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ABSTRACT
This paper develops mathematical foundations and architec-
tural components for providing privacy guarantees on stream
data in grassroots participatory sensing applications, where
groups of participants use privately-owned sensors to col-
lectively measure aggregate phenomena of mutual interest.
Grassroots applications refer to those initiated by members
of the community themselves as opposed to by some gov-
erning or official entities. The potential lack of a hierar-
chical trust structure in such applications makes it harder
to enforce privacy. To address this problem, we develop a
privacy-preserving architecture, called PoolView , that relies
on data perturbation on the client-side to ensure individuals’
privacy and uses community-wide reconstruction techniques
to compute the aggregate information of interest. PoolView
allows arbitrary parties to start new services, called pools,
to compute new types of aggregate information for their
clients. Both the client-side and server-side components of
PoolView are implemented and available for download, in-
cluding the data perturbation and reconstruction compo-
nents. Two simple sensing services are developed for illus-
tration; one computes traffic statistics from subscriber GPS
data and the other computes weight statistics for a partic-
ular diet. Evaluation, using actual data traces collected by
the authors, demonstrates the privacy-preserving aggrega-
tion functionality in PoolView.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Time series analysis; K.4.1 [Computing Milieux]:
Computers and Society—Privacy
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1. INTRODUCTION
Much of the past sensor networks research focused on net-

working issues; a scope naturally suggested by the name of
the discipline. Another very important aspect of distributed
sensing, however, is data management . In this paper, we
focus on privacy as a category of data management con-
cerns in emerging applications. Our work is motivated by
the recent surge in distributed collection of data by self-
selected participants for the purpose of characterizing aggre-
gate real-world properties, computing community statistics,
or mapping physical phenomena of mutual interest. This
type of applications has recently been called participatory
sensing , [5]. Examples of such applications include CarTel
[22], BikeNet [10], MMM2 [8], and ImageScape [32].

This paper presents an architecture, mathematical foun-
dations, and service implementation to enable grassroots
participatory sensing applications. We consider communi-
ties of individuals with sensors collecting streams of private
data for personal reasons. These data could also be of value
if shared with the community for fusion purposes to compute
aggregate metrics of mutual interest. One main problem in
such applications is privacy. This problem motivates our
work.

In this paper, we address privacy assurances in the ab-
sence of a trust hierarchy. We rely on data perturbation at
the data source to empower clients to ensure privacy of their
data themselves using tools that perturb such data prior
to sharing for aggregation purposes. Privacy approaches,
including data perturbation, are generally met with criti-
cism for several good reasons. First, it has been repeatedly
shown that adding random noise to data does not protect
privacy [24, 21]. It is generally easy to reconstruct data
from noisy measurements, unless noise is so large that util-
ity cannot be attained from sharing the noisy data. Second,
anonymity (another approach to privacy) does not help ei-
ther. Anonymized GPS data still reveals the identity of the
user. Withholding location data in a radius around home
can be a solution, but opting to withhold, in itself may re-
veal information. Moreover, in a sparsely deployed network,
the radius would have to be very large to truly anonymize
the data. A third question is whether the assumption of
lack of a centralized trusted entity is justified. After all,
we already entrust our cell phone providers with a signif-
icant amount of information. It should not be difficult to
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provide added-value services that benefit from the current
(fairly extensive) trust model.

Below, we address the aforementioned questions prior to
presenting our approach. The paper addresses the problem
of privacy in time-series data1. The fundamental insight as
to why perturbation techniques do not protect privacy is
correlation among different pieces of data or between data
and context (e.g., identity of owner). The authors take the
small step of addressing correlations within a data stream.
We show that with proper tools, non-expert users can gener-
ate appropriately-correlated application-specific noise in the
absence of trust, such that data of these individuals cannot
be reconstructed correctly, but community aggregates can
still be computed with accuracy. We further explain how
non-expert users might be able to generate the appropriate
application-specific noise without trusting external parties
related to that specific application. Observe that inability
to reconstruct actual user data largely obviates the need
for anonymity. We acknowledge that our solutions are not
needed for scenarios where a hierarchy of trust exists. In
contrast to such scenarios, in this paper, we are interested
in providing a way for individuals in the community to col-
lect information from their peers such as “how well does this
or that diet or exercise routine work” or “what patterns of
energy use at home really worked for you to reduce your
energy bill”? Obviating the requirement to find a mutually
trusted entity before data are collected is a way to encourage
the proliferation of grassroots participatory sensing applica-
tions.

We adopt a client-server architecture, called PoolView ,
where clients share (perturbed) private sensory data and
servers (called pools) aggregate such data into useful infor-
mation made available to the community. PoolView presents
a simple API for individuals to set up new pools the way
they might set up a wiki or discussion group. Simple APIs
are also provided for clients to subscribe to pools and ex-
port their data. Interactions between clients and servers
rely on a common data-stream abstraction. A stream al-
lows an individual to share a sequence of (perturbed) data
measurements such as weight values or GPS coordinates (a
logged trip). One main goal we address in this paper is
to compute perturbation such that (i) it preserves the pri-
vacy of application-specific data streams against common
reconstruction algorithms, (ii) it allows computation of com-
munity aggregates within proven accuracy bounds, and (iii)
the perturbation (which may be application-specific) can be
applied by non-expert users without having to trust the ap-
plication. Hence, any person can propose a custom statistic
and set up a pool to collect (perturbed) data from non-
expert peers who can verify independently that they are
applying the “right” (application-specific) perturbation to
preserve their privacy before sharing their data.

As alluded to above, ensuring privacy of data streams
via perturbation techniques is complicated by the existence
of correlation among subsequent data values in time-series
data. Such correlations can, in general, be leveraged to at-
tack the privacy of the stream. For example, sharing a single
data value representing one’s weight perturbed by adding a
random number between -2000 and 2000 pounds will usually
not reveal much about the real weight. On the other hand,
sharing the current weight value every day, perturbed by

1We do not yet consider multimedia sensor data in this paper

a different random number, makes it possible to guess the
weight progressively more accurately simply by averaging
the sequence to cancel out noise. Perturbing the sequence
by adding the same random number every day does not
work either because it will reveal the trend in weight mea-
surements over time (e.g., how much weight the individual
loses or gains every day). Our goal is to hide both the ac-
tual value and trend of a given individual’s data series, while
allowing such statistics to be computed over a community.
Hence, for example, a community of weight watchers can
record their weights as measured on a particular diet, allow-
ing weight-loss statistics (such as average weight loss and
standard deviation of loss) to be computed as a function of
time on the diet.

To instantiate the architecture, we have implemented (code
available at [30]) and deployed two PoolView services (pools),
one for computing average weight of a self-selected commu-
nity (e.g., all those on a particular diet), and another for
computing traffic statistics in a privacy-preserving fashion.
We present data from the above two case studies, collected
by the authors.

The rest of this paper is organized as follows. Section 2 de-
scribes the perturbation techniques that we develop for shar-
ing time-series data in a privacy-preserving manner. Sec-
tion 3 describes PoolView, our privacy-centric architecture
for participatory sensing. We discuss the results from the
two case studies in Section 4. Related work is presented in
Section 5. Finally, we conclude the paper in Section 6 and
discuss directions for future research.

2. DATA PERTURBATION
Consider a participatory sensing application where users

collect data that are then shared (in a perturbed form)
to compute community statistics. The reader may assume
an application where statistics are computed after the fact
(such as average traffic or average energy consumption statis-
tics), or where they evolve very slowly (such as weight statis-
tics).

In this section, we provide the mathematical foundations
needed for perturbing time-series data in grassroots partic-
ipatory sensing applications. Our perturbation problem is
defined as follows. Perturb a user’s sequence of data values
such that (i) the individual data items and their trend (i.e.,
their changes with time) cannot be estimated without large
error, whereas (ii) the distribution of community data at any
point in time, as well as the average community data trend
can be estimated with high accuracy.

For instance, in the weight-watchers example, it may be
desired to find the average weight loss trend as well as the
distribution of weight loss as a function of time on the diet.
This is to be accomplished without being able to reconstruct
any individual’s weight and weight trend. For another exam-
ple, it may be desired to compute the average traffic speed
on a given city street, as well as the speed variance (i.e., the
degree to which traffic is “stop-and-go”), using speed data
contributed by individuals without being able to reconstruct
any individual’s speed and acceleration curves.

Examples of data perturbation techniques can be found
in [3, 2, 12]. The general idea is to add random noise with a
known distribution to the user’s data, after which a recon-
struction algorithm is used to estimate the distribution of
the original data. Early approaches relied on adding inde-
pendent random noise, which were shown to be inadequate.
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For example, a special technique based on random matrix
theory has been proposed in [24] to recover the user data
with high accuracy. Later approaches considered hiding in-
dividual data values collected from different private parties,
taking into account that data from different individuals may
be correlated [21] 2. However, they do not make assump-
tions on the model describing the evolution of data values
from a given party over time, which can be used to jeopardize
privacy of data streams. By developing a perturbation tech-
nique that specifically considers the data evolution model,
we show that it is strong against attacks that extract regu-
larities in correlated data such as spectral filtering [24] and
Principal Component Analysis (PCA) [21].

2.1 A General Overview
We show in this paper that privacy of time-series data

(measuring some phenomenon, P ) can be preserved if the
noise used to perturb the data is itself generated from a
process that approximately models the phenomenon. For
instance, in the weight watchers example, we may have an
intuitive feel for the time scales and ranges of weight evolu-
tion when humans gain or lose weight. Hence, a noise model
can be constructed that exports realistic-looking parameters
for both the direction and time-constant of weight changes.
We can think of this noise as the (possibly scaled) output
of a virtual user . For now, let us not worry about who ac-
tually comes up with the noise model and what the trust
implications are. Later, we shall revisit this issue in depth
(Section 2.9).

Once the noise model is available (noise model generation
is described at the end of this section), its structure and
probability distributions of all parameters are shared with
the community. By choosing random values for these pa-
rameters from the specified distribution, it is possible, for
example, to generate arbitrary weight curves of virtual peo-
ple showing weight gain or loss. A real user can then add
their true weight curve to that of one or several locally gen-
erated virtual users obtained from the noise model. The
actual model parameters used to generate the noise are kept
private. The resulting perturbed stream is shared with the
pool where it can be aggregated with that of others in the
community. Since the distributions of noise model param-
eters are statistically known, it is possible to estimate the
sum, average and distribution of added noise (of the entire
community) as a function of time. Subtracting that known
average noise time series from the sum of perturbed commu-
nity curves will thus yield the true community trend. The
distribution of community data at a given time can simi-
larly be determined since the distribution of noise (i.e., data
from virtual users) is known. The estimate improves with
community size.

A useful refinement of the above technique is to separate
in the virtual user model parameters that are inputs from
those that express intrinsic properties of the model. For ex-
ample, food intake may be an input parameter of a virtual
user model. Inputs can be time-varying. Our perturbation
algorithm allows changing the values of input model param-
eters with time. Since the input fed to the virtual users is
not shared, it becomes very hard to extract real user data
from added noise (i.e., virtual user) curves.

2Since the data correlation is across individuals of the popu-
lation, we will not compare it with our work in the evaluation
section

One last question relates to the issue of trust. Earlier, we
motivated perturbation approaches in part by the lack of
a central trusted party that would otherwise be able to pri-
vately collect real unperturbed data and compute the needed
statistics. Given that non-experts cannot be asked to pro-
gram noise models for each new application (or even be
expected to know what these models are), and since they
cannot trust the data collection party, where does the noise
(i.e., the virtual user) model come from and how does a non-
expert client know that the model is not fake? Obtaining
the noise model from an untrusted party is risky. If the
party is malicious, it could send a “bad” model that is, say,
a constant, or a very fast-changing function (that can be
easily separated from real data using a low-pass filter), or
perhaps a function with a very small range that perturbs
real data by only a negligible amount. Such noise models
will not perturb data in a way that protects privacy.

The answer comes from the requirement, stated earlier,
that the noise added be an approximation of the real phe-
nomenon. Incidentally, observe that the above requirement
does not mean that the noise curve be similar to the user
data curve. It only means that both come from a model of
the same structure but different parameters. Hence, in the
weight example, it could be that the user is losing weight
whereas the noise added is a curve that shows weight gain.
Both curves come from the same model structure (e.g., a
first order dynamic system that responds to food intake with
a gain and time-constant). The models would have differ-
ent parameters (a different gain, a different time-constant,
and importantly a different input modeling the time-varying
food intake).

With the above in mind, we allow the server (that is un-
trusted with our private data) to announce the used noise
model structure and parameter distribution to the commu-
nity of users. The model announced by the server can be
trusted by a user only if that user’s own data could have
been generated from some parameter instantiation of that
model with a non-trivial probability. This can be tested lo-
cally by a curve-fitting tool on the user’s side the first time
the user uses the pool. Such a general tool is a part of the
client-side PoolView code distribution. Informally, a noise
model structure and parameter distributions are accepted
by a user only if (i) the curve fitting error for user’s own
data is not too large and (ii) the identified model parameter
values for user’s data (that result from curve fitting) are not
too improbable (given the probability distributions of model
parameters).

In the rest of this section, we formalize the notions of
perturbation (Section 2.2), reconstruction (Sections 2.3, 2.4,
2.5, 2.6), and model validation (Section 2.7) discussed above.
We prove properties of the approach such as the degree of
privacy achieved and the community reconstruction error.

2.2 Data Perturbation Algorithm
Consider a particular application where a pool (an aggre-

gation server) collects data from a community to perform
statistics. To describe the perturbation algorithm, let N be
the number of users in the community. Let M be the num-
ber of data points sent to the aggregation server by each
user (we assume this to be the same across users for no-
tational simplicity, but the algorithm does not depend on
that). Let xi = (xi

1, x
i
2, . . . , x

i
M ), ni = (ni

1, n
i
2, . . . , n

i
M ),

and yi = (yi
1, y

i
2, . . . , y

i
M ) represent the data stream, noise
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and perturbed data shared by user i, respectively. At time
instant k, let fk(x) be the empirical community distribu-
tion, fe

k(x) be the exact community distribution, fk(n) be
the noise distribution, and fk(y) be the perturbed commu-
nity distribution. The exact community distribution is the
distribution of a community with infinite population. In re-
ality, this is not true. Therefore, we use the notion empirical
community distribution to address the distribution of a true
community with limited population. The notion of exact
community distribution is useful when the reconstruction
error of a small community is considered.

Most user data streams can be generated according to
either linear or non-linear discrete models. In general, a
model can be written as a discrete function of index k (e.g.
time, distance), application dependent parameters θ, inputs
u, and is denoted as g(k, θ,u). Notice that θ is a fixed
length parameters vector characterizing the model while u
is a vector of length M characterizing the input to the model
at each instance.

For example, in the Diet Tracker application, according
to one article [26], the weight of a dieting user over time [26]
can be roughly approximated by three parameters: λk, β,
and W0. β is the body metabolism coefficient, W0 is the
initial weight of the person right before dieting, and λk is the
average calorie intake of that person on day k. The weight
W (k) of a dieting user on day k of the diet is characterized
by a non-linear equation:

W (k) = W (k − 1) + λk + βW (k − 1)3/4 (1)

W (0) = W0 (2)

While we do not assert the validity of the above diet
model, we shall use it for illustration. In this example, the
model parameter vector is θ = (β, W0) and the input to the
model is u = (λ1, λ2, . . . , λM ). From Equations (1, 2), given
θ and u, one can generate the weight of a user with high ac-
curacy. While the model for a dieting person is not private
and the probability distributions of weight parameters over
a large population can be approximately hypothesized, it is
desired to hide the parameters θ and u of any given user
from being estimated. This protects an individual user’s
privacy.

Once the model for shared data is known, the entire data
stream of user i can be represented as a pair of parameter
vectors (θi,ui). We can assume that for the community,
θi is drawn from a probability distribution fθ(θ) and ui is
drawn from another probability distribution fu(u). Both
the real distributions fθ(θ) and fu(u) are unknown to the
aggregation server.

The distributions fθ(θ) and fu(u) are important since
they characterize typical data streams of the users in a com-
munity. To generate noise with the same model as the data,
the parameters θ and u are required. Because the real dis-
tributions fθ(θ) and fu(u) are unknown, approximate dis-
tributions fn

θ (θ) and fn
u (u), are used to generate θ and u,

respectively.
In short, given the data xi = (xi

1, x
i
2, . . . , x

i
M ), the model

g(k, θ,u), and the approximated distributions fn
θ (θ), fn

u (u),
the perturbed data for user i is generated as follow:

• Generate samples θi

n
and ui

n
, from the distributions

fn
θ (θ) and fn

u (u), respectively.

• Generate noise stream ni = (ni
1, n

i
2, . . . , n

i
M ), where

ni
k = g(k, θi

n
, ui

n
)

• Perturbed data is generated by adding the noise stream
to the data stream yi = xi + ni.

To achieve better privacy, a scaled version of the noise
may be added to the data, thus the perturbed data will now
be yi = xi+Ani, where A is either a random variable chosen
from a known distribution fA(A) or a constant. However,
the choice of fA(A) (if A is a random variable) or the value
of A (if A is a constant) must be the same for all users in
the community so that the aggregation server can be able
to reconstruct the community distribution. In the situation
that a scaling factor is used, the parameters associated with
A are provided by the aggregation server along with the
model and the model’s parameters.

2.3 Reconstruction of Community Average
In this section, we consider a simple case where the ag-

gregation server is interested in estimating the community
average at a certain time instance k. Since the parameter
distributions (fn

θ (θ), fn
u (u), fA(A)) and the model g(k, θ,u)

are known, the noise distribution at arbitrary time instance
k can be accurately calculated. All users use the same
data model structure and parameter distributions to gen-
erate their noise streams. Therefore the noise distribution
at any time instance k is the same for all the users and is
denoted as fk(n).

Upon receiving the perturbed data yi from all users, the
aggregation server calculates the empirical average of the
community data at time k as PAk = 1

N

PN
i=1 yi

k. By the
law of large numbers, if the number of users in the commu-
nity (N) is large enough, the empirical value is equal to the
expected value of the community perturbed data E[yk]. We
can write E[yk] as follows:

E[yk] = E[xk + Ank] (3)

= E[xk] + E[A]E[nk] (4)

Because the distribution of A and nk are known to the ag-
gregation server, E[A] and E[nk] can be computed. There-
fore the community average at time k can be estimated as
E[xk] = PAk − E[A]E[nk]. Note that, Equation ( 4) fol-
lows from Equation ( 3) because A is either a constant or a
random variable that is independent of nk.

In the special case that A is chosen as a zero mean random
variable, the estimated community average at time k is also
the average of the perturbed data at time k. In other words,
the server simply averages the perturbed data to get (a good
estimate of) the true community average.

2.4 Reconstruction of Community Distributions
We will now describe the more general problem of re-

constructing the distribution (as opposed to the average) of
community data at a given point in time. At time instance
k, the perturbed data of each user is the sum of the actual
data and the noise yi

k = xi
k+ni

k. Thus the distribution of the
perturbed data fk(y) is the convolution of the community
distribution fk(x) and the noise distribution fk(n):

fk(y) = fk(n) ∗ fk(x) (5)

All the distributions in Equation (5) can be discretized as:

fk(n) = (fn(0), fn(1), . . . , fn(L))

fk(x) = (fx(0), fx(1), . . . , fx(L))

fk(y) = (fy(0), fy(1), . . . , fy(2L))
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And the Equation (5) can be rewritten as:

fy(m) =

∞
X

k=−∞

fx(k)fn(m − k) (6)

Since convolution is a linear operator, Equation (6) can
be written as

fk(y) = Hfk(x) (7)

where H is a L × (2L + 1) Toeplitz cyclic matrix, which is
also called the blurring kernel, constructed from elements of
the discrete distribution fk(n) as:

H =

0

B

B

B

B

B

@

fn(0) 0 0 . . . 0
fn(1) fn(0) 0 . . . 0
fn(2) fn(1) fn(0) . . . 0

. . . . . . . . . . . . . . .
0 0 . . . fn(L) fn(L − 1)
0 0 0 . . . fn(L)

1

C

C

C

C

C

A

(8)

In Equation (7), fk(x) is the community distribution at time
k that needs to be estimated, H is known and fk(y) is the
empirical perturbed data distribution. This problem is well
known in the literature as the deconvolution problem. Sev-
eral algorithms have been developed to solve this problem
and can be categorized into two classes. The first is a set
of /iterative algorithms, such as Richardson-Lucy algorithm,
EM algorithm, and Poisson MAP method. The second class
of algorithms are non-iterative, examples include Tikhonov-
Miller restoration and SECB restoration. None of the it-
erative algorithms give bounds on the reconstruction error,
while the non-iterative algorithms, supported by well defined
mathematical optimization methods, give upper bounds on
the reconstruction error. In this paper, the Tikhonov-Miller
restoration method is employed to compute the community
distribution.

The Tikhonov-Miller restoration [34] requires an apriori
bound ε for the L2 norm of the noise, together with an apri-
ori bound M for the L2 norm of the community distribution:

||Hfe
k (x) − fk(y)||2 ≤ ε (9)

||(HT H)−νfe
k (x)||2 ≤ M (10)

Throughout this paper, || ||p denotes the Lp(R) norm of
a vector. The optimal solution fk(x) is chosen to minimize
the regularized quadratic functional:

||Hfk(x) − fk(y)||22 +
“ ε

M

”2

||(HT H)−νfk(x)||22 (11)

The fraction λ = ε/M is called the regularization coef-
ficient which governs the relative importance between the
error and the regularized term [23].

By minimizing Equation (11), the exact expression for the
optimal solution f∗

k (x) can be found:

f∗

k (x) = Q−1
T HT fk(y) (12)

QT = HT H +
“ ε

M

”2

(HT H)−2ν (13)

Equation (12) and (13) are used in the aggregation server
to reconstruct the community distribution. All the parame-
ters ε, M , and ν are empirically tuned to get a small recon-
struction error. The optimal solution f∗

k (x) may not form
a probability distribution, thus normalization is needed to

achieve a proper probability distribution. The relation be-
tween those parameters and reconstruction error is analyzed
in the following section.

2.5 Error Bound on Community Distribution
Reconstruction

If all the constraints in Equation (9) and Equation (10)
are satisfied, the error bound of the reconstruction is given
as:

||fe
k (x) − f∗

k (x)||2 ≤
√

2{A(ν)}−1/2M1/(1+2ν)ε2ν/(1+2ν) (14)

A(ν) = (2ν)1/(1+2ν) + (2ν)−2ν/(1+2ν) (15)

The reconstruction error bound in Equation (14) depends
on ε, M , and ν. From Equation (14), we observe that
the larger the ε, the larger the reconstruction error’s upper
bound. We can rewrite Equation (9) as follows to observe
the trade-off between the noise variance and the reconstruc-
tion error:

||Hfe
k (x) − fk(y)||2 = ||fk(n) ∗ fe

k (x) − fk(n) ∗ fk(x)||2 (16)

= ||fk(n) ∗ (fe
k (x) − fk(x))||2 (17)

≤ ||fk(n)||2||fe
k (x) − fk(x)||1 (18)

Equation (18) is obtained from Equation (17) using Young’s
inequality. Note that ε is chosen so that Equation (9) is sat-
isfied, therefore we can tighten the condition on ε such that:

||Hfe
k (x) − fk(y)||2 ≤ ε ≤ ||fk(n)||2||fe

k (x) − fk(x)||1 (19)

Then the error bound in (14) can be written as:

||fe
k (x) − f∗

k (x)||2 ≤
√

2{A(ν)}−1/2 × M1/(1+2ν) ×
×||fk(n)||2ν/(1+2ν)

2 × ||fe
k (x) − fk(x)||2ν/(1+2ν)

1 (20)

This equation gives us a good approximation of the com-
munity reconstruction error based on the noise distribution.
The term ||fk(n)||2 is the noise energy, this term is the sum
of all the noise from all users at time instance k. The term
||fe

k (x) − fk(x)||1 is the sum of all the differences between
the true community distribution at time k and the empir-
ical distribution constructed from all the community data
points at time k, which is very small. We call this term
community sampling error. The community sampling error
depends on the number of users in the community, N . A
larger N implies a smaller community sampling error and
vice versa. Thus, the larger the noise energy, the higher the
reconstruction error and the larger the number of users in
the community, the lower the reconstruction error. Hence,
for a large enough community, a good compromise may be
achieved between privacy (which we relate to noise energy)
and reconstruction error.

In Section 2.3, we mentioned that privacy can be im-
proved by multiplying the noise by a factor A. For sim-
plicity, first consider the case when A is a constant. Note
that ||Afk(n)||2 = A||fk(n)||2. Therefore the reconstruction

error in Equation (20) is scaled by a factor of A2ν/(1+2ν).
If A is a finite random variable then the bound becomes
||Afk(n)||2 = δ(A)||fk(n)||2, where δ(A) is a number whose
value depends on the distribution of A. In both cases, the
reconstruction error is scaled by a factor which can be esti-
mated.
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2.6 Privacy and User Data Reconstruction
In this section, we will analyze the level of user privacy

achieved using our proposed perturbation algorithm. Many
methods have been proposed to measure privacy. For ex-
ample, in [3], privacy is measured in terms of confidence
intervals. In [2], a measure of privacy using mutual informa-
tion is suggested. However, the above methods do not take
the data model as well as the exploitation method into ac-
count. In fact, privacy breaches are different depending on
the exploitation method employed by the adversary. In this
paper, we quantify privacy by analyzing the degree to which
actual user data can be estimated from perturbed data us-
ing methods that take advantage of data correlations such as
PCA and spectral filtering. Other possible estimation meth-
ods such as Maximum Mean Squared Estimation (MMSE)
are also discussed.

First, consider traditional filtering methods such as PCA
and spectral filtering. These methods work based on the
assumptions that (i) additive noise is time independent and
is independent of user data, and (ii) noise variance is small
compared to the signal variance. With our proposed per-
turbation scheme, both assumptions are violated. The noise
is generated from a known model but with unknown pa-
rameters, thus noise points are correlated. In addition, the
noise and user data are generated from the same model.
The noise variance is not necessarily small since it can be
amplified by a factor A as discussed above. The filtering
techniques require prior knowledge about the noise in order
to do accurate estimation. In our scheme, on the other hand,
one does not know the noise distribution for any single user,
since it is a function of the specific model parameters cho-
sen, which remain private. We only know the distribution of
such parameters over the community, but not their specific
instances for any given user. Therefore, it is expected that
the filtering techniques cannot reveal the user data with high
accuracy. It is empirically shown in Section 4 that the PCA
method is not successful in reconstructing user data. Other
methods (not shown) present similarly poor reconstruction.
Very little information is breached.

A better way to estimate user data is to estimate the
user parameters only, since the model is known. MMSE
is one of the most common methods to estimate parame-
ters given the model. Assume that the user data is gen-
erated by g(k, θx, ux), the noise by an approximated model
ga(k, θn, un), and the perturbed data y is g(k, θx, ux)+ga(k, θn, un).
Then, the parameter estimation using MMSE is defined as
follows:

(θ∗, u∗) = argmin
(θ,u)

||y − g(k, θ, u)||2 (21)

We consider the case when the noise is generated by a
well approximated model. In this case, the perturbed data
has the same dynamics as the user data and hence can be
approximated by ỹ = g(k, θy, uy) with a very small error,
δ = ||ỹ − y||. Then the optimal solution for Equation (21)
is (θ∗, u∗) = (θy, uy). Thus, the error between the user
parameters and the MMSE is ||(θy, uy)− (θx, ux)||. In order
to make it big, the set of possible noise streams must be
large. If the above assumption holds and the data model is
well approximated, then our approach is robust to MMSE
attacks.

However, if an ill approximated data model (or a totally
different model) is used to generate the noise stream, user

data may be revealed. A malicious server may use this
method to exploit the user parameters. In this case, instead
of using the MMSE method defined above, the malicious
server may use a slightly different estimation, such as:

(θ∗, u∗, θ̃∗, ũ∗) = argmin
θ,u,θ̃,ũ

||y − g(k, θ, u) − ga(k, θ̃, ũ)||2 (22)

In the estimation above, the malicious server tries to esti-
mate both the parameters of the client and the parameters of
the noise. Because there is a modeling mismatch, the above
estimation may give a good approximation of the user data.

Similarly, a malicious server may send a good data model,
but with a very small set of parameters. With this type of
attack, using the parameter distributions sent by the server,
the client can only generate a very small set of noise streams.
Thus, the server can extract user data from perturbed data
stream since the noise is predictable. We devised a method,
which can be used on the user side, to effectively verify that
the noise model announced at the server and its parameters
are adequate. This is discussed in Section 2.7. Users may
choose not to share their data if bad noise models or bad
parameter distributions are detected as will be shown next.

2.7 Model and Parameter Verification
In Section 2.6, we have shown that a malicious server can

deliberately announce a “bad”noise model in order to reveal
user data by using special estimation techniques. In what
follows, we will formalize the method to detect whether a
model and its parameter distribution is malicious or not.
The detection is based on the following observation: the
user data should be a typical realization of the model which
also means that the probability of the parameters of the user
data, as sampled from the noise model parameter distribu-
tion, is high.

Given the model g(k, θ, u), the distribution fn(θ), fn(u)
(both publicly announced to the community by the aggre-
gation server) and user data xi, we perform parameter ver-
ification as follows.

We estimate the user data parameters by minimizing the
following quadratic function:

(θi, ui) = argmin
θ,u

||xi − g(k, θ, u)||2 (23)

The minimization problem in Equation (23) can be solved
numerically by algorithms such as gradient descent or quasi
Newton. A numeric solver with a simple (one-click) user API
is included in the client-side PoolView code. Observe that if
the given model is an ill approximation of the data model,
then the error in this estimation is high. Thus to check the
validity of the model it is required that the estimation error
be less than a predefined threshold p1, which depends on the
mean and variance of user data, (i.e. ||xi − g(k, θi, ui)|| ≤
p1). Using triangular inequality, it can be easily shown that:

min(|||xi|| − ||g(k)||min|, |||xi|| − ||g(k)||max|)
≤ ||xi − g(k, θi, ui)|| ≤ p1 (24)

In the Equation (24), ||g(k)||min and ||g(k)||max are the
minimum and maximum norms of g(k) over all possible noise
curves. For each user, ||xi||, ||g(k)||min, and ||g(k)||max are
known. Hence this equation gives the user a lower bound
for p1. It is empirically shown that a good bound is usually
within 10% of this estimated bound.
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Finding noise model parameters that approximate the user
data is not sufficient. The parameters that are obtained
should not lie at the very tail of the parameter distribution
sent by the server. If this happens, it would mean that either
the user is anomalous (e.g., a very overweight person) or the
server is not sending a representative distribution. The va-
lidity of the parameter distribution is checked by verifying
if the probability of (θi, ui) is larger than a threshold (i.e.
P (θi, ui) = fn(θi)fn(ui) ≥ p2).

A disadvantage of this approach is that individuals whose
data are anomalous will not know to trust the server even
if the server was trusted. In a social setting, by contact-
ing their peers, however, such individuals may be able to
disambiguate the situation.

Further, the server can breach privacy by sequentially
proposing different noise models to the user. In such a case,
the user can use a simple technique of not accepting mul-
tiple noise models from a given server for a particular data
stream.

Table 1 summarizes the various attacks (that breach pri-
vacy) and the countermeasures proposed in this paper.

Attacks Countermeasures

Reconstruction attacks us-
ing estimation techniques
(e.g., PCA)

Use a noise model similar
to data model

Malicious noise models
from server

Reject models that do not
fit data on client side

Sequential noise models
from server

Limit noise model updates
accepted by client

Malicious data from client Reject outliers by server

Table 1: Summary of attacks and countermeasures

2.8 Context Privacy
Thus far, we have developed a general data perturba-

tion technique that preserves an individual user’s privacy for
time-series data. We observe that the privacy is preserved in
the sense that the values and the trend of user data are not
revealed (hard to infer). Another important aspect of pri-
vacy is context privacy . For example, data measurements are
associated with a given time and place. Sharing data (e.g.,
on city traffic), even in perturbed form, still puts the user
at a given time at a particular location. In this paper, we
do not contribute to context privacy research. Traditional
approaches to solve the problem typically rely on omitting
some fields from the data shared or not answering queries
for data (even in perturbed form) unless they are appropri-
ately broad. For example, a user may reveal that they were
on a particular city street at 11am on a Wednesday but not
reveal which Wednesday it was. This could be enough to
achieve a level of privacy and at the same time satisfy the
statistical need of the aggregation server, say, if the statistic
being computed is that of traffic density as a function of time
of day and day of week. The policy used for blanking-out
parts of the data fields shared to protect context is indepen-
dent from our techniques to protect data. Context privacy
policies are beyond the scope of this work.

2.9 Noise Model Generation
At the beginning of this section, we mentioned that the

noise model must be similar to the data model to avoid
reconstruction attacks. This seems problematic, since the
whole purpose of measuring data is often to learn about the
unknown, which seems inconsistent with having an a priori
data model. There is a slight fallacy in the above argument.
First, observe that in most scientific pursuits, there is a hy-
pothesis that scientists try to prove or disprove. This means
that some models and expectations already exist. These can
be used to come up with a noise model. For example, there
are well-known models for vehicular traffic [19], which can
be used to generate the noise distribution (fn

θ ). Methods to
extract models from sensor network data, such as the one
presented in [17], can also be used. Second, in most cases
(even those not related to science), we need to have expec-
tations on the shape of the data, at least so that we are able
to tell if the sensor is working correctly or not. This means
that we already have a mental model of what is probable and
what is improbable. These expectations can be translated
into a noise model. Further, a given model can evolve over
time. As we learn more about the measured phenomenon,
clients may accept a small number of noise model updates.

3. ARCHITECTURE AND
IMPLEMENTATION

In this section, we will present the architecture that we
develop for participatory sensing applications and how the
theory we described in the previous section fits with our
architecture. We then describe the implementation of our
PoolView services.

3.1 General Architecture
The centerpiece of our architecture for participatory sens-

ing is the privacy firewall , controlling the release of a user’s
private data.

A data owner will typically store their private data inside
the firewall, which introduces a need for a private storage
layer . The owner may be in possession of multiple (trusted)
sensors that contribute data to her private storage. These
devices collectively form the sensing layer . In the context of
this paper, we assume that the sensors an individual owns
generate time series data. Thus, for a user i, a given sensor
generates xi = (xi

1, x
i
2, . . . , x

i
M ). For example, a person on

a diet might be using a Bluetooth scale that associates with
their cell-phone to upload daily weight measurements that
are then stored in the user’s private storage (a prototype
of this system was built by Motorola). Outside the privacy
firewall are the aggregation services that collect perturbed
data from multiple users to compute community informa-
tion. These services form an information distillation layer.

The basic function of the privacy firewall is to screen or
perturb user data in such a manner as to preserve the privacy
of the data streams that the user owns. A privacy table is
the central data structure of the firewall. It can be thought
of as a two dimensional array whose dimensions are (i) ag-
gregation services and (ii) data types. A cell corresponding
to a given service and data type contains a pointer to the
corresponding perturbation model.

To estimate the community distribution, fk(x), an aggre-
gation server needs the perturbed distribution fk(y) and the
blurring (noise) kernel, H. Since each client shares the per-
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turbed time-series data (i.e., yi), the server knows fk(y).
Also, recall from Section 2 that the blurring kernel H is ob-
tained from the noise distribution, fk(n). Since the noise
distribution is known to the server, the server has the req-
uisite information to estimate the community distribution,
which is done as described in Section 2.

Our service architecture is pictorially represented in Fig-
ure 1. The figure depicts the four layers of the architecture
(namely, the sensor layer, the private storage layer, the pri-
vacy firewall layer, and the information distillation layer).
It is useful to divide sensors in the sensor layer into ones
that have Internet connectivity, such as sensors in 3G cell-
phones, and ones that don’t. The latter would typically use
proprietary or custom protocols to interface with a gateway
that has Internet connectivity. It is possible that such pro-
tocols will support disruption-tolerant operation where data
accumulates when the sensor is disconnected and is uploaded
in bulk to the gateway when the sensor and gateway come
into contact. This, for example, is the case with Smart At-
tire sensors described in [14], as well as the case with the
vehicular study reported in the evaluation section.

Figure 1: PoolView architecture

3.2 PoolView Implementation
In this section, we will describe the implementation details

of our architecture. We implemented our architecture and
instantiated it by deploying two applications, one that allows
for the computation of traffic statistics, and the other that
computes weight statistics.

The fundamental tie that links the layers of the informa-
tion distillation architecture together is our data stream ab-
straction. A PoolView data stream is a generic time-indexed
collection of data items from a given source. The stream is
characterized by a data owner (the source), data object type,
location, and (start and end) time of collection, as well as
a sampling frequency if applicable. A stream may contain
one or more data values. The above stream attributes are
identified using XML tags.

The interfaces between layers in our architecture are im-
plemented in HTTP. Namely, Internet-ready sensors and
gateways in the sensor layer employ HTTP PUT commands
to deposit data in storage servers. Note that, in this con-
text, the storage server can be a simple laptop that the user
owns. Users access information distillation servers using

regular HTTP GET commands. In exchange for informa-
tion, a distillation server requests relevant (perturbed) user
data by issuing an HTTP POST query to the user’s storage
server. Users can also register with a distillation server to
poll them for new data periodically, or have the distillation
server poll them on demand (e.g., each time their storage
server is updated). The POST query is essentially an SQL
query expressed in XML to remove implementation depen-
dencies between the client and server.

The HTTP POST query is intercepted by the privacy fire-
wall, which perturbs the requested data before sharing it.
The above arrangement allows us to use standard web servers
to implement information distillation including perturbation
and aggregation functions. A new HTTP data type is de-
fined which characterizes a PoolView stream. When the
web server receives a GET, POST, or PUT command on such a
data type it invokes a (plug-in) handler for that data type.
Hence, all is needed for implementing the scheme is to write
the plug-ins. For example, in an Apache server, this cor-
responds to writing a module that handles the PoolView
stream data type. In our current implementation, we use
an Apache HTTP server with the PUT and POST handlers
written as modules in Perl. The privacy firewall modules
are also implemented as modules in Perl. The mathemati-
cally intensive operations on the client side, such as the ones
that require curve fitting, probabilistic estimates are imple-
mented in SciLab [33]. Java wrappers for SciLab are used
to integrate the SciLab modules with Perl. Our implemen-
tation of the data storage server includes, in addition to the
HTTP server, a MySQL database server for the storage and
retrieval of personal data. A detailed document describing
the protocol is available for reference purposes [31].

4. CASE STUDIES
In this evaluation section, we present two case studies with

PoolView services, one is a traffic analyzer and the other is
a diet tracker.

In both the case studies, when an individual user connects
to the information distillation server of the corresponding
service for community statistics, the server sends an HTTP
POST request to the user’s personal storage server asking
for the requisite data. The request is intercepted by the
user’s privacy firewall. The request is validated by the user’s
privacy firewall by first authenticating it to ascertain if it is
from the correct server and then if that server has valid
access rights to the data that is requested. Data are then
shared in a perturbed manner. We will first discuss the
results from the traffic analyzer case study followed by the
diet tracker.

4.1 Traffic Analyzer
The traffic analyzer case study is motivated by the grow-

ing deployment of GPS devices that provide location and
speed information of the vehicles that they are deployed in.
Such data can be used to analyze traffic patterns in a given
community (e.g., average speed on a given street between
8am and 9am in the morning). Analysis of patterns such as
rush hour traffic, off-peak traffic, average delays between dif-
ferent key points in the city as a function of time of day and
day of the week, and average speeding statistics on selected
streets can shed light on traffic safety and traffic congestion
status both at a given point in time and historically over a
large time interval.
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With the above in mind, note that the aim of this evalua-
tion section is to study the performance of the perturbation
techniques. It is not the goal of this paper to actually study
traffic comprehensively in a given city. Hence, we picked
two main streets whose traffic characteristics we would like
to study for illustration. To emulate a community of users,
we drove on these streets multiple times (in our experiments,
the authors took turns driving these streets at different times
of day). We collected data for a community of 30 users. We
used a Garmin Legend [15] GPS device to collect location
data. The device returns a track of GPS coordinates. The
sampling frequency used in our experiments was 1 sample
every 15 seconds. Each trip represented a different user for
our experimentation purposes. The stretch of each of the
two roads driven was about 1.3 miles. Data was collected in
the morning between 10 am and 12 noon as well as in the
evening between 4 pm and 6 pm.

In a more densely deployed system, the assumption is that
data will be naturally available from different users driving
over the period of weeks on these city streets at different
times of day. Such data may then be shared retroactively
for different application purposes. For example, individuals
interested in collecting data on traffic enforcement might col-
lect and share speeding statistics on different city streets or
freeways they travel (e.g., what percentage of time, where,
and by how much does traffic speed exceed posted signage).
Such statistics may come in handy when an individual trav-
els to a new destination. Since speeding is a private matter,
perturbation techniques will be applied prior to sharing.

For the purposes of this paper, we shall call the two streets
we collected data from Green Street and University Avenue.
The aggregation server divides city streets into small seg-
ments of equal length. The average speed on each segment
is calculated from perturbed user data.

4.1.1 Generating the Noise Model
In order to employ our perturbation scheme, we need a

noise model. Since the GPS data is collected with a very low
frequency (1 sample every 15 seconds), speed may change
dramatically on consecutive data points. Figures 2 shows
the real speed curve of one user on Green street in the morn-
ing. We model the speed curve of each user as the sum of
several sinusoidal signals (observe that any waveform can
be expressed a sum of sinusoids by Fourier transform). For
simplicity, we choose to use six sinusoids that represent the
common harmonics present in natural speed variations of
city traffic. The noise model is therefore as follows:

f(k) = a0 +
6

X

i=1

ai sin(bi ∗ k + ci) (25)

The speed model in Equation (25) is characterized by 19
parameters. Once the model for the speed is obtained, we
need to model the distribution of all 19 parameters such
that the speed stream generated by this model has the same
dynamics as the real speed curves. The service developer will
collect a few speed measurements empirically (which is what
we did), take that small number of real speed curves, and use
an MMSE curve fitting to find the range of each parameter.
This approach is used by us to obtain the distribution of
the parameters. The distribution of each parameter was
then chosen to be a uniform within the range obtained. A
sample of speed curve is shown in Figure 2.

Having produced an approximate noise model, the aggre-
gation server announces the model information (structure
and parameter distribution) to the users. Participating users
use this information to choose their private noise parameters
and generate their noise streams using client-side software
(which includes a generic function generator in the privacy
firewall). Each user’s individual speed data is perturbed by
the given noise and sent to the aggregation server when the
user connects to the server. Typical perturbed data is shown
in Figure 2.
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Figure 2: Graph showing the real speed, noise, and
perturbed speed curves for a single user
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Figure 3: Graph showing the reconstructed commu-
nity average speed vs. distance for a population of
17 users

4.1.2 Reconstruction Accuracy
In order to compute the community average, noise distri-

butions at each time instance k must be available for the
aggregation server. Obtaining the exact noise distribution
at each time k given the parameter ai, bi, and ci can be
difficult. Therefore we approximate the noise distributions
by generating a numbers of noise curves (10000 samples)
following the model in Equation 25 and compute normal-
ized histograms of noise values at each time instance. These
histograms are approximations of noise distributions.

To show reconstruction accuracy using the community re-
construction method developed in Section 2.3, the computed
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community average speed curve for each street is presented
in Figure 3. Even with a very small community population
(17 users), the community average reconstruction still pro-
vides a fairly accurate estimate (the average error at each
point is 1.94 mph).

Next, we plot the community average reconstruction ac-
curacy versus the scaling factor A and community popula-
tion N , which is shown in Figure 4(a). First, we examine
the reconstruction error with respect to the scaling factor
A chosen from {1, 10, . . . , 100}. It is theoretically shown in
Section 2.3 that the reconstruction accuracy increases lin-
early with A2ν/(1+2ν). Thus, we should expect a linear error
curve. This is verified in Figure 4(a). The errors computed
in this paper are normalized by dividing the mean squared
error by the number of data points. This can be interpreted
as the average error for each reconstructed point. In this
experiment, when A = 80, the normalized error is 8 mph,
which is about one fourth of the average speed (30 mph).
This might be unacceptable in some applications. Thus the
scaling factor must be chosen with care.

Now, we compare the theoretical error bound devised in
Section 2.5 and the empirical reconstruction error found
above. Typical values for reconstruction parameters are ν =
2, M = 0.01, and ||fe

k (x) − fk(x)||1 = 0.5. The normalized
noise variance ||fk(n)|| can be bounded, ||fk(n)||max = 1.508
(since we know the distribution of the noise for all time in-
stances). The upper bound on the normalized error is also
presented in Figure 4(a).
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Figure 4: Figures showing reconstruction error vs.
scaling factor A (a) and population of community
(b)

Next, we examine the reconstruction error versus the com-
munity population. Since our actual collected data was lim-
ited, we emulated additional user data by doing random lin-
ear combinations of data from real users. Figure 4(b) shows
the normalized reconstruction error versus the community
population. In this experiment, the scaling factor is fixed at
A = 1. We observe that the error decreases exponentially
with the number of users. In addition, the normalized error
for a population N = 100 is about 0.05 which means the av-
erage error for each reconstruction point is 0.05 mph. This
very small error suggests that our proposed reconstruction
method can be used in a small community. In the above
graphs, we plot the reconstruction errors for both Green
Street and University Avenue.

In our next experiment, we compute the reconstructed
community speed distribution at a given location on Uni-
versity Avenue. In order to estimate the distribution with
high accuracy, it is required that the community popula-
tion be large. Therefore, we emulated additional user data
using the same method as described in our previous exper-

iment. The real community speed distribution is shown in
Figure 5(a). The reconstruction method discussed in Sec-
tion 2.4 is used to estimate the community speed distribu-
tion from the perturbed community data, with the result
being shown in Figure 5(b).
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Figure 5: Figures showing the real (a) and recon-
structed (b) community speed distributions for a
population of 200 users

4.1.3 A Privacy Evaluation
In this section, we will analyze the degree to which an

individual user data can be revealed in our scheme. Specif-
ically, we choose the PCA method to obtain an estimate of
the original user data from the perturbed data. The PCA
method is usually very effective in reconstructing data from
the perturbed data with additive noise. Figure 6 shows the
real speed data of one user, the perturbed data, and the
reconstructed data for the perturbation method that we de-
veloped in this paper. We observe that the reconstructed
data is closer to the perturbed data and have very little cor-
relation with the real data. We can conclude from this plot
that PCA is not an effective exploitation method against our
perturbation scheme. Figure 7 shows that what happens if
white noise was used to perturb data, as opposed to the
technique proposed in this paper. As the figure shows, in
this case, PCA can reconstruct the original data curve accu-
rately. This demonstrates the contribution of our proposed
noise model generation.
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Figure 6: PCA based reconstruction of average
speed for one user when noise based on our method
is used for perturbation

For a more accurate evaluation, PCA is applied on the
data of all users on both Green Street and University Av-
enue. Then the standard deviation of the errors, which are
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Figure 7: PCA based reconstruction of average
speed for one user when white noise is used for per-
turbation

the difference between the reconstructed data using PCA
and the real speed data, are calculated. The standard de-
viations for Green street in the morning and evening were
12.56 and 12.68 mph, respectively and those for the Uni-
versity avenue in the morning and evening were 15.56 and
10.47mph, respectively. We notice that the average error in
all the cases are more than 10mph which is high in compar-
ison with the average speed of 40 mph.

4.1.4 Coping with Malicious Servers
This section evaluates the techniques we developed in Sec-

tion 2.7 to deal with malicious servers. A malicious server
is one that “cheats” by announcing a poor noise model in an
attempt to get poorly perturbed user data such that user
privacy can be violated. Since the server shares both the
noise model structure and parameter distributions, “cheat-
ing” can occur either by sending the wrong noise model (a
model of an incompatible structure) or by sending a good
model with bad parameter distributions (so that the noise
curve can be easily estimated).

First, we consider an instance of a malicious server that
sends a wrong noise model (for traffic data). Assume that
the model sent by the server to users is a linear one, y(k) =
ak+b, where a and b are two random variables uniformly dis-
tributed between -0.1 and 0.1. With this linear model, the
server can easily compute an individual user’s data trends.
At the user side, the model is checked using the malicious
server detection method discussed in Section 2.6. It is im-
portant for the user to choose the appropriate threshold p1

(the acceptable fitting error). Too small a p1 may cause the
server to always be rejected (including good servers). Too
large a p1 may cause malicious server noise models to be ac-
cepted. In Figure 8(a), the acceptance rate of both malicious
servers and good servers is plotted against the threshold p1.
We observe from the above figure that a safe threshold for
p1 in this case is 0.1 ≤ p1 ≤ 0.3. We can estimate p1 us-
ing the method proposed in Section 2.7. For the “good”
model, ||g(k)||min and ||g(k)||max can be computed since we
know the range of all parameters, ||g(k)||min = 0.616 and
||g(k)||max = 1.508. The data of the user in this experiment
has the norm of ||x|| = 1.269. Thus, an estimate of p1 = 0.23
is a good one.

Second, consider a malicious server that sends a noise
model of acceptable structure but with a bad parameter
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Figure 8: Evaluation figures showing coping with
malicious server, (a) shows acceptance rate vs.
threshold p1 and (b) shows acceptance rate vs.
threshold p2

distribution. In this experiment, the distribution of all 19
parameters of our multi-sinusoid noise model is chosen to
be Gaussian with the same means as a “good” model, but
a very small variance σ = 0.1. Because σ is very small,
the parameters drawn from this distribution are almost the
same as their means. Hence the noise curve can be easily
predicted in most cases. Figure 8(b) shows the acceptance
rate of the good and malicious server versus the value of
threshold p2 (on the probability that the users data may
have come from the server supplied noise model). For com-
putational convenience, the log of the actual probability is
used as the threshold. A lower threshold is more permissive
in that it accepts models that do not fit user data with high
probability. From the figure, the safe range for the threshold
is −50 ≤ p2 ≤ −5 which is very wide. Thus choosing a good
p2 is easier than choosing a good p1.

4.1.5 Coping with Malicious Users
Finally, we analyze the effect of malicious users on the ac-

curacy of community average reconstruction. Observe that
there is fundamentally no way to ascertain that the user-
supplied sensory data is accurate. In the weight-watchers
case, for instance, even if the scale could somehow authen-
ticate the user and even if the system could authenticate
the scale, there is nothing to prevent the user from climb-
ing on the scale with a laptop or other materials, causing
the reading to be incorrect. The system will work only if
some motivation exists in the community to find out the real
community data. We assume that for a group of self-selected
participants genuinely interested in the overall statistic, such
a motivation exists. The question is, how many malicious
users (who purposely falsify their data) will the statistic
withstand before becoming too inaccurate?

For this purpose, we generate a big community (N = 1000)
and change the number of malicious users. Each malicious
user generate their data according to an uniform distribution
between 0 and Range. We are also interested in how the
range of malicious data affects the reconstruction accuracy?
Figure 9 plots the reconstruction error versus the percent-
age of malicious users for different ranges. The results show
that the range of reconstruction error increases linearly but
very slowly with the percentage of malicious users. In ad-
dition, the range of the malicious data has no effect on the
reconstruction error. Thus, malicious users impose very lit-
tle impact on the overall community reconstruction.
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Figure 9: Reconstruction error v.s. Number of ma-
licious users

4.2 Diet Tracker
The diet tracker case study is motivated by the numer-

ous weight watchers and diet communities that exist today.
An individual on a particular diet monitors her weight on
a periodic basis, perhaps by taking a weight measurement
once a day. This individual would likely be interested in
comparing her weight loss to that of other people on a diet
in order to get a feedback regarding the effectiveness of the
diet program she is following. Although, the person would
like to do it in such a manner that her weight data remains
private.

In the Traffic Analyzer application, to the extent of the
authors’ knowledge, there is no good speed model for a ve-
hicle on a city road. Thus, the speed is modeled in a semi-
empirical way. However, in many other applications, ac-
curate data models are well known and hence can be used
to provide more privacy. The Diet Tracker application is
one such example. Several models for weight loss and diet-
ing have been proposed in existing literature [26, 13, 4, 6].
We adopt the model proposed in [26], which is a non-linear
model and is described by Equations (1) and (2). The above
equations are used to generate the noise stream.

In our deployment, we recorded the weight of a single user
over the course of sixty days, once each day. We generate
the parameters for a typical user based on the data from our
deployment and use these to emulate multiple users.

The parameters for this model include λk, β and W0. The
range of λ and β can be found in [26]. The range of the
initial weight W0 can be taken as the weight of a normal
adult which is from 80 pounds to 210 pounds. The simplest
distribution for these parameters is uniform within their re-
spective ranges. Samples of the real weight data, noise and
the perturbed data are shown in Figure 10.

In this application, we demonstrate a different way of per-
turbing the user data, but use the same algorithm to re-
construct the community distribution. Given the generated
noise n, and the data x, the perturbed data is generated as
follows, y = Ax+Bn+C. In this type of perturbation, A, B
and C are random variables whose distributions are known
to the aggregation server and the users. The reconstruction
of the community distribution can be done in a two-step
process:

• Reconstruct the distribution of Ax by considering Bn+
C as noise, then compute the distribution of log(Ax).
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Figure 10: Graph showing real weight, noise, and
perturbed weight of a single user
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Figure 11: Graph showing the results of PCA re-
construction scheme on a single user

• Because log(Ax) = log(A) + log(x), we could recon-
struct the distribution of log(x) using the distribution
of log(Ax) found above and the distribution of log(A).
Finally, compute the distribution of x from the distri-
bution of log(x).

Note that the transformation of random variables by log
and exp is trivial because both functions are monotonic. The
reconstruction method used in each step is the same as the
method discussed in Section 2.4. Figures 12(a) and 12(b)
plot the original weight distribution and the reconstructed
weight distribution using the above method, respectively.
In this experiment, we use the same method described in
the Traffic Analyzer application to generate a big commu-
nity (500 users). For simplicity, we choose C = 0. A and
B are drawn from uniform distribution between 0 and 10.
We observe from the figures that the reconstructed commu-
nity distribution is very close to the real distribution which
suggests that the two-step reconstruction is a also good re-
construction method.

We observe from Figure 10 that the perturbed data con-
tains a numbers of high frequency components, thus it is
common to ask if the user data can be revealed using filter-
ing techniques? We apply the PCA reconstruction method
(same method used in the Traffic Analyzer application) to
reconstruct an individual user’s data. In order to employ
PCA, we generated a virtual community containing 1000
users, where each user sends their perturbed data to the

292



0 50 100 150 200 2500

0.02

0.04

0.06

0.08

Weight (pound)

Pr
ob

ab
ilit

y

(a)

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

Weight (Pound)

Pr
ob

ab
ilit

y

(b)

Figure 12: Figures showing real (a) and recon-
structed (b) community weight distributions for one
user

aggregation server. Figure 11 shows the real weight data,
perturbed weight, and the reconstructed weight using PCA
for a single user. The result shows that the reconstructed
curve fits in the same direction as the perturbed data. Thus
the filtering techniques again do not work with our pertur-
bation scheme.

In conclusion, the empirical studies in this section confirm
the robustness of the our perturbation technique. In the
two applications, the server has successfully recovered the
community information (the average and the distribution),
and the user privacy is preserved against traditional attacks
(filtering) and specialized attacks (MMSE). Our proposed
techniques also provide means to detect malicious servers
and give flexibilities by provisioning for multiple ways of
perturbing user data.

5. RELATED WORK
Participatory sensing applications have recently been de-

scribed as an important emerging category of future sensing
systems [1]. Early applications have already been published
including a participatory sensor network to search and res-
cue hikers in mountains [20], vehicular sensor networks (cars
with sensor nodes) such as CarTel [22], that deployed sensor
nodes in cars, and sensor networks embedded in client at-
tire [14], cyclist networks (BikeNet) [10], cellphone camera
networks for sharing diet related images (ImageScape) [32],
and cellphone networks for media sharing (MMM2) [8]. The
above applications, however, do not explicitly address the
concerns of privacy.

An architecture for participatory sensing, called Parti-
sans, has been proposed in [29]. In that paper, the main
challenges addressed are those of data verifiability and pri-
vacy. In contrast to our work, the approach assumes a
trusted third party. A similar trust model was assumed in
[25].

Several privacy preserving data perturbation, analysis, and
mining techniques have been developed in the past liter-
ature. We classify past work into three broad categories:
(i) random perturbation (ii) randomized response, and (iii)
secure multi-party computation. The techniques presented
below can be leveraged in future incarnations of our archi-
tecture.

One of the first privacy preserving data perturbation tech-
niques was proposed in [3]. In this technique, each client
has a single numerical data item xi, perturbed by adding
a random number ri drawn independently from a known
distribution. The distribution of the community can be re-
constructed using the Bayes’ rule to estimate a posterior

distribution function. The work in [3] was extended by the
authors’ of [2], where a reconstruction algorithm was pro-
posed that converges to the maximum likelihood estimate
of the original distribution. Several papers [24, 21, 28], ex-
tended the technique presented in [3]. These papers show
that privacy breaches occur under certain conditions, when
the randomized perturbation approach is used. They then
develop solutions to prevent such breaches. But, these meth-
ods do not address the problem of privacy in time-series
data.

A technique for privacy preserving data clustering was
developed in [27]. In the paper, a rotation-based data per-
turbation function is used to hide individual data. Due to
the nature of the rotation matrix, the clusters are computed
correctly despite randomly displacing the individual data
points. It is also possible to do classification and association-
rule mining3 in a privacy-preserving manner. For example,
privacy-preserving association rule mining algorithm is pre-
sented in [12]. A geometric rotation based approach for data
classification is presented in [7]. This work does not address
time-series data.

Randomized response techniques were first introduced by
Warner [35] as early as 1965 to find an estimate of the per-
centage of people in a given population that have a sensitive
attribute X. The idea behind the models is to ask questions
that do not reveal any private information. This idea was
extended in [11] to preserve privacy while mining categorical
data (instead of numerical data) and to a multiple-attribute
data set in [9]. The randomized response technique does not
use perturbation for achieving privacy and the above work
does not address privacy in time-series data.

Secure multi-party computation addresses computing func-
tions of private variables where each member of the commu-
nity knows (and must keep private) one of the variables. A
comprehensive treatise on the basic results of secure multi-
party computation is presented in [16]. The problem with
this approach is its significant overhead that requires a large
number of pairwise exchanges between users in the commu-
nity. Such exchanges do not scale when users are not avail-
able simultaneously for purposes of completing the compu-
tation, or when the number of users involved changes dy-
namically.

6. CONCLUSIONS
In this paper, we presented an architecture and perturba-

tion algorithms for stream privacy. It ensures the privacy
of individual user data while allowing community statistics
to be constructed. The architecture is geared for participa-
tory sensing applications where community members may
set up data aggregation services to compute statistics of in-
terest. In such scenarios, the existence of mutual trust or
a trust hierarchy cannot always be assumed. Hence, our
data perturbation techniques allow users to perturb private
measurements before sharing. The techniques address the
special requirements of time series data; namely, the fact
that data are correlated. Correlation makes it possible to
attack privacy. A correlated noise model is proposed and
implemented. It is shown that community data can be re-
constructed with accuracy while individual user data can-
not. In future research, we shall extend the architecture to

3We refer the reader to Chapters 5 and 6 of Han, [18] for
the definitions of classification and association-rule mining
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address privacy issues when multi-modal data are shared.
In other words, multiple streams are shared by each client
and such streams may be mutually correlated. Context pri-
vacy (not addressed in this work) will also be investigated.
Further, we will address the problem of model checking for
clients with data outliers.
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