]
● ∂out/ ∂z = ∂σ/ ∂z = 0.8796 (1 - 0.8796) = 0.1059

z    aw7 out

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1
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The Backward Pass
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descent algorithm.
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● ∂z/ ∂w7 = ∂(a1*w7 + a2*w8 + a3*w9 + b2 * 1)/ ∂w7

= a1 + 0 + 0
= a1 = 0.9995
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The Backward Pass
● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule:   ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7

Putting it a ll together:

● ∂E/ ∂w7 = -0.1204 * 0.1059 * 0.9995
= -0.0127
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The Backward Pass
● Wk+1 = Wk - learning_rate*(gradient)
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule:   ∂E/ ∂w7 = ∂E/ ∂out * ∂out/ ∂z * ∂z/ ∂w7

Putting it a ll together:

● ∂E/ ∂w7 = -0.1204 * 0.1059 * 0.9995
= -0.0127

To decrease the error, we then subtract this value from the current weight.
● w7 = w7 - learning_rate * (-0.0127)

● w7 = 0.4 - 0.1 * (-0.0127) = 0.40127 (assume learning_rate = 0.1)

z    aw7 out

Chain rule illustration
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∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a
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The Backward Pass
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule for hidden layer:   ∂E/ ∂w1 = ∂E/ ∂a1 * 

∂a1/ ∂z1 * ∂z1/ ∂w1

● ∂E/ ∂a1 = ∂E/ ∂z * ∂z/ ∂a1

Us ing previous ly calculated values  we have
∂E/ ∂z =  ∂E/ ∂out * ∂out/ ∂z = -0.1204 * 0.1059 = −0.01275

● ∂z/ ∂a1 = ∂(a1*w7 + a2*w8 + a3*w9 + b2 * 1)/ ∂a1 = 
w7+0+0+0 = w7 = 0.4

● ∂E/ ∂a1 = ∂E/ ∂z * ∂z/ ∂a1 = −0.01275*0.4 = −0.0051

z1   w1 a1

Chain rule illustration

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

a1

w7w1
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The Backward Pass
● PLEASE NOTE: Using chain rule for hidden layer:

w7w12 0.99 0.87

∂E/∂w7∂E/ ∂w1

x1 z1 a1 z a
w7w1

0.40.2∂E/ ∂w1 = ∂E/∂a1 * ∂a1/∂z1 * ∂z1/∂w1

∂E/ ∂w1 = ∂E/∂out * ∂out/∂z * ∂z/∂a1 * ∂a1/∂z1 * ∂z1/∂w1

simply expands to

Compare this to below

∂E/ ∂w7 = ∂E/∂out * ∂out/∂z * ∂z/∂w7

z1   w1Chain rule illustration for ∂E/∂w1: a1 z    aw7 outx1 ETotal



The Backward Pass
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule for hidden layer:   ∂E/ ∂w1 = ∂E/ ∂a1 * 

∂a1/ ∂z1 * ∂z1/ ∂w1

● ∂a1/ ∂z1 = σ(1-σ) [a1 is  a ls o an output of the s igmoid 
function]

= 0.9995 (1-0.9995) = 0.00049975

● ∂z1/ ∂w1 = ∂(w1*x1 + w4* x2 + b1*1)/ ∂w1
= x1 + 0 + 0 = 2

Putting it a ll together: ∂E/ ∂w1 = ∂E/ ∂a1 * ∂a1/ ∂z1 * ∂z1/ ∂w1
= −0.0051 * 

0.00049975 * 2 =   - 5.097E-6

z1   w1 a1

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

a1

Chain rule illustration

w7w1
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The Backward Pass
● For backward pass, we need to calculate derivatives 

(gradient) i.e. ∂E/∂w7 and ∂E/∂w1
● Us ing chain rule for hidden layer:   ∂E/ ∂w1 = ∂E/ ∂a1 * 

∂a1/ ∂z1 * ∂z1/ ∂w1

● ∂a1/ ∂z1 = σ(1-σ) [a1 is  a ls o an output of the s igmoid 
function]

= 0.9995 (1-0.9995) = 0.00049975

● ∂z1/ ∂w1 = ∂(w1*x1 + w4* x2 + b1*1)/ ∂w1
= x1 + 0 + 0 = 2

Putting it a ll together: ∂E/ ∂w1 = ∂E/ ∂a1 * ∂a1/ ∂z1 * ∂z1/ ∂w1

= −0.0051 * 0.00049975 * 2   =   - 5.097E-6

Updating w1 = w1 - learning_rate * gradient
w1 = 0.2 - 0.1*(-5.097E-6) = 0.20000051

z1   w1 a1

w7w12 0.99 0.87

∂E/ ∂w7∂E/ ∂w1

x1 z1 a1 z a

a1

Chain rule illustration

0.40.2
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After update, new weights would be

2 0.99 0.87
w7w1

0.20000051 0.40127

● Perform the forward pass and backward pass steps iteratively until the loss reaches 
minimal value.



Practice Calculations: 
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After one iteration, the updated weights for 
w2, w6, w8, and w9 are: 

● w8 = 0.50125
● w9 = 0.90127325094
● w2 = 0.60002253753
● w6 = 0.70001443866

w1

w6

w2



Summary 
- The whole process of Forward propagation and backpropagation constitute a single iteration. 

- This process is iteratively repeated until loss value reaches a minimum value and weights become 

stable. 

- In practice, we don’t train the model on single example, rather we train it on many many different 

examples and the model weights are updated slowly towards a convergence point. 

- When we train the model on different examples, the model learns weights to produce the output 

close to the target output. 



Layers organization in a Neural Network

Source: http://cs231n.github.io/neural-networks-1/#intro
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