
Back to the futureBack to the future
Pointcuts as Pointcuts as
Predicates over Predicates over
TracesTraces
Karl Klose, Klaus Ostermann
Darmstadt University of
Technology, Germany

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 22

Introducing GAMMA

 Object-oriented core language
Similar to Featherweight Java
Supports storage, assignments, etc.

 Aspects
Prolog-based pointcut language
Use unification to perform pointcut matching and

variable binding

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 33

Aspects in GAMMA
class main extds Object {
 bool var;
 before set(Now,_,Address,_,_) {
 print(Address)
 }
 bool main(bool x){
 this.var := true
 }
}

 Pointcuts are Prolog
queries
First argument of

predicates is always a
timestamp

Now denotes the time
of activation

Variables can be used
in advice

_ is an anonymous
variable

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 44

GAMMA's pointcut language

 The whole trace of a program execution is
represented as a set of Prolog facts
Facts represent atomic interpreter steps

 Reading/writing fields
 Calling a method
 Creating objects, etc.

Each fact has a unique timestamp
 Pointcuts are predicates over the execution trace

Can refer to any point in the complete execution

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 55

Representing traces
newObject(6, file)
a new instance of class file has been created

set(7, main, iota1, input, iota3)
field input of main instance at iota1 is set to value iota3

get(8, main, iota1, memory, iota2)
field memory of main instance at iota1 is read, value was iota2

calls(9, mem, iota2, alloc, true)
method alloc of mem instance at iota2 called with parameter true

endCall(10, 9, true)
method-call at timestamp 9 has ended with result true

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 66

Expressing temporal relations
before set(Now,_,_,varx,_),
 set(T,_,_,vary,_),
 isbefore(T,Now)
{...}

% T2 is in the control flow of
the call at T1

cflow(T1, T2) :-
 calls(T1,_,_,_,_),
 endcall(T3,T1,_),
 isbefore(T1,T2),
 isbefore(T2,T3).

 Timestamps can be
related by the predicate
isbefore

 Predicates like cflow
can be fomulated as
rules

 Can describe
sequences
e.g. to implement

protocols

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 77

Example: Display update
before
calls(T1,main,_,operation,_),
cflow(T1,T2),
calls(T2,point,_,setpos),
endCall(Now, T1, _)
{
 this.display.update(true)
}

 Update display if points
have been moved in
operation
Update after

completing operation
And do it only once

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

call to setposcall to operation execute advice

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 88

Example: Authentication
before
calls(Now,server,_,execute,_),
cflow(Now,T),
calls (T,database,_,protected,_)
{
 this.db.authenticate(true)
}

 Method protected
needs authentication

 Authenticate
only if execute calls
protected

But before calling
execute

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
call to executeExecute advice call to protected

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 99

Paradox aspects
class main extds Object{

bool create;
before calls(Now,_,_,foo,_),
 newObject(T,a),
 isbefore(Now,T) {

this.create := false
}
bool foo(bool x){

if this.create
then (new a; true)
else false

}
bool main(bool x){

this.create := true;
this.foo()

}
}

 Analogy to grand-
mother paradoxon
Base program creates

an object of class a
 Enables aspect

The advice prevents
this creation
 Disables aspect

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1010

A model of advice application

 Look at the trace of a program as entity
Activation points of a trace are positions

(timestamps) where pointcuts match
 Which advice should be executed first?

First idea: Take the earliest one
But: it makes difference which one is taken!

 How to handle aspect interaction?
Execution of advice may „inactivate“ the pointcuts of

already executed advice

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1111

Properties of advice application

 TP: Set of possible traces for a program P

 t1 →P t2 means that t2 can be obtained from t1 by
 Inserting advice where pointcut matches
Removing advice whose pointcut does not match

 Observation
→P may be indeterministic

→P is not well-founded and not confluent

There is no canonical normal form

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1212

Using domain theory

 Define operator FP from →P by chosing a selection
strategy

 Kleene: If (TP,Í) is a cpo and FP is scott-
continuous then supnℕ<FP

n(⊥)> is the least fixed
point of FP

 Problems
Find an partial order Í making (TP,Í) a cpo

Find restrictions for programs such that FP is scott-
continuous

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1313

A sample cpo

 Let n be the length of trace s, a (b) the earliest
activation point in s (t)...

 ...then define partial order Í as the transitive and
reflexive closure of

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1414

Consequences

 Hard to check if FP is scott-continuous
Need to look at advice interaction
Need sophisticated static analysis techniques

 Model has very limiting restrictions
Base program must terminate
 Infinite computations can not be handled

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1515

A prototype implementation

 FP is defined by always picking out the first
activation point

 After each run, all pointcuts are passed to the
Prolog database to determine the activation points

 The interpreter is reset to the timestamp of the first
activation point and advice is executed

Back to the Future – Pointcuts as Predicates over Traces Back to the Future – Pointcuts as Predicates over Traces 1616

Conclusions

 GAMMAs allows to easily describe temporal
relations between joinpoints
e.g. in protocols
Can emulate known temporal constructs, like cflow,

as rules
Pointcuts can refer to past and future of the

computation
 Implementation is difficult

Maybe interesting subsets can be implemented
efficiently

