
Abstract— Advances in micro-sensor and radio technology
will enable small but smart sensors to be deployed for a wide
range of environmental monitoring applications. The low per-
node cost will allow these wireless networks of sensors and
actuators to be densely distributed. The nodes in these dense
networks will coordinate to perform the distributed sensing
tasks. Moreover, as described in this paper, the nodes can also
coordinate to exploit the redundancy provided by high density,
so as to extend overall system lifetime. The large number of
nodes deployed in these systems will preclude manual
configuration, and the environmental dynamics will preclude
design-time pre-configuration. Therefore, nodes will have to
self-configure to establish a topology that provides
communication and sensing coverage under stringent energy
constraints. In ASCENT, each node assesses its connectivity
and adapts its participation in the multi-hop network topology
based on the measured operating region. This paper motivates
and describes the ASCENT algorithm and presents simulation
and experimental measurements.

I. INTRODUCTION

The availability of micro-sensors and low-power wireless
communications will enable the deployment of densely
distributed sensor/actuator networks for a wide range of
environmental monitoring applications from urban to
wilderness environments; indoors and outdoors; and
encompassing a variety of data types including acoustic,
image, and various chemical and physical properties [26].
The sensor nodes will perform significant signal processing,
computation, and network self-configuration to achieve
scalable, robust and long-lived networks [1, 7, 8]. More
specifically, sensor nodes will do local processing to reduce
communications, and consequently, energy costs.

These requirements pose interesting challenges for
networking research. One of the challenges arises from the
greatly increased level of dynamics. The large number of
nodes will introduce increased levels of system dynamics,
which in combination with the high level of environmental
dynamics will make designing reliable systems a daunting
task. Perhaps the most important technical challenge arises
from the energy constraints imposed by unattended systems.
These systems must be long-lived and operate without
manual intervention, which implies that the system itself
must execute the measurement and adaptive configuration in
an energy constrained fashion. Finally, there are scaling
challenges associated with the large numbers of nodes that
will co-exist in such networks to achieve desired spatial
coverage and robustness.

In this paper, we describe and present simulation and
experimental performance studies for a form of adaptive
self-configuration designed for sensor networks. As we

argue in Section II, such unattended systems will need to
self-configure and adapt to a wide variety of environmental
dynamics and terrain conditions. These conditions produce
regions with non-uniform communication density. We
suggest that one of the ways system designers can address
such challenging operating conditions is by deploying
redundant nodes and designing the system algorithms to
make use of that redundancy over time to extend the systems
life. In ASCENT, each node assesses its connectivity and
adapts its participation in the multi-hop network topology
based on the measured operating region. For instance, a
node:
• Signals when it detects high message loss, requesting
additional nodes in the region to join the network in order to
relay messages.
• Reduces its duty cycle if it detects high message losses
due to collisions.
• Probes the local communication environment and does
not join the multi-hop routing infrastructure until it is
”helpful” to do so.

Why can this adaptive configuration not be done from a
central node? In addition to the scaling and robustness
limitations of centralized solutions, a single node cannot
directly sense the conditions of nodes distributed elsewhere
in space. Consequently, other nodes would need to
communicate detailed information about the state of their
connectivity in order for the central node to determine who
should join the multi-hop network. In the absence of energy
constraints, one can always achieve a result that is closer to
optimal with a central computation. However, when energy
is a constraint and the environment is dynamic, distributed
approaches are attractive and possibly are the only practical
approach [21] because they avoid transmitting dynamic state
information repeatedly across the network.

Pottie and Kaiser [21] initiated work in the general area of
wireless sensor networks by establishing that scalable
wireless sensor networks require multi-hop operation to
avoid sending large amounts of data over long distances.
They went on to define techniques by which wireless nodes
discover their neighbors and acquire synchronism. Given
this basic bootstrapping capability, our work addresses the
next level of automatic configuration that will be needed to
realize envisioned sensor networks, namely, how to form the
multi-hop topology [8]. Given the ability to send and receive
packets, and the objective of forming an energy-efficient
multi-hop network, we apply well-known techniques from
MAC layer protocols to the problem of distributed topology
formation. Similar techniques have been applied to multicast
transport protocol adjustment of periodic messaging [9, 10].

Alberto Cerpa and Deborah Estrin.
Department of Computer Science, University of California, Los Angeles

3440 Boelter Hall, Los Angeles, CA 90095
{cerpa, destrin}@cs.ucla.edu

ASCENT: Adaptive Self-Configuring sEnsor Networks Topologies.

In the following section we present a sensor network
scenario, stating our assumptions and contributions. Section
III describes ASCENT in more detail. In Section IV, we
present some initial simulation and experimental results
using ASCENT. Related work is reviewed in Section V.

II. DISTRIBUTED SENSOR NETWORK SCENARIO

To motivate our research, consider a habitat monitoring
sensor network that is to be deployed in a remote forest.
Deployment of this network can be done, for example, by
dropping a large number of sensor nodes from a plane, or
placing them by hand. In this example, and in many other
anticipated applications of ad-hoc wireless sensor networks,
the deployed systems must be designed to operate under the
following conditions and constraints:
• Ad-hoc deployment: we cannot expect the sensor field
to be deployed in a regular fashion (e.g. a linear array, 2-
dimensional lattice). More importantly, uniform deployment
does not correspond to uniform connectivity owing to
unpredictable propagation effects when nodes, and therefore
antennae, are close to the ground and other surfaces.
• Energy constraints: The nodes (or at least some
significant subset) will be untethered for power as well as
communications and therefore the system must be designed
to expend as little energy as is possible in order to maximize
network lifetime.
• Unattended operation under dynamics: the anticipated
number of elements in these systems will preclude manual
configuration, and the environmental dynamics will preclude
design-time pre-configuration.

In many such contexts it will be far easier to deploy larger
numbers of nodes initially than to deploy additional nodes or
additional energy reserves at a later date (similar to the
economics of stringing cable for wired networks). In this
paper we present one way in which nodes can exploit the
resulting redundancy in order to extend system lifetime.

If we use too few of the deployed nodes, the distance
between neighboring nodes will be too great and the packet
loss rate will increase; or the energy required to transmit the
data over the longer distances will be prohibitive. If we use
all deployed nodes simultaneously, the system will be
expending unnecessary energy, at best, and at worst the
nodes may interfere with one another by congesting the
channel. In the process of finding an equilibrium, we are not
trying to use a distributed localized algorithm to identify a
single optimal solution. Rather this form of adaptive self-
configuration using localized algorithms is well suited to
problem spaces that have a large number of possible
solutions; in this context a large solution space translates
into dense node deployment. Our simulation and
experimental results confirm that this is the case for our
application.

We enumerate the following assumptions that apply to the
remainder of our work:

• We assume a Carrier Sense Multiple Access (CSMA)
MAC protocol with capacity to work in promiscuous mode.
This clearly introduces the possibilities for resource
contention when too many neighboring nodes participate in
the multihop network. Our approach should be relevant to
TDMA MACs as well because distributed slot allocation
schemes will also have degraded performance with increased
load. Future work will investigate the use of ASCENT with
other MAC protocols under development [31].
• Our algorithm reacts when links experience high packet
loss. The ASCENT mechanism does not detect or repair
network partitions. Partitions are more prevalent when node
density is low, and our approach is not applicable because in
general all nodes will be needed to form an effective
network. Of course network partitions can occur even in
dense arrays when a swath of nodes are destroyed or
obstructed. When such network partitions do occur,
complementary system mechanisms will be needed; for
example, detecting partitions in the multi-hop sensor
network by exploiting information from long range radios
deployed on a subset of nodes, and used sparingly because
of the power required. We leave such complementary
techniques for network partition detection and repair to
future work.

The two primary contributions of our design are:
• The use of adaptive techniques that permit applications to
configure the underlying topology based on their needs
while trying to save energy to extend network lifetime. Our
work does not presume a particular model of fairness, degree
of connectivity, or capacity required.
• The use of self-configuring techniques that react to
operating conditions measured locally. Our work is not
restricted to the radio propagation model, the geographical
distribution of nodes, or the routing mechanisms used.

The following section describes the ASCENT protocol in
some detail.

III. ASCENT DESIGN

ASCENT adaptively elects “active” nodes from all nodes
in the network. Active nodes stay awake all the time and
perform multi-hop packet routing, while the rest of the nodes
remain “passive” and periodically check if they should
become active.

Consider a simple sensor network for data gathering
similar to the network described in Section 2. We cannot
expect the sensor field to have uniform connectivity due to
unpredictable propagation effects in the environment.
Therefore, we would expect to find regions with low and
high density. As we pointed out in Section 2, ASCENT does
not deal with complete network partitions; we assume that
there is a high enough node density to connect the entire
region. Fig. 1 shows a simplified schematic for ASCENT
during initialization in a high-density region. For the sake of
clarity, we show only the formation of a two-hop network.
This analysis may be extended to networks of larger sizes.

Initially, only some nodes are active. The other nodes remain
passively listening to packets but not transmitting. This
situation is depicted in Fig. 1(a). The source starts transmitting
data packets toward the sink. Because the sink is at the limit of
radio range, it gets very high message loss from the source.
We call this situation a communication hole; the receiver gets
high packet loss due to poor connectivity with the sender. The
sink then starts sending help messages to signal neighbors that
are in listen-only mode –also called passive neighbors– to join
the network.

When a neighbor receives a help message, it may decide to
join the network. This situation is illustrated in Fig. 1(b).
When a node joins the network it starts transmitting and
receiving packets, i.e. it becomes an active neighbor. As soon
as a node decides to join the network, it signals the existence
of a new active neighbor to other passive neighbors by
sending a neighbor announcement message. This situation
continues until the number of active nodes stabilizes on a
certain value and the cycle stops. When the process completes,
the group of newly active neighbors that have joined the
network make the delivery of data from source to sink more
reliable. The process will re-start when some future network
event (e.g. node failure) or environmental effect (e.g. new
obstacle) causes message loss again.

In this section, we describe the ASCENT algorithm and
their components. Several design choices present themselves
in this context. We elaborate on these design choices while we
describe the design. Our initial simulations, and experiments
(Section 4) focus only on a subset of these design choices.

A. ASCENT state transitions
In ASCENT, nodes are in one of four states: sleep, passive,

test, and active. Fig. 2 shows a state transition diagram.
Initially, a random timer turns on the nodes to avoid

synchronization. When a node starts, it initializes in the test
state. Nodes in the test state exchange data and routing control
messages. In addition, when a node enters the test state, it sets
up a timer Tt, and sends neighbor announcement messages.
When Tt expires, the node enters the active state. If before Tt
expires the number of active neighbors is above the neighbor
threshold (NT), or if the average data loss rate (DL) is higher
than the average loss before entering in the test state, then the
node moves into the passive state. If multiple nodes make a
transition to the test state, then we use the node ID in the
announcement message as a tie breaking mechanism (higher
IDs win). The number of active nodes cannot exceed the NT
value. The intuition behind the test state is to probe the
network to see if the addition of a new node may improve
connectivity.

When a node enters the passive state, it sets up a timer Tp.
When Tp expires, the node enters the sleep state. If before Tp
expires the number of neighbors is below NT, and either the
DL is higher than the loss threshold (LT) or DL is below the
loss threshold but the node received a help message from an
active neighbor, it makes a transition to the test state. While in
passive state nodes have their radio on, and are able to
overhear all packets transmitted by their active neighbors
(even if the packets are not addressed to the passive node, the
radio is in promiscuous mode). No routing or data packets are
forwarded in this state, since this is a listen-only state. The
intuition behind the passive state is to gather information
regarding the state of the network without causing interference
with the other nodes. Nodes in the passive and test states
continuously update the number of active neighbors and data
loss rate values. Energy is still consumed in the passive state,
since the radio is still on when not receiving packets. A node
that enters the sleep state turns the radio off, sets a timer Ts
and goes to sleep. When Ts expires, the node moves into
passive state. Finally, a node in active state continues
forwarding data and routing packets until it runs out of energy.
If data loss rate is greater than LT, the active node sends help
messages.

B. ASCENT parameters tuning
ASCENT has many parameters that can affect its final

behavior. Parameters like the timers Tt, Tp, Ts, neighbor
threshold (NT), and loss threshold (LT) are choices left to the
applications. In this section, we explain the choices made in
the current ASCENT algorithm. A particular application may
select different parameter settings, for instance, perhaps
trading energy savings for greater sensing coverage.

The neighbor threshold (NT) value determines the average
degree of connectivity of the network. When the sensing range
of the micro-sensors is lower than the radio communication
range, the minimum number of nodes necessary to provide
communication coverage may not be sufficient for sensing
coverage. There is a trade-off between the energy consumed
and/or the level of interference (packet loss) vs. the desired
sensing coverage. An application could adjust this value
dynamically depending on the events occurring in a certain
area of the network. In this study, we set this value to 4.

The loss threshold (LT) determines the maximum amount
of data loss an application can tolerate before it requests help
to improve network connectivity. This value is very
application dependent. For example, average temperature
measurements from a sector of a forest will not tend to vary
drastically, and the application may tolerate high packet loss.
In contrast, tracking of a moving target by the sensor network

Active Test

Passive Sleep

neighbors < NT and

• loss > LT; or

• loss < LT and help

after Tt

after Ts

after Tp

neighbors > NT (high ID for ties);
or
loss > loss T0

Fig. 2. State transitions in ASCENT

Sink Source

Neighbor
Announcements
Messages

(b) Transition

Fig. 1. Self-configurable sensor network.

(a) Communication Hole
Active Neighbor

Data
Message

Help
Messages

Sink

Source

Passive Neighbor

Data
Message

Sink Source

(c) Final State

may be more sensitive to packet losses. In our implementation
this value was set to 20%.

The test timer Tt and the passive timer Tp determine the
maximum time a node remains in the test and passive states,
respectively. They face a similar trade-off of power
consumption vs. decision quality. The larger the timers, the
more robust the decision in presence of transient packet losses
(that also affects the neighbor determination, see next section),
but the greater the power consumed with the radio on, and
vice versa. Similarly, the sleep timer Ts represents the amount
of time the node sleeps to preserve energy. The larger the Ts
timer, the larger the energy savings, but the larger also the
probability of no node listening when necessary (slower
reaction time to dynamics). In our implementation, the relation
between these timers was set to 2:5:30 for Tt, Tp, and Ts
respectively. The final choice of timer values should be
dependent on the application needs.

In the sleep state, nodes turn their radios off and sleep for a
certain amount of time. This is only one possible form of
adaptation. For example, nodes could also reduce their radio
range, using less energy and reducing channel contention. The
experimental platform we used for our experiments did not
have this capability, but we plan to repeat the experiments
using more capable hardware.

C. Neighbor and Data Loss determination
The number of active neighbors and the average data loss

rate are values measured locally by each node while in passive
and test state.

The number of neighbors can greatly increase the energy
consumption in contention for resources. We have chosen to
define a neighbor as a node from which we receive a certain
percentage of packets over time. This implies having a history
function that keeps track of the packets received from each
individual node over a certain period (time and/or number of
messages), and a fixed or dynamic neighbor loss threshold.

In ASCENT, each node adds a unitary monotonically
increasing sequence number to each packet transmitted
(including data and control packets). This permits neighbor
link loss detection when a sequence number is skipped. In
addition, we assume application data packets also have some
mechanism to detect losses (data payload sequence numbers in
our implementation).

The number of active neighbors N is defined as the number
of neighbors with link packet loss smaller than the neighbor
loss threshold.

We have chosen the following formula for neighbor loss
threshold (NLS):

N
NLS

1
1−= (1)

with N being the number of neighbors calculated in the
previous cycle.

When a node perceives a neighbor’s packet loss (i.e. the
link packet loss calculated for all the packets sent by that
neighbor) larger than the NLS, it no longer considers that node
as a neighbor and deletes it from its neighbor list. The
intuition behind this formula is the following: as we increase
the number of neighbors in the region, the likelihood of any
pair of them not listening to each other (or having high losses)
increases. Therefore, as we increase the number of neighbors,

we should correspondingly increase the neighbor’s loss
threshold. Not doing so may result in getting a lower neighbor
count even though nodes in the region may still interfere with
each other. Correspondingly, as we decrease the number of
neighbors, we should decrease the neighbor’s message loss
threshold accordingly. (We experimented with some other
functions, like an inversely decaying function of 1/N and an
exponentially decaying function of 1/N; but the simple
formula above worked best).

The average data loss rate (DL) is calculated based on the
application data packets. Data losses are detected using data
sequence numbers. Depending on the routing strategy, a node
may receive multiple copies of the same application data
packet. We only consider a data loss if the message was not
received from any neighbor during a certain configurable
period of time (this allows out of order delivery based on the
application needs). Control messages (help, neighbor
announcements and routing) are not considered in this
calculation.

D. ASCENT interactions with routing
ASCENT runs above the link and MAC layer and below the

routing layer. ASCENT is not a routing or data dissemination
protocol. ASCENT simply decides which nodes should join
the routing infrastructure. Ad-hoc routing [15, 18, 20],
Directed Diffusion [13], or some other data dissemination
mechanism, then runs over this multihop topology. In this
respect, routing protocols are complementary to ASCENT.

ASCENT nodes become active or passive independent of
the routing protocol running on the node. In addition,
ASCENT does not use state gathered by the routing protocol,
since this state may vary greatly for different protocols (e.g.
ad-hoc routing tables & directed diffusion gradients), or
requires changing the routing state in any way. Currently, if a
node is testing the network and it is actively routing packets
when it becomes passive, ASCENT depends on the routing
protocol to quickly re-route traffic. This may cause some
packet loss, and therefore an improvement that has not been
implemented is to inform the routing protocol of ASCENT’s
state changes so traffic could be re-routed in advance.

We emphasize that, even though we have discussed the
ASCENT algorithm in some detail, much experimentation and
evaluation of the various mechanisms and design choices is
necessary before we fully understand the robustness, scale and
performance of self-configuration. The following section
presents our initial findings based on simple analysis,
simulation, and an experimental implementation.

IV. PERFORMANCE EVALUATION

In this section, we report results from a preliminary
performance evaluation of ASCENT. We use a simple
mathematical model to determine an idealized level of packet
loss, delay, and energy savings as we increase node density.
Since our analysis cannot capture the complexity of a full
ASCENT scenario, we use simulations and real experiments to
further validate the performance evaluation.

A. Analytic performance analysis
To understand the relation between packet collisions and

density of nodes we first use a simple mathematical analysis.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

P
(c

o
lli

si
o
n
)

Node Density

Probability of Collisions vs. Node Density

ASCENT NT=4 S=20
ASCENT NT=8 S=20
Active S=05
Active S=10
Active S=20
Active S=40

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P
ro

b
a
b
ili

ty
(d

)

Delay

Probability distribution of delay for S: 20

T = 5 nodes
T = 10 nodes
T = 15 nodes
T = 50 nodes

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80

E
n
e
rg

y
S

a
vi

n
g
s

Node Density

Energy Savings vs. Node Density

a = 0.1
a = 0.2
a = 0.3
a = 0.4
a = 0.5

Assume that the communication range of each node is R,

and the number of nodes per πR2 area is n. Further assume a
simple CSMA MAC with a random back-off. This random
component is chosen from a discrete pool of S slots with a
uniform probability distribution.

Thus, the probability of collisions for T nodes transmitting
in the area of radius R is given by:

1
1

1)(1)(
−

⎟
⎠
⎞⎜

⎝
⎛ −−=−=

T

S

S
successPcollisionP (2)

From this formula we see that as we increase the density of
transmitting nodes T, the probability of collisions increases
proportionally. When all the nodes in the network are able to
transmit and receive packets, we find that T = n, since every
node in the πR2 area can transmit packets. Increasing the
density of nodes increases the probability of collisions in the
area. ASCENT fixes the number of transmitters in the area to
the neighbor threshold (NT) value, resulting in T = NT,
independent of the total number of nodes, n, deployed. Fig. 3
shows the analytical relation between packet losses vs. density
of nodes for different S and NT values.

The relation between the hop-by-hop delay introduced by
the randomization and the density of nodes can be analyzed
similarly. The average delay experienced per hop is related to
the number of random slots S and the total number of active
nodes T. After reception of a message to be forwarded toward
the destination, each of the T active nodes picks a random slot,
say .,,2,1 TSSS � The mean number of all the random slots

chosen will tend to be S/2, since it is a uniform probability
distribution. Assuming no collision losses, i.e.:

jSiSTji ≠⇒∈≠∀ ,,2,1 � , the hop-by-hop delay is

determined by the first message to be forwarded. The delay d
is then:

()TSSSd ,,2,1min �= (3)

We want to find P(d), the probability distribution of the
smaller random time slot picked by T nodes. We define:

()[]yTSSSyQ >= ,,2,1minProb)(� (4)

() yTSSS >,,2,1min � ⇔ each of () yTSSS >,,2,1 �

This happens with probability

()
∴

−
⎟
⎠
⎞

⎜
⎝
⎛

T

S

yS

T

S

y
yQ ⎟

⎠
⎞

⎜
⎝
⎛ −= 1)((5)

P(d) as we defined above is:

() TT

S

d

S

d
dQdQdP ⎟

⎠
⎞

⎜
⎝
⎛ +−−⎟

⎠
⎞⎜

⎝
⎛ −=+−= 1

11)1()()((6)

Fig. 4 shows the P(d) distribution for different values of T
and S=20. When all the nodes in the network are able to
transmit and receive packets, we find that T = n. As n
increases, the mean value of P(d) decreases. This result
corresponds to the intuition that as we increase the total
number of transmitting nodes, the likelihood of any of them
picking a smaller random value increases. In the ASCENT
case, T = NT independently of the density n, and the mean
value of P(d) remains constant. Finally, we would like to
understand the energy savings that could be obtained by using
ASCENT. When the system is not running ASCENT, all the
nodes have their radios on, consuming Idle power1. When the
system is running ASCENT, NT nodes have their radios on,
while the rest alternate between sleeping and listening. The
energy savings (ES) are:

TaTp

Ta
SleepNTn

TaTp

Tp
IdleNTnIdleNT

Idlen

+
−+

+
−+ **)(**)(*

*

The 2nd term in the denominator indicates the energy of non-
active nodes when in passive state, and the 3rd term indicates
the energy consumed while in the sleep state. We define α to
be the ratio of the passive timer Tp to the sleep timer Ts. We
also define β to be the ratio of the power consumed by the
radio in sleep mode to the power consumed by the radio in
idle mode. Then, we obtain the following equation for ES:

1
*)(

+
+−+

=

α
βα

NTnNT

n
ES (7)

βα
α

+
+=

∞→

1
lim ES

n
 (8)

Fig. 5 shows the energy savings as we increase the density of
nodes for a fixed value of β (see next Section). For a fixed NT
value and a small value of β, as we increase density the power
consumption is dominated by the passive nodes in the passive-
sleep cycle. The intuition is that the smaller the α, the larger
the Ts in relation to Tp, and consequently, the larger the
energy savings the system can achieve. Note that these savings
come at a cost; the larger the Ts, the larger the reaction time of

1 The difference in power consumption for Idle, Tx, and Rx is not

significant (see Section IV.C).

Fig. 3. P(collisions) vs. density Fig. 4. Delay prob. distribution Fig. 5. Energy Savings vs. density

(a) PC-104 Node (b) PC-104 DebugStation (c) RPC Radiometrix Radio

 Fig. 6. Hardware Components.

the system in case of dynamics. Eq. (8) shows the upper bound
of the energy savings as we increase density.

B. Goals and Metrics
Our goals in evaluating ASCENT were three-fold: First, in
order to validate some of the assumptions made during design
of the algorithm, perform simulations and real experiments and
conduct comparative performance evaluation of the system
with and without ASCENT. Second, understand the energy
savings that can be obtained by using ASCENT. Finally, study
the sensitivity of ASCENT performance to the choice of
parameters.

We choose 4 metrics to analyze the performance of
ASCENT: Packet Loss measures the percentage of packets not
received by any node in the network2. When all the nodes are
turned on –we call this the Active case– the packet loss
includes all nodes. In the ASCENT case, it includes all nodes
but the ones in the sleep state. This metric indicates the real
bandwidth available to the nodes in the sensor network. Event
Delivery Ratio is the ratio of the number of distinct event
packets received by the sink to the number originally sent by
the source. A similar metric has been used in ad-hoc routing
[2]. Energy Savings is the ratio of the energy consumed by the
Active case to the energy consumed by the ASCENT case.
This metric defines the amount of energy savings we gain by
using the ASCENT algorithm. Network Lifetime is defined as
the time it takes for 90% of the transit nodes3 to run out of
energy. This metric provides an estimate of the longevity of the
network.

C. Simulation and Experimental Methodology
 Simulator: ASCENT was simulated using a high level,

discrete event driven simulator. The simulator uses simulated
time, not real time. Each node instance sets up its own stack,
consisting of one or more modules. Nodes send events to a
main event queue. Event messages are inserted in the event
queue and removed from there during delivery. When removed
from the queue, messages are first sent to a radio propagation
module, and from there sent to the first module in the node’s
stack. Each module decides whether to continue the
propagation of the message further up in the stack or not.

The simulator uses a simple propagation model.
Transmissions with a distance between transmitter and receiver
(T-R) within 0 to A range have probability 1 of being
successful. Transmissions with a T-R within A to B have a

2 Losses are detected using sequence numbers (Section III.C)
3 Nodes that are in the transit path from the source to the sink.

linearly decreasing probability from 1 to 0 of being successful.
Finally, transmissions with a T-R larger than B are not
successful. Note that we chose a very simple propagation
model for our simulator, since we complemented our
simulations with real experimental results over real
propagation channels.

Nodes have a collision module in their stack. This module
does not propagate events further in the stack if two or more
events are received within the contention period. Thus, the
probability of collisions is determined by the length of the
contention period and the number of neighbors forwarding
messages.

Experimental Testbed: Fig. 6 shows pictures of the
hardware components of our testbed. The basic node used in
our testbed is the PC-104 node (Fig. 6(a)). It consists of a basic
computing platform based on the PC-104 stack [19], and an
RPC radio [23] (Fig. 6(c)). The DebugStations (Fig. 6(b)) are
similar to our PC-104 nodes, except that they have an Ethernet
connector, and 8-port serial port card, and they do not have
RPC radios. The PC-104 nodes connect to the DebugStations
through ppp-serial connections, and from there to Ethernet.
This connection is used as an out of band channel for logging
and management purposes. After connecting the
DebugStations to Ethernet and the PC-104 nodes to the
DebugStation through a serial connection, the entire process
runs automatically. PC-104 nodes connect to the Master Debug
Host at boot time to check if they need to update the software
running. If they need it, they do the update and boot again. All
the experiments’ traces are reliably logged on the Master
Debug Host for post- processing.

As we mentioned in section III.D, the ASCENT
implementation runs on top of our radio MAC/device driver
and below the diffusion routing daemon used (see Routing
section below).

Scenarios and environment: In order to study the
performance of ASCENT’s algorithms as a function of density,
we run experiments ranging from 5 to 25 nodes in increments
of 5 nodes. One of the experiments consisted of placing 2
nodes near the maximum communication range from each
other, and the rest of the nodes distributed between them. We
did this for 2 reasons. First, we had a limited amount of nodes
(30), and we wanted to stress ASCENT as much as possible by
increasing local density. Second, we needed to validate our
simulations with as high density as possible in order to further
explore the scalability of our algorithm. We also ran some
experiments with a multihop topology, albeit a small one. In
addition to our limited node supply, the RPC radio range was

around 10-15 meters. indoors with a 10dB attenuator (the
range cannot be adjusted). This radio range made it difficult to
effectively set up a large multi-hop topology due to the limited
dimensions of our office environment. All the experiments
were done in an indoors environment, with obstacles such as,
furniture, walls, doors, etc. The simulations replicate the same
scenarios tried in the experiments. For each simulation, we
vary the density of nodes from 5 to 80 nodes. In addition, for
larger multihop simulations, we incremented the number of
sources and sinks from 1 to 5. In all the experiments and
simulations, the source(s) and the sink(s) were placed at the
edge of the network to maximize the number of hops and usage
of transit nodes. Each experimental point in the graphs
presented in the following sections is the average of three
trials, and each simulation point in the graphs represents the
average of 10 simulations (all of them with standard
deviation).

Traffic: In each experiment, one source sends
approximately 100 messages with temperature and light sensor
readings (since the sensor card was not finished at the time the
experiments were performed, the readings were stored values).
The data rate was set to 3 sensor reading messages per minute,
unless otherwise indicated. In each simulation, one or more
sources send approximately 400 messages each. The data rate
was 1 message every 200 units of simulation time. In all our
experiments and simulations we operate the sensor network far
from overload. Hence, our sensor nodes do not experience
congestion. Understanding the performance implications of
congestion on our algorithms is the subject of future research.
In spite of experimenting with uncongested networks, our
nodes can incur message losses due to dynamics and
interference.

Packet fragmentation and randomization: The size of the
packets used range from 100 to 150 bytes. The RPC maximum
fragment size is 27 bytes, which implies that between 4 to 6
radio fragments are sent per packet. The loss of a fragment
leads the loss of the entire packet (our MAC discards all the
associated fragments received, there is no fragment
retransmission mechanism). The RPC driver [24] implements a
CSMA-style MAC with a simple collision avoidance
mechanism. It does not emit packets until a (randomized) quiet
interval has passed, i.e. an interval during which no packets
have been received from other radios. We call this mandatory
waiting time between receiving and sending the hold-off
period. This simple scheme works because packet inter-arrival
times are usually correlated due to fragmentation. Multiple
nodes that are waiting to transmit will hopefully not collide
due to the randomization of the hold-off period. In our
experiments, the hold-off period was set to 100 ms and the
randomization time to 200 ms. We set these values by carefully
measuring the minimum time required by the RPC hardware
and driver to transmit consecutive fragments. In our
simulations we did not include any details regarding low-level
fragmentation. Since at each hop multiple nodes may try to
forward the same message, there is some contention for
channel utilization. We provide application level
randomization for packet forwarding that is set to a maximum
of 10 seconds for all the experiments. We also added a similar
level of randomization in our simulations.

Routing: We use directed diffusion as our routing protocol.
Due to lack of space, we refer to [13] for a complete

description of the protocol. In our implementation, the interest
timeout was set to 100 sec., and the gradient timeout was set to
180 sec. Due to a limitation in our implementation, we were
not able to turn off the radio and shut down the directed
diffusion daemon when ASCENT was in the sleep state.
Packets received while in sleep state were filtered and ignored
as if they weren’t received by ASCENT. This situation
artificially inflated the packet losses experienced due to
collisions of data from active nodes and diffusion control
packets from sleep nodes. We did not consider these collisions
in the results.

Energy Model: To model the energy consumption, we took
measurements of the Radiometrix RPC RPS-418-40 radio [23].
In addition, we looked at the manual specifications of the RFM
Tx-6000 [22], another low power radio used in our testbed. We
found that the values for Tx:Rx:Idle:Sleep in mW were
75:100:100:0.4 for the RPC, and 40:40:36:0.015 for the RFM.
Note that the Tx power of the RPC is smaller than the Rx and
Idle power. We believe this is due to power consumption of the
RPC’s leds; the Tx led is significantly smaller than the other
two. Several studies [4, 29] have reported differences of the
order of 10:1 between Idle and Sleeping power consumption
for 802.11 wireless LAN cards. For the low power radios we
study, this difference is in the order of 100:1. This relation is
important since it is the β factor defined in the previous
section. In our model, we did not consider the energy
consumed by the CPU.

The remainder of this section presents our simulation and
experimental results.

D. Network Capacity
Our first simulations and experiments compare the packet

loss rate and the event delivery ratio of the system with and
without ASCENT. Fig. 7 shows the packet loss as a function of
the density in a 2-hop network. We present analytical,
simulation, and experimental results for the system with and
without ASCENT. The results are encouraging. To a first
degree, there are no important differences between the
expected behavior and the real behavior up to 25 nodes, the
maximum number of nodes in our experiments. In the Active
case (no self-configuration, all nodes are turned on), all the
nodes join the network and transmit packets. This case has
high packet loss because as we increase the density of nodes,
the probability of collisions increases accordingly. It rapidly
reaches around 70% with 15 nodes, and enters into a saturation
region after that. ASCENT limits the number of active nodes to
the NT value, and therefore does not increase channel
contention with larger densities. Fig. 8 shows the event
delivery ratio, i.e. the percentage of events transmitted by the
source that reached the sink. The experiments were done on a
small multi-hop topology with a maximum density of 15 nodes
per radio range (using all our nodes). On average, each packet
traverses 3 hops. The simulations were done on a larger
network, with packets traversing on average 6 hops from
source to sink. We can see that ASCENT outperforms the
Active case. ASCENT’s performance remains stable as the
density increases, which demonstrates the scalability properties
of our algorithms as the number of nodes increases. The Active
case does not perform as bad as one would expect based on the
packet loss shown in the previous graph. This is because the
event delivery ratio metric only requires that at least one copy

0

20

40

60

80

100

10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

(%
)

Node Density

Packet Loss vs. Node Density

Experiment Active
Simulation Active
Experiment ASCENT
Simulation ASCENT
Analytical Active
Analytical ASCENT

Fig. 7. Packet loss as a function of node density. Each packet traverses an
average of two hops. ASCENT limits the number of active nodes to NT and
reduces the contention for the channel.

0

20

40

60

80

100

10 20 30 40 50 60 70 80

E
ve

nt
s

re
ce

iv
ed

/s
en

t

Node Density

Event Delivery Ratio vs. Node Density

Experiment Active
Simulation Active
Experiment ASCENT
Simulation ASCENT

Fig. 8. Event delivery ratio as a function of node density. Each packet traverses
three hops in the experiments and 6 hops in the simulations. ASCENT
delivery rate is stable for the range of densities we tried.

of the original message sent by the source reach the sink. Even
in a high-density environment with high losses, the likelihood
of receiving one copy of the message is still high using
diffusion routing [13].

E. Energy Savings
This section evaluates ASCENT’s ability to save energy and

increase network lifetime.
In these experiments and simulations, we did not consider the
energy spent by the source(s) or the sink(s). For the
experiments, the values are not direct measurements of energy
consumption but indirect measurements using the time the
nodes spent in the different ASCENT’s states.

Fig. 9 shows the average energy consumption per node in a
2-hop network. From these results, we find that ASCENT
provides a significant amount of energy savings over the
Active case. We also find that as density increases, energy
savings do not increase proportionally. This result may seem
counterintuitive because in ASCENT the number of active
nodes remains constant as density increases, and one would
expect to save more energy as the fraction of active nodes
decreases. From the analysis shown in Section IV.A, we see
that the energy savings, as we increase density, depends on the
passive-sleep cycle of the passive nodes, and not on the
fraction of active nodes.

Fig. 10 shows the network lifetime as a function of density.
The figure is normalized to the lifetime of the Active case. The
results include simulations of a multihop network with an

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80

E
ne

rg
y

A
ct

iv
e/

E
ne

rg
y

A
S

C
E

N
T

Node Density

Energy Savings vs. Node Density

Experiment Active
Simulation Active
Experiment ASCENT
Simulation ASCENT
Analytical ASCENT

Fig. 9. Ratio of energy used by the Active case to the energy used by
ASCENT. ASCENT provides significant amount of energy savings over the
Active case.

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80

N
et

w
or

k
Li

fe
tim

e
(n

or
m

al
iz

ed
)

Node Density

Network Lifetime vs. Node Density

Simulation Active
Simulation ASCENT

Fig. 10. Network lifetime, defined as the time it takes for 90% of the transit
nodes to run out of energy, as a function of density. It is normalized to the
lifetime of the Active case. ASCENT is a factor of 3 better than without.

average hop count of 6. The results do not include
experiments. Network lifetime with ASCENT is always larger
than without it, and for large densities it is a factor of 3 better.

F. Impact of Various Factors
To explain how ASCENT reacts to different configuration
parameters, we conducted sensitivity experiments and
simulations on two parameters, randomization and data rate.

Fig. 11 shows the packet loss as a function of density for
different randomization values. We clearly see that for larger
randomization values we get fewer packet losses. However,
there is a trade-off since larger randomization values increase
the end-to-end delay for data delivery. For the different levels
of randomization we tried, ASCENT case always outperforms
the Active case, even when the former has less randomization
than the latter.

Fig. 12 shows the packet loss as a function of the data rate
for different experiments and simulations with density of 20
nodes. For all the cases we see that as we increase the data rate,
the packet loss increases accordingly, albeit more slowly for
ASCENT.

G. Discussion
Finding the right level of abstraction when performing a

simulation is always a difficult problem. Too little detail may
lead to misleading or incorrect results, and too much detail
increases the development time, and the probability of errors
[12]. In our case, having an experimental platform to run
experiments and validate our simulations proved to be

extremely valuable. In some cases we were correct in making
certain simplifications to our simulation. For instance, we did
not simulate the low level packet processing details, such as,
fragmentation, MAC level collision avoidance mechanisms,
and low-level timers. Our simple collision module, based on a
configurable collision window, proved to be good enough. For
the scenarios and level of dynamics we tried, the differences in
the simulation and experimental results were not significant. In
some other cases, the simplifications assumed in simulations
did not reflect the reality. One observation from the
experiments is that nodes that were geographically distant from
a forwarder node, could in fact help and relay packets to nodes
that were geographically closer to the forwarder. Even though
this fact did not change our results (since ASCENT is based on
connectivity, not on geographical position), this situation never
happened in our simulations. This is an artifact of our simple
propagation model. We believe that better propagation models,
like Log-normal Shadowing, could improve this situation and
we plan to run further simulations with more complex
propagation models. Nevertheless, from our experiments in
indoors environments, we detected the occurrence of blind
spots that are not easily captured by probabilistic propagation
models. This fact reinforces the viability of our design in
practice. Distributed algorithms for wireless sensor networks
must adapt and self-configure to the conditions measured
locally. We believe that schemes based on geographical
proximity or assuming certain propagation conditions may not
work in practice for indoors environments.

V. RELATED WORK

Our work has been informed and influenced by a variety of
other research efforts.

K. Sohrabi and G. Pottie [28] have made significant
progress in self-configuration and synchronization in sensor
networks at the single cluster level with a TDMA scheme. This
work shares with us similar design principles, although it’s
more focused on low-level synchronization necessary for
network self-assembly, while we concentrate on efficient
multi-hop topology formation. J. L. Gao’s thesis [11] presented
an adaptive local network formation/routing algorithm that
facilitates cooperative signal processing. An election algorithm
is used to select a central node among a small group of nodes
that cooperate in information processing. While these
algorithms were designed to operate for a relatively short time
span in a reduced area near the target event, our objective is
stable, long range topology formation that covers the entire
sensor network.

The adaptive techniques we use were studied extensively to
make the MAC layer self-configuring and adaptive more than
20 years ago during the refinement of contention protocols [14,
17]. More recently SRM [10] and RTCP [27] borrowed these
techniques to adaptively adjust parameters such as session
message frequency and randomization intervals. In this work
we use those techniques to adapt the topology of a multi-hop
wireless network.

Mobile ad-hoc networks [15, 18, 20] and directed diffusion
[13] adaptively configure the routing or data dissemination
paths, but they do not adapt the basic topology. Q. Li and D.
Rus [16] presented a scheme where mobile nodes modify their
trajectory to transmit messages in the context of disconnected

0

20

40

60

80

100

10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

(%
)

Node Density

Packet Loss vs. Node Density
Different randomization values

Experiment Active S:10
Simulation Active S:10
Experiment ASCENT S:10
Simulation ASCENT S:10
Experiment Active S:30
Simulation Active S:30
Experiment ASCENT S:30
Simulation ASCENT S:30

Fig. 11. Effect of randomization on packet loss as a function of density. The
system always gets fewer losses with ASCENT than without it for any
randomization level.

0

20

40

60

80

100

0 2 4 6 8 10 12

P
ac

ke
t L

os
s

(%
)

Data Rate (packets/min)

Packet Loss vs. Data Rate
Density T:20

Experiment Active
Simulation Active
Experiment ASCENT
Simulation ASCENT

Fig. 12. Packet loss as a function of data rate. The losses tend to increase for
larger data rates, although they do it more slowly for ASCENT.

ad-hoc networks. This work shares with us the notion of
adaptation of the basic topology for efficient delivery of
messages, but it does so by sending location updates between
neighbors and using active messages to incrementally
propagate them toward the destination. Our work uses
measurements of neighbor density and packet loss to exploit
the redundancy of dense areas in the system in an energy
efficient way. This work may complement ours in case of
mobile nodes deployment and in the presence of network
partitions. Ramanathan et. al. [25] proposed some distributed
heuristics to adaptively adjust node transmit powers in
response to topological changes caused by mobile nodes. This
work assumes that a routing protocol is running at all times and
provides basic neighbor information that is used to
dynamically adjust transmit power. In our case, ASCENT
decides which nodes should run the routing algorithm, and it
makes this determination based on packet loss in addition to
density.

In Y. Xu et al. GAF [30], nodes use geographic location
information to divide the network into fixed square grids.
Nodes in each grid alternate between sleeping and listening,
and there is always one node active to route packets per grid.
ASCENT does not need any location aids, since it is based on
connectivity. In addition, geographic proximity may not
always lead to radio connectivity; this is why ASCENT uses
local connectivity measurements. B. Chen et al. [4] proposed
SPAN, an energy efficient algorithm for topology
maintenance, where nodes decide whether to sleep or join the
backbone based on connectivity information supplied by a

routing protocol. ASCENT does not depend on routing
information, nor needs to modify the routing state; it decides
whether to join the network or sleep based on measured local
connectivity and packet loss information. In addition, our work
does not presume a particular model of fairness or network
capacity that the application requires.

Self-configuration based on local measured parameters takes
some inspiration from biological systems, in particular the
models of ant colony behavior [5]. Bulusu et. al. [3], have
proposed different algorithms for incremental beacon
placement in sensor networks. This work share with us the
same design principles, such as the use of localized algorithms,
and adaptation based on locally measured parameters. While
their work is oriented to solve the localization problem, ours is
more oriented to energy efficient communication and sensing
coverage.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described the design, implementation,
analysis, simulation, and experimental evaluation of ASCENT,
an adaptive self-configuration topology mechanism for
distributed wireless sensor networks. There are many lessons
we can draw from our preliminary experimentation. First,
ASCENT has the potential for significant reduction of packet
loss and increase in energy efficiency. Second, ASCENT
mechanisms were responsive and stable under systematically
varied conditions.

In the near future, we will perform experiments with larger
numbers of nodes to further explore the scalability of our
algorithms. We will investigate the use of load balancing
techniques to distribute the energy load, and explore the use of
wider area links to detect network partitions. We will also
expand this work to address other modalities beyond
communication and sensing coverage, such as, actuation.

This work is an initial foray into the design of self-
configuring mechanisms for wireless sensor networks. Our
distributed sensing network simulations and experiments
represent a non-trivial exploration of the problem space. Such
techniques will find increasing importance as the community
seeks ways to exploit the redundancy offered by cheap, widely
available microsensors, as a way of addressing new dimensions
of network performance such as network-lifetime.

ACKNOWLEDGMENTS

This work is supported by NSF under grant ANI-9979457 as
the SCOWR project. The authors would like to acknowledge
the discussions and suggestions from members of the SCOWR
project and the UCLA LECS Lab. We would like to specially
thank Jerry Zhao for being so helpful with testbed issues,
Jeremy Elson for writing the RPC driver, Fabio Silva for
providing the diffusion implementation, and David Braginsky
for writing the simulator used in this work. Finally, the authors
would like to thank John Heidemann, Ramesh Govindan and
the anonymous reviewers who made valuable comments that
helped improve previous versions of this paper.

REFERENCES

[1] B. Badrinath, M. Srivastava, K.Mills, J.Scholtz, and K.Sollins, Eds.
Special Issue on Smart Spaces and Environments. IEEE Personal
Communications, Oct. 2000.

[2] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A
Performance Comparison of Multi-Hop Wireless Ad-Hic Network
Routing Protocols. In Proceedings of Mobicom’98, Dallas, TX, 1998.

[3] N. Bulusu, J. Heidemann and D. Estrin. Adaptive Beacon Placement. In
Proceedings ICDCS-21, Phoenix, Arizona, USA. April 2001.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc
wireless networks. In Proceedings Mobicom ‘01, Rome, Italy, July 2001.

[5] G. Di Caro and M. Dorigo. AntNet: A Mobile Agents Approach to
Adaptive Routing. Technical Report 97-12, IRIDIA, Universite’ Libre de
Bruxelles, 1997.

[6] J. Elson and D. Estrin. Random, Ephemeral Transaction Identifiers in
Dynamic Sensor Networks. In Proceedings of ICDCS-21, Phoenix,
Arizona, April 2001.

[7] D. Estrin, R. Govindan, and J. Heidemann, Eds. Special Issue on
Embedding the Internet. Comm. of the ACM, vol. 43, no. 5, May 2000.

[8] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: Scalable Coordination in Sensor Networks. In Proceedings of
Mobicom '99, Seattle, Washington, August, 1999.

[9] W. Fenner. Internet Group Management Protocol, Version 2. RFC-2236,
November 1997.

[10] S. Floyd, V. Jacobson, C-G. Liu, S. McCanne, and L. Zhang. A Reliable
Multicast Framework for Lightweight Sessions and Application Level
Framing. IEEE/ACM Transactions on Networking, November 1997.

[11] J. Gao. Energy Efficient Routing for Wireless Sensor Networks. PhD
thesis in Electrical Engineering, UCLA, August 2000.

[12] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K. Lan, Y. Xu,
W. Ye, D. Estrin, and R. Govindan. Effects of Detail in Wireless
Network Simulation. In Proceedings of the SCS Multiconference on
Distributed Simulation, pp. 3-11. Phoenix, Arizona, January, 2001.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks. In
Proceedings of Mobicom ‘00, Boston, Massachusetts, August 2000.

[14] V. Jacobson. Congestion Avoidance and Control. Proceedings of
SIGCOMM '88, pages 314-329. Palo Alto, CA, August 1988.

[15] D. Johnson and D. Maltz. Dynamic Source Routing in Ad-hoc Wireless
Networks. In T. Imielinski and H Korth, editors, Mobile Computing,
pages 153-181. Kluwer Academic Publishers, 1996.

[16] Q. Li and D. Rus. Sending Messages to Mobile Users in Disconnected
Ad-hoc Wireless Networks. In Proceedings of Mobicom ‘00, pages 44-
55, Boston, August 2000.

[17] R. Metcalfe and D. Boggs. Ethernet: Distributed Packet Switching for
Local Computer Networks. Communications of the ACM, 19 (5): 395-
404, July 1976.

[18] V. Park and M. Corson. A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks. In Proceedings of Infocom
‘97, pages 1405-1414, April 1997

[19] PC-104 Consortium, http://www.pc104.org
[20] C. Perkins and E. Royer. Ad hoc On-Demand Distance Vector Routing.

Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, New Orleans, LA, February 1999, pp. 90-100.

[21] G. Pottie and W. Kaiser. Wireless Integrated Network Sensors.
Communications of the ACM, 43 (5): 51-58, May 2000.

[22] RFM TX6000 hybrid transmitter, http://www.rfm.com
[23] Radio Packet Controller, http://www.radiometrix.com
[24] RPC driver, http://www.circlemud.org/~jelson/software/radiometrix
[25] S. Ramanathan and R. Rosales-Hain. Topology Control of Multihop

Radio Networks using Transmit Power Adjustment. In Proceedings of
IEEE Infocom ‘00, Tel Aviv, Mar 2000.

[26] Sensors: The Journal of Applied Sensing Technology.
[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 1889

RTP: A Transport Protocol for Real-Time Applications, January 1996.
[28] K. Sohrabi and G. Pottie. Performance of a Novel Self-Organization

Protocol for Wireless Ad-Hoc Sensor Networks. In Proceedings of IEEE
VTC, Amsterdam, Netherlands, September 1999.

[29] M. Stemm and R. H. Katz. Measuring and reducing energy consumption
of network interfaces in hand-held devices. IEICE Transactions on
Communications, E80-B(8):1125-1131, Aug 1997.

[30] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed Energy
Conservation for Ad Hoc Routing. In Proceedings of MobiCom ‘01,
Rome, Italy, July 16-21, 2001.

[31] W. Ye, J. Heidemann, D. Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In Proceedings of IEEE Infocom ‘02, New
York, New York, June 23-27, 2002.

