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ABSTRACT

Top end mobile phones include a number of specialized (e.g.,
accelerometer, compass, GPS) and general purpose sensors
(e.g., microphone, camera) that enable new people-centric
sensing applications. Perhaps the most ubiquitous and un-
exploited sensor on mobile phones is the microphone – a
powerful sensor that is capable of making sophisticated in-
ferences about human activity, location, and social events
from sound. In this paper, we exploit this untapped sensor
not in the context of human communications but as an en-
abler of new sensing applications. We propose SoundSense,
a scalable framework for modeling sound events on mobile
phones. SoundSense is implemented on the Apple iPhone
and represents the first general purpose sound sensing sys-
tem specifically designed to work on resource limited phones.
The architecture and algorithms are designed for scalability
and SoundSense uses a combination of supervised and unsu-
pervised learning techniques to classify both general sound
types (e.g., music, voice) and discover novel sound events
specific to individual users. The system runs solely on the
mobile phone with no back-end interactions. Through im-
plementation and evaluation of two proof of concept people-
centric sensing applications, we demostrate that SoundSense
is capable of recognizing meaningful sound events that occur
in users’ everyday lives.
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1. INTRODUCTION
We are on the brink of a new era in the development of

the ubiquitous mobile phone. Many top end mobile phones
[28] [4] [17] now come with GPS, WiFi and cellular localiza-
tion and embedded sensors (e.g., digital compass, proxim-
ity sensors, and accelerometers). These mobile devices are
leading to the emergence of new applications in health care,
gaming, social networks, and recreational sports - enabling
people-centric sensing applications [11] [1] [10]. Perhaps one
of the most overlooked “sensors”, available not only on top
end phones but also on every mobile phone, is the micro-
phone. Along with the camera, the microphone is one of the
two most ubiquitous mobile sensor. This paper focuses on
turning the microphone on mobile phones into a personal-
ized sound event sensor capable of supporting a myriad of
people-centric sensing applications.

Sound captured by a mobile phone’s microphone is a rich
source of information that can be used to make accurate
inferences about the person carrying the phone, their envi-
ronments and social events. This single modality is capable
of supporting a diverse set of inferences, such as: conver-
sation detection, activity recognition, location classification
[30] [14], discovery of social network structure [13], and even
classification of dietary intake of a person [2]. Moreover,
the microphone is robust to a range of phone contexts (e.g.,
body position of the device). Many modalities are rendered
useless by particular phone context (e.g., the camera when
the phone is in a pocket or the accelerometer when the phone
is placed on a table or in a bag). The information available
from an audio stream degrades more gracefully (e.g., sound
heard through a muffled microphone in the pocket) and is
still useful albeit with a diminished capacity. Despite the po-
tential of sound as a robust source of information for sensing
applications, the microphone and inference based on sound
has received little attention in the literature in comparison
to other sensors such as the GPS and accelerometers.

In this paper, we propose SoundSense, a scalable sound
sensing framework for mobile phones. SoundSense repre-
sents the first general purpose sound event classification sys-
tem designed specifically to address a number of system de-
sign challenges presented by mobile phones: (i) scaling well
to large number of people, each of whom may have different
everyday sound environments, (ii) operating robustly un-
der various phone context conditions, and finally (iii) allow-
ing the phone to function unhindered, where the algorithms
must be simple enough to run on resource constrained mobile
phones yet be effective and make an attempt to safeguard
the privacy of users.



SoundSense leverages the existing body of work on acous-
tic signal processing and classification (e.g., [24] [34] [21]
[14]) and takes a systems design approach to realizing the
first such system for a mobile phone. A key design goal
of SoundSense is the scalability of classification to a large
population. Specifically, the contributions of this paper are
as follows: (i) we propose an architecture and a set of al-
gorithms for multistage, hierarchal classification of sound
events on mobile phones; (ii) we address the scaling prob-
lem through the introduction of an adaptive unsupervised
learning algorithm to classify significant sound events in in-
dividual users’ environments; and finally (iii) we implement
the SoundSense system architecture and algorithms on the
Apple iPhone, profile resource consumption in terms of CPU
and Memory usage, and evaluate the performance of the al-
gorithms using real world audio data sets and through the
implementation of two proof of concept people-centric sens-
ing applications.

The paper is structured as follows. Section 2 discusses
the design considerations of implementing SoundSense on re-
source limited mobile phones. Section 3 presents the Sound-
Sense architecture based on a multi-staged, hierarchal clas-
sification model. This is followed in Section 4 by a de-
tailed presentation of the SoundSense classification algo-
rithms. Section 5 discusses the implementation of Sound-
Sense on the Apple iPhone and Section 6 presents a detailed
evaluation of the system and two proof-of-concept applica-
tions. Section 8 presents some concluding remarks.

2. DESIGN CONSIDERATIONS
In this section, we discuss the technical considerations

that underpin the design of SoundSense while the detailed
design is presented in Section 3.

2.1 Scaling Sound Classification
People live in very different environments, containing a

wide variety of everyday sounds. Sounds heard by individ-
uals on a daily basis are largely influenced by lifestyle and
environment. For example, sounds encountered by a bus
driver in Auckland would likely be different to that of a
stock broker in Beijing. The idea of collecting large anno-
tated sound samples and training generic classifiers for all
the possible sounds in the world is simply not feasible nor,
we argue, is necessary. It is impossible to acquire such a
large data set, particularly when individual users are only
exposed to a small subset of such a data set in their every-
day lives. We describe this challenge as the audio sensing
scalability problem. Prior work in this area typically avoids
this hard problem by restricting the operating domain to a
narrow range of possible acoustic settings. The SoundSense
system is designed to specifically attempt to make progress
toward addressing this important scalability problem. In
essence, SoundSense uses different strategies when dealing
with different sounds. Some sounds are general in people’s
life, such as voice and music, which are also well studied
and can be modeled with generic models [14] [21] [24] [34].
For other sounds, which are more specific to an individual,
unsupervised learning techniques are used to discover and
learn new sound types as the system is exposed to more
sound events. Through interaction with end-users, Sound-
Sense labels new sound signatures in a meaningful manner.
As a result, SoundSense is able to customize the unique set
of sounds a user is exposed to. SoundSense adopts a hierar-

chical classification architecture. In the first stage, sound is
classified as one of the three coarse sound categories: voice,
music, ambient sound (i.e., everything else). In the second
stage, further analysis is applied according to the category
of the sound. In the case of voice and music, finer discrimi-
nation (e.g., gender classification in the case of speech) can
be done to meet specific application needs. The ambient
sound is also learned over time by the unsupervised adaptive
learning and classification process in the second stage. Im-
portantly, SoundSense does not attempt to learn all sounds
encountered, rather, it identifies those sounds considered sig-

nificant sounds in the lives of end-users; that is, in terms
of frequency of encounter and duration of its occurrences.
When SoundSense determines a new sound to be significant,
it prompts the end-user to either provide a textual descrip-
tion (i.e., a label) or rejects the sound as unimportant or
sensitive in terms of privacy. In this manner, SoundSense’s
audio processing is customized to the particular user without
any prior assumptions about sounds he/she will encounter.
SoundSense’s design decision to base coarse classification on
supervised training and ambient soundclassification on un-
supervised learning, directly addresses the need to design
for scale. In Section 6, we demonstrate through implemen-
tation and experimentation that with relatively few user in-
teractions (for labeling), SoundSense can quickly learn new
sounds that are significant in people’s everyday lives.

2.2 Phone Context
Mobile phones are ubiquitous and ideal for capturing the

sound events we experience around us in our everyday lives.
However, phones are primarily designed for voice communi-
cation and present a number of practical limitations. People
carry phones in a number of different ways; for example, in
the pocket, on a belt, in a purse or bag. The location of
a phone with respect to the body, where a phone is used
and the conditions under which it is used is collectively re-
ferred to as the phone context. The phone context presents
a number of challenges to building a robust sound sensing
system because sound can be muffled, for example, when the
phone is in the pocket or backpack. A goal of SoundSense is
to support robust sound processing and classification under
different phone context conditions, which vary the volume
level. To get a sense of some of the practical challenges
that phone context presents to the design of SoundSense on
a mobile phone we performed a controlled experiment us-
ing an Apple iPhone sampling a distinct sound within a lab
environment inside the Computer Science building at Dart-
mouth College. Figure 1 shows the same sound source, a
Macbook Pro playing constant volume white noise, being
sampled from the same distance during a variety of differ-
ent phone contexts with the phone being placed in different
locations or with the person facing different directions. The
figure shows that the root mean square (RMS) value of the
sound, which is a good approximation of the average vol-
ume, deviates by more than 30% within the range of differ-
ent contextual conditions. Although energy based features
are shown to be effective for some types of classification,
they are sensitive to volume and have typically been used in
controlled settings rather than in the wild. Due to the un-
certainty of phone context and its use under real world con-
ditions and not laboratory controlled conditions, we avoid
using these types of features and adopt features that are
more robust to volume variations and phone context.



A B C D
50

60

70

80

90

100

110

120

Phone Context

R
o

o
t 
M

e
a

n
 S

q
u

a
re

 

 

RMS

Figure 1: Phone context alters the volume (showed
as RMS) of the same sound event significantly. The
context represented above is: (A) in the hand of the
user facing the source, (B) in the pocket of the user
facing the source, (C) in the hand of the user facing
away from the source, (D) in the pocket of the user
facing away from the source.

2.3 Privacy Issues and Resource Limitations
Privacy is an important issue in the design of mobile sens-

ing applications. People are sensitive about how audio data
captured by the phone, particularly conversational data, is
used by the system. Users need to be convinced that their
privacy is safeguarded. It would be problematic if an ap-
plication sends audio samples from the phone to a remote
server for processing. With this in mind the SoundSense
system is designed to run locally on the phone without any
server interaction. SoundSense only uses raw sound samples
in the case of the feature extraction step, as discussed in Sec-
tion 3. After this step is complete only features are retained
and the raw samples are discarded. All the audio data is pro-
cessed on the phone and raw audio is never stored. When a
new type of sound is discovered, users are given the choice
to either provide a label for the new sound or mark the new
sound rejected in which case the system does not attempt to
classify such an event in the future. The user has complete
control over how the results of classification are presented
either in terms of being visualized on the phone screen or
pushing them to external applications, such as, social net-
works. [27]. Note, that in our current implementation results
can only be displayed locally on the user’s phone.

Another pressing challenge when designing continuous sens-
ing applications such as SoundSense is that mobile phones
are resource limited and applications need to be designed
with this in mind. The microphone on a phone is typically
designed for capturing the human voice, not ambient sounds,
and typically sample at 8 KHz. According to the Nyquist-
Shannon sampling theorem [38], the microphone cannot cap-
ture information above 4 KHz, and, as a result, important
information is lost, for example, high frequency components
of music. Beyond sampling issues, mobile phones do not
lend themselves to the implementation of computationally
complex signal processing and classification algorithms. In
SoundSense, sounds need to be analyzed efficiently such that
real-time classification is possible while not overwhelming
the CPU and memory of the phone. Therefore, the designer
has to consider the accuracy and cost trade off. This is a
significant challenge when designing classification algorithms
that have to efficiently run on the phone, without impact-

ing the main function of the phone, i.e., voice communica-
tions. When implementing applications on the phone, it is
therefore necessary that there is always sufficient resources
(e.g., CPU, memory usage needs) maintained so the phone
remains responsive to calls or other phone functions. In
SoundSense, we manage energy, CPU, and memory usage
by performing “frame admission control” to incoming audio
samples, as discussed in Section 4. Only when we estimate a
sample is of adequate quality for classification does the full
SoundSense classification pipeline start. To reduce the com-
putational needs of SoundSense, we implement lightweight
classification algorithms (as discussed in Section 4) capa-
ble of compensating for any errors introduced by imperfect
sampling and the lightweight classification process.

Sound events in the real world (i.e., not in a controlled
laboratory experiment) are complex and typically include
multiple sound sources. SoundSense does not attempt to
separate these different sources but rather takes the mixture
of sound as the signature of the sound event. Therefore, the
classification result is mainly determined by the dominant
sound in the sound mix, i.e., the sound with the highest
energy level. SoundSense also does not differentiate different
kinds of sound source (e.g., a real conversation and speech
on TV are simply recognized as human voice).

3. SOUNDSENSE ARCHITECTURE
In this section, we provide an overview of the SoundSense

architecture. We describe each architectural component in
turn, presenting a high-level view of how the system works
in unison to provide scalable sound sensing. We present
a detailed discussion of the SoundSense algorithms and sys-
tem implementation in Section 4 and Section 5, respectively.
Figure 2 shows the SoundSense architecture and its compo-
nents. The architecture is implemented solely on the mobile
phone, which in our work is the Apple iPhone. The Sound-
Sense architecture comprises the following key components:

Preprocessing. Sound processing usually starts with
segmenting the audio stream from the microphone into frames
of uniform duration. Features for classification are extracted
during processing either from an individual frame or from a
window that is n frames long. In our system, classification
is done with respect to the complete n frame window and
not on individual frames. Not all frames are considered for
processing. Spectral Entropy and energy measurements are
used to filter frames that are silent or are too hard to classify
accurately due to context (e.g., far away from the source or
muffled in backpack).

Coarse Category Classification. The classification oc-
curs in a hierarchical fashion with multiple layers of classi-
fiers being applied. Initially, features are extracted from the
frames. Following this, they are fed into the coarse category
classifier - the stage one classifier. The principle role of this
component is to make an assessment of the coarse-grain cat-
egory of the sound: voice, music, and ambient sound (i.e.,
everything other than voice and music). This assignment
dictates which further classification stages should be applied
based on the category that is inferred. Some applications
may only require coarse level classification. If this is the
case, then processing ceases at this point and the inferred
category is provided to the application. Alternatively, stage
two classification occurs.

Finer Intra-Category Classification. The purpose of
the stage two intra-category classifiers is to allow additional
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Figure 2: The SoundSense Architecture

levels of details to be inferred from the sound sample, whose
category is already classified. For instance, beyond just in-
ferring the sound contains music, further analysis can assess
the genre of music [41]. Performing these types of finer grain
distinctions can only happen after the type of the sound is
known. In this stage, we can apply techniques from prior
work, and in particular make use of work that limits the
scope of usage to only some particular type of sound (e.g.,
voice) to perform domain specific inferences (e.g., gender
classification, see Section 5 for details). For efficiency only
the relevant module is activated for each sound event, as
shown in Figure 2: (a) one of intra-category classifiers are
applied (i.e., voice analysis or music analysis ) based on the
event class; or, (b) an unsupervised adaptive ambient sound
classification is applied.

Unsupervised Adaptive Classification. Building su-
pervised classifiers to recognize all types of ambient sound
is not a scalable approach, as discussed earlier. The poten-
tial scope of ambient sound is vast and can change over time.
Rather, we use unsupervised adaptive classification, which is
itself is a special case of a two stage two classifier, to make
sound processing adaptive to the set of sounds individual
phone users most experience. Sounds that are recognized
by the category classifier as ambient sound (i.e., not voice
and music) in stage one classification are handled by this
component. The design objective of this component is to
learn sound clips that are significant in a person’s life over
time in terms of frequency of encounter and duration of the
event, and to adapt the classifier itself to recognize these
sounds when they recur. In Section 6, we show that many
sounds, such as the turning signal of a car, vacuum clean-
ers, car engines are considered significant and discovered by
SoundSense, while SoundSense itself has no prior knowledge
about these sound events. This is the reason why we term
this approach adaptive. The algorithm used to discover and
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Figure 3: Work flow of the preprocessing component

model significant sounds is unsupervised. However, the user
is prompted to provide a textual label to associate with the
sound.

4. SOUNDSENSE ALGORITHMS
In what follows, we present the detailed design of the

SoundSense algorithms implemented on the phone as part
of the SoundSense architecture.

4.1 Preprocessing
This preprocessing component, as shown in Figure 3, is

responsible for segmenting the incoming audio stream into
frames and performing frame admission control by identify-
ing when frames are likely to contain the start of an acoustic
event (e.g., breaking glass, shouting) that warrants further
processing.

4.1.1 Framing

Segmenting the audio stream into uniform frames is com-
mon practice for feature extraction and classification. The
frame width (i.e., duration) needs to be short enough so that
the audio content is stable and meanwhile long enough to
capture the characteristics signature of the sound. Existing
work [26] use frames that overlap each other since overlap-
ping frames are able to capture subtle changes in the sounds
more precisely. However, this can cause overlapping pieces
of audio data to be processed multiple times. Given the
resource constraints of the phone we use independent non-
overlapping frames of 64 ms. This frame width is slightly
larger than what is typically used in other forms of audio
processing (e.g., speech recognition) where the width typi-
cally ranges between 25-46 ms. In addition to enabling a
lower duty cycle on the phone, a frame width of 64 ms is
sufficient for capturing the acoustic characertistics of envi-
ronmental sounds.

4.1.2 Frame Admission Control

Frame admission control is required since frames may con-
tain audio content that is not interesting (e.g., white noise)
or is not able to be classified (e.g., silence or insufficient
amount of the signal is captured). These frames can occur at
any time due to phone context; for example, the phone may
be at a location that is virtually silent (e.g., library, home
during night) or where the sounds that are sampled are sim-
ply too far away from the phone to be sufficiently captured



for classification. Alternatively, the phone position (e.g.,
deep inside a backpack) may also prevent the microphone
from acquiring the sound clearly enough for classification.

Frame admission is done on the basis of energy level and
spectral entropy. Low energy level indicates silence or unde-
sirable phone context, which prevents meaningful classifica-
tion. Spectral entropy gives cues about the frequency pat-
tern of the sound. A flat spectrum (silence or white noise) re-
sults in high entropy. A low entropy value indicates a strong
pattern in the spectrum. The energy of a frame is evaluated
by taking the RMS of the amplitude of the audio content it
contains. To compute spectral entropy, we need to perform
the following three steps: (i) apply a hanning window to
the frame, which suppresses the frame boundaries and thus
reduces the known effect of Fast Fourier Transform (FFT)
spectral leakage [18]; (ii) calculate the FFT spectrum of the
frame; and finally, (iii) normalize the spectrum, treat it as a
probability density function, and finally obtain the spectral
entropy, Hf , by,

Hf = −
n

X

i=1

pi log pi (1)

Acoustic events captured by the phone’s microphone should
have reasonable high RMS values, which means the volume
of the sound sample is not too low. However, this is not suffi-
cient. The phone’s context may lower the RMS of the sound
but the received sound may still contain enough information
that warrants processing as long as the sound signature is
sufficiently captured. So we use spectral entropy to differen-
tiate informative low volume samples from non-informative
ones. Frames that contain mainly silence have a uniform
distribution of energy in the frequency domain. In contrast,
a frame that contains acoustic events has multiple energy
peaks in the spectrum that correspond to the pitch and har-
monics of the sound. Therefore, its spectral entropy tends
to be lower than silent frames.

Two thresholds, rmsthreshold and entropythreshold, are used
for frame admission control. For frames to be admitted they
must have either an RMS above rmsthreshold, or if below they
must have a spectral entropy below entropythreshold. Frames
that meet this criteria are kept and processed, or otherwise
discarded. One complication of this approach is that cer-
tain acoustic events such as conversations and music are not
continuous. Speech contains frames of unvoiced sounds or
pause periods. Similarly, music may stop for periods and
then resume. Frame admission control takes this condition
into account and does not reject “in-between” frames (i.e.,
low RMS or high entropy frames within a non-continuous
sound event). If these in-between frames were considered
independently they would fail the admission criteria. To
cope with this admission issue we admit frames for a short
period of time (i.e., five seconds) when engaged in an ongo-
ing acoustic event regardless of the content of these frames.
During this period, each frame associated with an event will
ensure that the next five seconds of data is admitted. If
no new event frames are received within five second, frame
admission ceases.

4.2 Coarse Category Classification
Coarse category classification classifies the current acous-

tic event to one of the coarse sound types (i.e., voice, music,
ambient sound). In what follows, we first discuss the features

we extract from the frame window provided by preprocess-
ing and then describe the how classification is performed.

4.2.1 Feature Extraction

The selection of features is critical in building a robust
classifier. Being conscious of the limitations of our platform
to deal with issues such as the clipped response of the micro-
phone (typically clipping at the 8 KHz phone quality level)
and the variability in the energy of the sound sampled by
the microphone, we consider a large range of features, both
in the temporal and spectral domains. All of the features
we use are insensitive to volume. Through experimenta-
tion we discovered that the drawback of the clipped fre-
quency response is compensated by using multiple spectral
features. In what follows, we discuss temporal features we
use in SoundSense:

Zero Crossing Rate (ZCR). We use both ZCR variance
and a count of the number of ZCR peaks. ZCR [34] is defined
as the number of time-domain zero-crossings within a frame,

ZCRf =

Pn

i=0
|sign(si) − sign(si−1)|

2
(2)

where the sign() function is 1 for positive arguments and
-1 for negative arguments. ZCR correlates with the fre-
quency content of a signal. Human voice consists of voiced
and unvoiced sounds. The voiced and unvoiced frames have
low and high ZCR values, respectively. Therefore, human
voice shows a higher variation of ZCR. Typically, music does
not have this variation in ZCR, although some music does
(e.g., rock music that contains a lot of drumming). Ambient
sounds are usually fairly stable in frequency, the variance of
ZCR remains low.

Low Energy Frame Rate This is the number of frames
within a frame window that have an RMS value less than
50% of the mean RMS for the entire window [35]. For
voice there are more quiet frames corresponding to unvoiced
sound, so this measure will be higher for speech than for
music and constant noise [34]. For all spectral features the
DC component of the spectrum (i.e. the first FFT coef-
ficient), which indicates the average volume of the sound,
is discarded, and the values of all the frequency bins are
normalized in order to remove the influence of the volume.
We now describe the spectral features we use. Note, that
our definitions frequently refer to pt(i) which is indicating
the normalized magnitude of the ith frequency bin of the
computed FFT spectrum:

Spectral Flux (SF). SF [35] is defined as the L2-norm
of the spectral amplitude difference vector of two adjacent
frames.

SFt =
n

X

i=1

(pt(i) − pt−1(i))
2 (3)

where pt(i) and pt−1(i) are referring to the current frame
and the last frame, respectively. SF measures the change
in the shape of the spectrum. Speech generally switches
quickly between voice and unvoiced sound, altering its shape
rapidly. Music does not typically have this characteristics
and usually has a lower SF value, but it occasionally goes
through dramatic frame to frame changes, which result in
SF values that are much higher than the value of voice.

Spectral Rolloff (SRF). SRF [21] is defined as the fre-
quency bin below which 93% of the distribution is concen-



trated.It can be calculated by,

SRFf = max
`

h
˛

˛

h
X

i=1

p(i) < threshold
´

(4)

It is a measure of the skewness of the spectral distribution,
the value is larger for right-skewed distributions. Music sig-
nals, which contain a greater number of higher frequency
components tend to have high SRF values.

Spectral Centroid (SC). SC [21] is the balancing point
of the spectral power distribution.

SCf =

Pn

i=1
i · p(i)2

Pn

i=1
p(i)2

(5)

Music usually involves high frequency sounds which push
the spectral mean higher.

Bandwidth. Bandwidth [21] is the width of the range of
the frequencies that the signal occupies. It makes use of the
SC value and shows the spectrum is concentrated around
the centroid or spread out over the whole spectrum.

BWf =

Pn

i=1
(i − SCf )2 · p(i)2
Pn

i=1
p(i)2

(6)

is a measure of the “flatness” of the FFT spectrum. Most
ambient sound consists of a limited range of frequencies, hav-
ing a small value. Music often consists of a broader mixture
of frequencies than voice and ambient sound.

Normalized Weighted Phase Deviation. This fea-
ture introduced in [15] shows the phase deviations of the
frequency bins in the spectrum weighted by their magni-
tude,

nwpdf =

n
X

i=1

p(i) · φ′′

i (7)

where φ′′

i is the second derivative of the phase of ith fre-
quency bin. Usually the ambient sound and music will have
a smaller phase devation than voice.

Relative Spectral Entropy (RSE). This feature intro-
duced in [7] differentiates speech and other sounds. However,
in [7] RSE is defined as the KL (Kullback-Leibler) diver-
gence between the frequency domain of the current window
of frames and previous 500 frames. Given the resource con-
straints of mobile phones we represent the historical patterns
in the frequency domain for each frame as:

mt = mt−1 · 0.9 + pt · 0.1 (8)

where mt is the mean spectrum vector of time t, p is the nor-
malized spectrum vector, and the relative spectral entropy
is given by:

RSEf = −
n

X

i=1

p(i) log
p(i)

mt−1(i)
(9)

For all spectral features described above, the variance is also
calculated over an n frame window and used as longer term
features.

4.2.2 Multi Level Classification

The stage one coarse classification itself occurs as a two
step process in which we couple the output of a decision
tree classifier to a collection of markov models, one for each
sound event category. The design combination meets our
requirement for lightweight processing on the mobile phone,

while being robust to the complications of the real world
sound sensing.

The use of a decision tree classifier evolved out of a study
investigating the use of several other classification algorithms
that have proven to be effective in the audio processing
including: Gaussian Mixture Models (GMMs) [40] [26], k-
nearest neighbors(KNN) [30], decision trees [44] and Hidden
Markov Models (HMMs) [44]. We construct classifiers us-
ing all of these algorithms with an identical set of features
(see Section 4.2.1) and the same training set (see Table 1
for details). As observed by others [40] [44] we did not find
substantial performance differences between them. This is
not unexpected given the function of the category classifier
is to segment the feature space into large grain categories of
sound categories. Given the feature space is segmented into
wide segments, much of the differences between the algo-
rithms is nullified. Finally, we use a decision tree generated
using the J.48 algorithm [43] as it is simple to construct
and execute while being equivalent in performance to the
alternatives.

When we consider the decision tree classifier in isolation
it provides reasonable accuracy (i.e., approximately 80%, as
discussed in Section 6). However, the decision tree classi-
fier makes a category assignment for each window locally
and in isolation of other assignments, as a result sometimes
the output is choppy (see Table 2). Some real-world sce-
narios would cause the classifier to enter a less accurate os-
cillating state when the sound alternates from one category
to another. When the sound remains in one category the
classifier’s performance remains high but during the switch-
ing periods the performance of the system degrades, for in-
stance, a conversation or presentation with a sequence of
short pauses over time, a piece of music switches quickly
between smooth and intensive parts. We cope with these
issues by adding smoothing to the output of the decision
tree. We build simple first-order Markov models for each of
the three categories. They allow us to make soft category
assignments from the output sequence of the tree classifier.
The Markov models are trained from the output sequence
of the decision tree, which are the category assignments of
the sound sample. Examples sequences are given in Table
2. Each model uses the same structure, one state for each of
the three sound categories. The models are trained to learn
the pairwise transition probabilities pi(st|st−1), s ∈ {0, 1, 2}
for each category i. For a given class sequence {s1, ..., sL} of
length L passed by the decision tree classifier the final class
assignment i is determined by finding the model of category
i that maximized the probability,

C = arg max
i

L−1
X

t=1

log p
i(st+1|st) (10)

We train the classifiers in our implementation using a train-
ing data set we built up over three months. We detail the
composition of the data set in Table 1. Each sound category
contains a variety of different examples that are gathered un-
der a wide range of scenarios. The audio samples are WAV
files recorded by iPhone and Nokia N95 in the same 8Khz
16 bit Mono PCM format, which is also the format we use
during the execution of the SoundSense system. All 559
sound clips (about 1 GB in total) are manually labelled, see
Table 1. Because the voice data is collected from real world
scenarios and only roughly labelled, most of them contain a



Category Activies Note
Speech reading, meeting, chatting, 8 female and

conference talks, lectures, 32 male
Music classical, pop, new age played by

,flute, rock, folk CD player, ipod,
saxophone, guitar radio, and laptop
piano,trumpet, violin

ambient driving in city, elevator samples collected
sound highway driving, walking from multiple

airplane, crowd of people scenarios
vacuuming, fan, shower
clapping, toilet flushing,rain
climbing stairs, wind, faucet

Table 1: Description of the training data set

Sound Type Output from Layer Two
ambient sound 00001000001000000000010002000

Music 11111021111112111111111110011
Speech 22222101212200221222212212222

Table 2: These numbers (i.e. category assignments)
are the output of the first layer decision tree classi-
fier. They can be interpreted as follows: 0 is ambi-
ent sound, 1 is music, and 2 is voice. The output are
provided directly to the Markov model based second
layer as part of the category classification process.

considerable amount of pauses/silence. We clean this train-
ing set by removing all the silent pieces lasting longer than 1
second. Music and ambient sound samples were not altered.

4.3 Finer Intra-Category Classification
The purpose of finer intra-category (i.e., category-specific)

classification is to allow further analysis of sound events.
Much of the previous work on audio signal processing is
performed using audio input containing data only from one
audio category. Once the category of the sound event is
identified by category classification, detailed analysis can be
done to provide type specific information of the input signal,
according to the requirements of the application. For voice
and music input, techniques such as speech recognition [32],
speaker identification [33], or music genre classification [41]
can be applied. The features we adopt are widely used by
other audio and music classification [26]. More powerful yet
computationally demanding features, for example, Mel Fre-
quency Cepstral Coefficient (MFCC) can be calculated from
the FFT spectrum which is already available at this stage.
Although a lot of research has been done in the speech and
music domain, little work has focused on the classification of
the everyday ambient sound, which is different from user to
user. In what follows, we discuss our unsupervised learning
algorithm for processing the ambient sound.

4.4 Unsupervised Ambient Sound Learning
The unsupervised adaptive classification component copes

with all the ambient sounds. The objective of this compo-
nent is to discover over time environmental sounds that are
significant in every life in addition to voice and music, so
that the SoundSense system is able to classify these sounds
correctly when they recur.

4.4.1 Overview

Classifiers in previous sections are trained offline with la-
beled data. They can only differentiate types that they are
trained with and have no ability to identify new types of
sound. In this component, we deal with sound classified as
ambient sound by the previous stage in a different manner.
The algorithm described below is unsupervised, and sound
is processed on-the-go.

In this stage, we use MFCC as feature, which is designed
to mimic human perception [45]. MFCC provides fine details
in the frequent bands to which the human ear is sensitive,
while they also capture coarser information over other spec-
tral ranges. MFCC is recognized as one of the most impor-
tant feature sets for audio signal processing [31] [26]. In our
experiments, MFCC performs well, however, our learning
algorithm is agnostic to features in use. The modification
of the feature set does not require changes to the rest of the
algorithm.

The FFT spectrum of each incoming frame is further con-
verted into MFCC features vectors.We shows how we de-
termine frame lengths for our implementation, in Section 5.
Feature vectors are classified into bins, with each bin rep-
resenting one type of sound, as discussed in Section 4.4.2.
This operation is computationally expensive, so it runs on
a window basis,and the MFCC vectors for each frame are
averaged over the window. There are a large number of pos-
sible sounds in a person’s life. Due to the limited resources
of the platform, it is not feasible to keep infinite number of
bins on the phone. SoundSense ranks all bins in terms of en-
counter frequency and summed duration and less significant
bins are expunged when necessary, as discussed in Section
4.4.3. The assumption here is that frequency and duration
of a sound indicates its importance. The system will prompt
the user for meaningful labels of significant sounds discov-
ered by the algorithm. The whole pipeline of the unsuper-
vised algorithm described in this section is summarized in
Fig. 4.

4.4.2 Unsupervised Learning of Sound Events

We use a simple Bayes classifier [8] with equal priors for
each class to represent different ambient sound events (e.g.,
using a washing machine, driving a car). We assume each
MFCC feature vector of window i, denoted as wi, is from one
of B multivariate Gaussian distributions, N (wt; µb, Σb), b ∈
{1, ..., B} (referred in this paper as bins). B is the total
number of bins. For each MFCC feature vector wi, its label
is denoted as random variable pi ∈ {1, ..., B}, which has the
following distribution:

Prob(pi = j) =

8

>

<

>

:

1 if j = arg maxb N (wi; µb, Σb)

and N (wi; µj , Σj) > ǫthreshold

0 otherwise

(11)

Where N (m;µ, Σ) is the probability density function for
the multivariate Gaussian distribution and ǫthreshold is the
confidence level. We make hard decisions in Eq. 11 to limit
the computational cost of the algorithm: for each wi, the
probability it comes from bin b is either 1 or 0. The param-
eter ǫthreshold ensures that a bin can not grow too wide in
size and cover irrelevant sound events. The trade-off here is
that a larger ǫthreshold will split similar sounds of the same
sound event to different classes, while a smaller ǫthreshold will
merge different sounds to the same cluster. We set this pa-



rameter to 1 × 10−13 for the 12-dimensional MFCC feature
vectors based on experimental results. This value gives best
performance over our training set.

The model evolves over time according to the sounds that
the user experiences. It is updated as new evidence is ob-
served. During this online process, for every incoming fea-
ture vector wt at time t, our model parameters are updated
by maximizing the likelihood over all the feature vectors
w1, ..., wt sensed since the system started. In other words,
the mean and covariance for bin b is updated by the mean
and covariance over all previous feature vectors that come
from the bin as described in Eq.12 and Eq.13. It should be
noted that both Eq.12 and Eq.13 can be updated incremen-
tally without storing previous wi on the phone.

µ
′

b =

Pt

i=1
Prob(pi = b)wi

Pt

i=1
Prob(pi = b)

(12)

Σ′

b =

Pt

i=1
Prob(pi = b)(wi − µ′

b)(wi − µ′

b)
T

Pt

i=1
Prob(pi = b)

(13)

In practice, we assume that all covariance matrices are diag-
onal matrices and we simplify Eq. 13 in our implementation
to reduce the computational cost.

We use a HMM model to smooth the output of the mul-
tivariate Gaussian classifier. The use of HMM model is
similar to the reason we use HMM in the previous stage,
as discussed in Section 4.2.2. We define the sequence of
{s1, ..., sm}, si ∈ {1, ..., B} as the hidden states for the se-
quence {p1, ..., pm}. In the next section, we will use si as the
smoothed label for audio feature wi instead of pi to rank all
sounds. We define the observation emitting probabilities
and transition probabilities as:

Prob(pi|si) =

(

γ (si = pi)
1−γ

B−1
(si 6= pi)

(14)

Prob(si|si−1) =

(

π (si = si−1)
1−π
B−1

(si 6= si−1)
(15)

We use γ = 0.1 and π = 0.999, which maximize the per-
formance over the training fraction of the dataset. We only
apply Viterbi smoothing to every C windows for computing
efficiency.

4.4.3 SoundRank and Bin Replacement Strategy

There are a large number of sounds that a user may en-
counter, and we cannot give each sound a Gaussian bin
due to limited resources on the phone. Thus, we define
SoundRank as a way to rank sounds and only maintain bins
of the most interesting sound events observed.

We define sound events to be interesting if they recur fre-
quently within a time window ([tL

int, t
H
int]) and have a mini-

mum duration of tdur. A simple function that captures these
requirements for our sound rank value for bin b is as follows:

SR(b) = (
X

ρi +
X

γi) (16)

where ρi is each occurrence duration that is larger than td

and γi is the reward score for each interval between two con-
secutive occurrences that is within

ˆ

tL
int, t

H
int

˜

, which is used
to control the granularity of the event classification. The
intuition here is if two instances of same sound come close

Intialize Σb and µb for all b ∈ {1, ..., B}.
t = 0
c = 0
while retrieve a new window MFCC vector wt from sens-
ing component at time t do

Compute the distribution of pt

if wb belongs to one existing bin b then
Update parameters for bin b according to Eq. 12 and
Eq. 13.

else
Find the bin b with the least SR(b)
Use wt as the mean of bin b, set the new SR(b) to
zero

end if
if c = C then

Apply HMM Viterbi algorithm to trace {pt−C , ..., pt}
and get {st−C , ..., st}
c = 0
Update SR(b),∀b according to {s1, ..., st}

else
c = c + 1

end if
t = t + 1

end while

Figure 4: Pseudo-code for the algorithm to boot-
strap and update the model.

in time (less than tL
int), they might come from the same oc-

currence of this sound event, rather than two consecutive
occurrences. On the other hand, if a sound does not hap-
pen often (within tH

int interval), it might not be important.
For example, if we would like to only detect sounds that oc-
curs on roughly a 24 hour interval, we can set

ˆ

tL
int, t

H
int

˜

to
[20hours, 28hours], allowing some variance. In our exper-
iments, we set tL

int = 40min and tH
int to ∞ and γ to 100.

This is only one of many possible ways to define the SR

function. Different applications with different requirements
can use different SR functions. Bins are ordered based on
SR(b),∀b ∈ {1, ..., B}. After all bin slots are occupied, if a
new unknown sound are captured, i.e., ∀b, Prob(Pi = b) = 0,
we then discard the bin b which has the least SR, and use
wi as the new µ′

b and a default covariance matrix as Σ′

b.

4.4.4 User Annotation of New Sounds

When the sound rank associated with a certain bin ex-
ceeds a given threshold, the user is prompted to provide a
label for that sound event. The user can choose to provide
a label or ask the system to ignore that sound in the future
if they consider the sound to be either unimportant or an
invasion of privacy. In the later case, the system will still
keep the bin but the recognition will be suppressed; other-
wise, deletion of the bin would force the sound to be learnt
again.

5. IMPLEMENTATION
The SoundSense prototype system is implemented as a self

contained piece of software that runs on the Apple iPhone.
In this section, we describe our software prototype and sys-
tem parameters.

We validate the SoundSense architecture and algorithms
through a prototype implementation on the Apple iPhone.
Our current version is approximately 5,500 lines of code and
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Figure 5: Implementation component diagram.

is a mixture of C, C++ and objective C [3]. Our signal pro-
cessing and core classification algorithms are mainly written
in C and C++. Objective C is necessary to build an Ap-
ple iPhone application which allows us to access hardware
(e.g., microphone) and construct a GUI. The complete bi-
nary package is approximately 300 KB including resource
files. The SoundSense prototype implements a high-level
category classifier that differentiates music, speech, and am-
bient sound; an intra-category classifier is applied to the
voice type and distinguishes male and female voices; and fi-
nally, the unsupervised adaptive classifier uses 100 bins for
the purpose of modeling ambient sounds. Under the cur-
rent Apple iPhone SDK [5] we are not allowed to run the
prototype as a daemon process that is necessary for contin-
uous sampling. This is not a technical limitation but com-
mercially driven decision by Apple. For experiments that
require continuous sampling we run our SoundSense proto-
type on jail-broken iPhones that allow background process
without modifying our software.

The individual software components in our implementa-
tion and the interactions between them are shown in Figure
5. Using the standard iPhone SDK API, we collect continu-
ous 8 kHZ, 16-bit, mono audio samples from the microphone.
The PCM formatted data is placed in a three-buffer circu-
lar queue, with each buffer in the queue holding an entire
frame (512 samples). Once the buffer is full, it is provided to
the preprocessor which makes a frame admission control as-
sessment. Our SoundSense prototype is optimized for CPU
usage and we exchange additional memory usage for lower
CPU load. Memory blocks are pre-allocated and initialized
as much as possible when the application is loaded. If there
is a lack of an acoustic event, the system enters into a long
duty cycle state in which only one frame in every ten frames
is processed (i.e., every 0.64 seconds). If a frame is accepted
by the frame admission control, which means an event has
been detected, then processing becomes continuous. The
KissFFT library [9] is used to calculate the FFT. Once all
frame based features are calculated, the buffer is released
back to the circular queue for future use. Frame based fea-
tures are calculated once n frames that are necessary for
a frame window are accumulated. The long term features,
such as, variance, are calculated over this frame window.
As discussed earlier, we do not use overlapping windows.
Rather, windows are classified as discrete chunks. We use
log-probability for all of our classifiers to avoid arithmetic
underflow. Once a full window frame is collected, window
based features are calculated and pushed to the high-level
category classifier. The first step in the coarse-level category
classification is to apply the decision tree to the incoming
feature vector. Based on our training sets (see Table. 1)
we learned a 17-node tree with a depth of 6 levels. The
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output of the tree is one of three category assignments (mu-
sic, voice, ambient sound) which is inserted into a FIFO
queue. The queue is provided to the Markov model clas-
sifier with three pre-trained models to smooth the output.
Depending on the output of the high-level category classi-
fier either an intra-category classifier or the unsupervised
adaptive classifier is used. Where appropriate previously
calculated features are provided to the subsequent classifiers
(e.g., the FFT spectrum). In our current implementation,
only a single intra-category classifier is available. This clas-
sifier (available for the voice category) tries to distinguish
male and female voices. To construct the classifier we sim-
ply re-used existing components. For the features we use
MFCC feature extraction routines and for the classifier we
use the multivariate Gaussian implementation both of which
are required for the unsupervised adaptive classifier, which
analyizes ambient sound. This component uses the SQLite
database to keep the necessary statistics of the required bin
structure and label/bin mappings acquired from users.

The choice of system parameters also has an impact on
the performance of SoundSense. As discussed in Section
4, the output of the decision tree classifier is buffered in a
FIFO queue before input to the Markov model recognizer. A
larger buffer causes a longer sequence length to be provided
to the Markov model which increases the accuracy but at the
expense of the system’s responsiveness to state changes. To
determine a suitable buffer size, we perform experiments on



status cpu usage memory usage
GUI only less than 1% 2.79MB
Silence 1%-5% 3.75MB

Music/Speech 8%-20% 3.80MB
Ambient Sound 11%-22% 3.85MB∼5MB

Table 3: CPU and memory benchmarks of prototype
software running on the iPhone

the training data discussed in Section 4.2.2. The results of
these experiments are shown in Figure 6. The figure shows
that the gain of larger buffer size is marginal beyond a buffer
size of five. This observation is independent of the category
of sound. Therefore, we adopt a buffer size of five for the
SoundSense implementation, where the tradeoff of latency
and accuracy are suitably balanced.

The length of each MFCC frame used in the unsuper-
vised adaptive ambient sound learning algorithm impacts
the computational costs and classification accuracy. We ex-
amine this tradeoff with a number of experiments on the In-
tel MSP (Mobile Sensing Platform) data set [12] collected as
part of earlier work. The MSP data set contains fifty-two 25-
minute-long sound clips collected by the MSP device, which
senses audio signals with a microphone similar to those on
the mobile phones. For each clip, one of the participants
carries the devices performed several daily activities such as
walking, riding elevators, and driving. Each activity in the
clips is manually labeled. We first apply our unsupervised
learning algorithm to form bins over all the clips and for each
activity find the most relevant bin by selecting the sound bin
which is encountered most frequently during the duration of
that activity. We use these sound bins to segment audio se-
quences into different classes and compare the results with
the ground truth labels by calculating the precision 1 and
recall 2. In Figure 7, we see the changes on recall and preci-
sion as the MFCC frame length varies. These results suggest
that a larger frame length tends to increase recall but de-
crease precision. We observe that an MFCC frame length of
0.064s is a good trade-off point considering both precision
and recall.

6. EVALUATION
In this section, we discuss the evaluation of the Sound-

Sense system. We first discuss a number of benchmarks
for the Apple iPhone based prototype system. Following
this, we present the detailed performance evaluation of the
SoundSense multi-stage classification process and discuss
two proof-of-concept people-centric sensing applications built
on top of SoundSense on the Apple iPhone.

6.1 CPU and Memory Benchmarks
Table 3 presents results of our CPU and memory bench-

marks. If the environment is quiet, the system adopts a long
duty cycle and the CPU usage is less than 5%. Once acoustic
events are detected and processing begins, the CPU usage in-
creases to about 25%. We measure the elapsed time for pro-

1Precision for an event is the number of frames that are cor-
rectly classified as this event divided by all frames classified
as this event.
2Recall for an event is the defined as the recognized occur-
rences of the event divided by the number of overall occur-
rences of this event in the audio sequence.

Category Num of Clips
Ambient Sound 47

Music 18
Speech 49(19 females,30 males)

Table 4: Testing data set

Actual\Classified as Ambient Sound Music Speech
Ambient Sound 0.9159 0.0634 0.0207

Music 0.1359 0.8116 0.0525
Speech 0.0671 0.1444 0.7885

Table 5: Confusion matrix for the decision tree clas-
sifier

cessing a frame (64 ms) to be around 20 to 30 ms, depending
on the particular path through the processing workflow (e.g.,
ambient sound requires more processing than music, which
currently has no additional intra-category classifiers). The
SoundSense process together with all other system processes
on the iPhone consumes less than 60% of the CPU in total.
Memory consumption is potentially more dynamic and de-
pends on how many bins are in use by the unsupervised
adaptive (ambient sound) classifier. Even with all bins be-
ing used (currently capped at 100), the total memory usage
is about 5 MB, comparing to the 30 MB (128MB in total)
memory available for 3rd party applications on the iPhone.
These results indicate that our software preserves enough
resources for other 3rd party applications or further Sound-
Sense extensions, such as more intra-category classifiers.

6.2 Classification Performance
In this section, we discuss the quality of the inferences

made by each classification component.
Coarse Category Classifier. We explore (i) the ef-

fectiveness of the decision tree subcomponent; and (ii) the
advantages of the secondary Markov model layer for smooth-
ing of the coarse category classifier. For this experiment, we
use a test data set that is collected from real world setting
over a two month period and is distinct from the training
set discussed in Section 4.2.2. The test set contains sound
clips from different categories of sounds (music, speech, and
ambient sound) that the classifier is designed to recognize.
Table 4 provides a breakdown of the number of clips for each
category. The length of these clips range from as little as
5 seconds (e.g., clapping) to as much as 10 minutes (e.g.,
speech). Each clip is annotated manually with a label. The
types of sound in each category are identical to the types
presented in Table 1.

Table 5 shows the confusion matrix representation of the
result for the classification process using only the decision
tree component. The ambient sound is identified correctly
90% of the time. Speech and music are more difficult to
recognize, and are both classified correctly around 80% of
the time. This is due to the dynamic nature of these two
categories and the limitation of the sampling rate. Some
of the slow and smooth sections of music are mistaken for
ambient sound, and some allegro tunes are confused with
speech. Similarly, around 14% of the speech samples are
misclassified as music. The pause-continue-pause pattern is
often found in everyday conversation and the frames near
the boundary of voice and pause sections are prone to be
mistaken for music. The decision tree is only the first step



Actual\Classified as Ambient Sound Music Speech
Ambient Sound 0.9494 0.0402 0.0104

Music 0.0379 0.9178 0.0444
Speech 0.0310 0.0657 0.9033

Table 6: Confusion matrix for the decision tree clas-
sifier with Markov model smoothing

Actual\Classified as Female Male
Female 0.7428 0.2572
Male 0.2807 0.7193

Table 7: Confusion matrix for the gender classifier

of the coarse category classification process. We enhance
it with the Markov model smoothing process. We repeat
the same experiment discussed above but now incorporate
the Markov model component. We find significant improve-
ments in our results, as shown in the confusion matrix in Ta-
ble 6. In particular, the classification accuracy is improved
by approximately 10% for music and speech. There is a
minor 3% performance gain for ambient sound.

Finer Intra-Category Classifier. We currently imple-
ment only a single intra-category classifier – the gender clas-
sifier. Future work will extend this initial implementation.
The classifier is fairly simple in comparison to other exam-
ples found in the literature (e.g., [37] reports 90% accuracy)
so we do not expect high accuracy for this classifier. We
perform an experiment using the voice clips in the test data
set. According to this data set, we achieve 72% classification
accuracy, as shows in Table 7.

Unsupervised Adaptive Ambient Sound Learning.
We here show the performance of the unsupervised algo-
rithm in real world scenarios. We evaluate the system using
a data set collected by users over a number of work days
of a week, during this period the users wore a SoundSense
iPhone around their neck. Each day one hour of audio is
recorded in the morning. The total size of the data set is
about 300 minutes in length. The interesting and significant
sounds discovered are shown in Table 8. Multiple bins are
associated with the car driving sound. The algorithm seg-
mented the event of car driving into different sub-events due
to the variations of car engine sounds (e.g., high pitch sound
when driving fast on a highway and low pitch when driving
slowly on local roads). Arguably, users may find this type
of segmentation desirable. As part of our future work, we
intend to fuse other types of contextual information (e.g.,
GPS) to address this issue.

Table 8 shows that the sound with the highest sound rank
(SR) is the ambient sound when the phone rubs against the
person’s clothing. During the experiment, the phone is at-
tached to a necklace and hangs around the neck. In this
case, SoundSense relies on the user to reject this uninter-
esting sound when the system prompts the user to ask for
a contextual label of the sound. It is worthwhile to point
out that how users respond to these system prompts largely
impact the effectiveness of SoundSense. All the labels are
given by the userand the user decides whether to accept or
reject sound events discovered by the system. The semantic
labels are also provided by the user and therefore meaningful
to the user. Users may, for example, attach the same label
to different bins, (e.g., the different driving events can all be
labeled “driving”). Therefore, it is the user’s obligation to

SR Rank Event
1st Phone scraping against Clothes
2nd Highway Driving
3rd Walking Outdoor(with wind sound)
4th Driving/Accelerating
5th In-Town Driving
6th Walking Indoor
7th Taking Out Trash(Plastic rustling Sound)

Table 8: SR rank calculated by the Unsupervised
Adaptive Classifier

Event Precision Recall
Walking 93% 53%

Driving Cars 100% 100%
Riding Elevators 78% 80%

Riding a Bus 25% 90%

Table 9: Unsupervised Adaptive Classifier perfor-
mance

make the labels understandable to themsleves and possibly
others people. Sourcing labels from user populations is a
complex research topic in its own right [19]. While this is
an interesting systems issue it is out of scope of this paper,
but certainly a topic we intend to study in future.

Using the MSP data set [12], we evaluate the effectiveness
of the unsupervised adaptive learning algorithm in terms of
precision and recall of the recognized events. In the MSP
data set, there are 11 labeled human activities includes walk-
ing, walking down stairs, walking up stairs, taking elevator
down, taking elevator up, jogging, sitting, etc. We merged
classes such as taking elevator up and taking elevator down
to one class because these activities can not be distinguished
by audio characteristics. We skip activities such as sitting
and standing because they have no obvious acoustic signa-
ture. We end up with four different human activities and
use them to test the performance of our algorithm. Table 9
shows that the precision and recall of the four activities. We
noticed that the precision of riding a bus is quite low. The
reason is that there is no reliable stable sound that repre-
sents the bus riding sound well (i.e., the bus engine volume
is low) in the data set. Thus, other less relevant sounds
(i.e., the sound of the crowd of people on a bus) are used to
identify the riding bus event.

6.3 SoundSense Applications
Finally, we implemeted two proof-of-concept applications

on the iPhone using the SoundSense software; these are: (i)
an audio daily diary appliction of everyday events based on
opportunistic sensing; and (ii) a music detector application
based on participatory sensing. We do not claim that these
applications are new but use them to evaluate the ability of
SoundSense to support such application on the iPhone.

Audio Daily Diary based on Opportunistic Sens-
ing. In this application, sound is continuously sampled
which produces a time series log of classified acoustic events
that occur during the day to day life users. Users of the ap-
plication can then perform queries against this log of sound
events determining for instance how much time they spent
in their cars, etc. There has been a number of applications
similar to this proposed in the literature [42] [20].

To experiment with this application we had a single par-
ticipant carry an iPhone to collect raw audio data over the
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Figure 8: The participant’s activities recognized by SoundSense on a Friday (a) and a Saturday (b).

course of two weeks. Figure 8(a) and Figure 8(b) visualize
the sound events from a work day (Friday) and a weekend
day (Saturday). The X axis is the time of day and the Y axis
indicates different activities. A marker is drawn when the
system successfully recognizes a certain category of sound.
For example, a red dot is plotted when the system discovers
speech events. The figures show that the subject went to a
restaurant on one Saturday, and because of a loud refrigera-
tor/vender machine in the restaurant, SoundSense is able to
identify this particular location. Notably, the system discov-
ers the “click-click”sound when the driver uses the turning
signal when driving. As can see from Figure 8(b), the person
uses turn signals of his car in the morning, but does not use
turn signals on his way back home late at night. It was in-
teresting that the person was unaware of this behavior until
the SoundSense system highlighted it!

In general, we found that the system is good at discov-
ering long duration events. However, there are significant
sounds in our lives that are of shorter duration (e.g., door
bells). We found that supporting these short duration events
by simply reduce the duration threshold will make the sys-
tem generate too much false significant events and thus put
a heavy burden on the user to filter them. In our experi-
ment, we also noticed that a few voice or music samples that
are incorrectly classified as ambient sound are processed by
the unsupervised learning algorithm and sometimes trigger
a prompt. Right now, we rely on the users to filter them out
by marking them as unwanted and plan to tackle this issue
in our future work.

Music Detector based on Participatory Sensing.
We also consider a different type of application. The ability
to recognize a broad array of sound categories opens up in-
teresting application spaces for example within the domain

of participatory sensing [10]. We explore one such applica-
tion built on SoundSense on the iPhone. In this particular
case, we use the sound category of music and a deployment
within Hanover, a small New England town where Dart-
mouth College is located. The goal of the application is to
provide students with a way to discover events that are asso-
ciated with music being played (e.g., parties, concerts, mu-
sic in a room). In this simple application, people who opt-in
to be part of the system are prompted via their iPhone to
take a picture when music is detected by the SoundSense
system. These images are displayed on a community web
portal along with the location where the music is detected.
Other students can visit the web portal and view the stream
of submissions from SoundSense users, the location lets stu-
dents know where the event is happening and the images
allow them to determine if they want to join the event or
not. We show some of images that were taken in Figure 9.
The figure shows a screenshot of the locations where the mu-
sic are detected along with icons on the map that indicate
the location of the sound.

7. RELATED WORK
There is growing interest in mobile phones research for

pervasive computing [29] [22] and urban sensing [11] [10] [1]
applications. Although early work [36] mentions the use of
microphone as a clue to context, most work found in the
literature focus on the camera, accelerometer [6], and GPS
[23] as sources of sensor data.

There has been significant work on audio analysis and
signal processing. The basic problem of sound classifica-
tion has been as an active area of research [35] [34] [21] [16]
including some of the challenges we overcome with Sound-



Figure 9: A screenshot of the location where music
is detected during our experiment of the participa-
tory sensing application. Surrounding the map are
images that were taken according to the prompts.

Sense. However, what makes our work novel in comparison
to the literature is that we address a broad set of real-world
challenges in the implementation of a scalable sound sens-
ing system on resource limited mobile phones. This has not
been previously achieved, such as the unsupervised adaptive
classification scheme discussed in Section 4.4.

Existing work that considers problems such as sound recog-
nition or audio scene recognition do not prove their tech-
niques on resource limited hardware. One exception is [14]
which is focused on performing sound processing using wear-
able computers. However, the authors collect data from
wearable devices and do offline analysis. In [30] 17 everyday
environments are classified (i.e., streets, public transporta-
tions, office, living room) with an accuracy of 63.4% using
the GMM algorithm; again, the classification process is of-
fline. SoundSense is designed for real-time analysis through
the design of feature extraction and scalable classification
that is capable of running online on resource limited phones.
This has not be achieved before in the literature and distin-
guishes our contribution.

In [24] [25] the authors use a HMM based strategy capable
of classifying 10 environments with good performance using
samples of only 3 second duration. This framework provides
a way to build new classifiers. However, [24] [25] achieve
this by transferring training samples to a centralized sever,
which in essence, is simply repeating conventional training
steps.This approach neglect the important challenge of au-
tomatically discovering interesting new sound events. In-
stead the system relies on user triggered re-training, which
we think over simplifies many of the problems. In practice
these approaches are hard to scale due to the heavy burden
on user interaction and the energy consumption and privacy

concerns of communicating raw audio samples and features
to central servers for retraining. In [39], the authors demon-
strate a system able to recognize a number of sounds using
mobile devices but again this system makes extensive use of
off device computational resources offered by back-end in-
frastructure. SoundSense works solely on the mobile phone
and does not rely on offline analysis or back-end interaction.
This represents another part of our contribution and one of
our design goals.

We also benefited from audio processing research that
considers problems other than sound classification. For ex-
ample, work on speech recognition [32], speaker identifica-
tion [33], and music genre classification [41]. We build on
this body of work as part of the design of the intra-category
classification.

8. CONCLUSION
In this paper, we presented SoundSense, an audio event

classification system specifically designed for resource lim-
ited mobile phones. We described the hierarchical classifica-
tion architecture that is light-weight and scalable yet capa-
ble of recognizing a broad set of sound events. In contrast
to traditional audio context recognition systems that are
offline, SoundSense performs online classification at a lower
computational cost but yields results that are comparable to
offline systems. The ambient sound learning algorithm ada-
tively learns a unique set acoustic events for each individual
user, and provides a powerful and scalable framework for
modeling personalized context. SoundSense carries out all
the sensing and classification tasks exclusively on the mobile
phone without undermining the main functions of the phone
(e.g., making and receiving calls, surfing the web, using IM).
We believe the flexiblity and scalability of SoundSense makes
it suitable for a wide range of people-centric sensing applica-
tions and present two simple proof-of-concept applications
in this paper.
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