
Abstract— Advances in micro-sensor and radio technology 
will enable small but smart sensors to be deployed for a wide 
range of environmental monitoring applications. The low per-
node cost will allow these wireless networks of sensors and 
actuators to be densely distributed. The nodes in these dense 
networks will coordinate to perform the distributed sensing 
tasks. Moreover, as described in this paper, the nodes can also 
coordinate to exploit the redundancy provided by high density, 
so as to extend overall system lifetime. The large number of 
nodes deployed in these systems will preclude manual 
configuration, and the environmental dynamics will preclude 
design-time pre-configuration. Therefore, nodes will have to 
self-configure to establish a topology that provides 
communication and sensing coverage under stringent energy 
constraints. In ASCENT, each node assesses its connectivity 
and adapts its participation in the multi-hop network topology 
based on the measured operating region. This paper motivates 
and describes the ASCENT algorithm and presents simulation 
and experimental measurements. 

I. INTRODUCTION 

The availability of micro-sensors and low-power wireless 
communications will enable the deployment of densely 
distributed sensor/actuator networks for a wide range of 
environmental monitoring applications from urban to 
wilderness environments; indoors and outdoors; and 
encompassing a variety of data types including acoustic, 
image, and various chemical and physical properties [26]. 
The sensor nodes will perform significant signal processing, 
computation, and network self-configuration to achieve 
scalable, robust and long-lived networks [1, 7, 8]. More 
specifically, sensor nodes will do local processing to reduce 
communications, and consequently, energy costs. 

These requirements pose interesting challenges for 
networking research. One of the challenges arises from the 
greatly increased level of dynamics. The large number of 
nodes will introduce increased levels of system dynamics, 
which in combination with the high level of environmental 
dynamics will make designing reliable systems a daunting 
task. Perhaps the most important technical challenge arises 
from the energy constraints imposed by unattended systems. 
These systems must be long-lived and operate without 
manual intervention, which implies that the system itself 
must execute the measurement and adaptive configuration in 
an energy constrained fashion. Finally, there are scaling 
challenges associated with the large numbers of nodes that 
will co-exist in such networks to achieve desired spatial 
coverage and robustness.   

In this paper, we describe and present simulation and 
experimental performance studies for a form of adaptive 
self-configuration designed for sensor networks. As we 

argue in Section II, such unattended systems will need to 
self-configure and adapt to a wide variety of environmental 
dynamics and terrain conditions. These conditions produce 
regions with non-uniform communication density. We 
suggest that one of the ways system designers can address 
such challenging operating conditions is by deploying 
redundant nodes and designing the system algorithms to 
make use of that redundancy over time to extend the systems 
life. In ASCENT, each node assesses its connectivity and 
adapts its participation in the multi-hop network topology 
based on the measured operating region. For instance, a 
node: 
• Signals when it detects high message loss, requesting 
additional nodes in the region to join the network in order to 
relay messages. 
• Reduces its duty cycle if it detects high message losses 
due to collisions. 
• Probes the local communication environment and does 
not join the multi-hop routing infrastructure until it is 
”helpful” to do so. 

Why can this adaptive configuration not be done from a 
central node? In addition to the scaling and robustness 
limitations of centralized solutions, a single node cannot 
directly sense the conditions of nodes distributed elsewhere 
in space. Consequently, other nodes would need to 
communicate detailed information about the state of their 
connectivity in order for the central node to determine who 
should join the multi-hop network. In the absence of energy 
constraints, one can always achieve a result that is closer to 
optimal with a central computation. However, when energy 
is a constraint and the environment is dynamic, distributed 
approaches are attractive and possibly are the only practical 
approach [21] because they avoid transmitting dynamic state 
information repeatedly across the network. 

Pottie and Kaiser [21] initiated work in the general area of 
wireless sensor networks by establishing that scalable 
wireless sensor networks require multi-hop operation to 
avoid sending large amounts of data over long distances. 
They went on to define techniques by which wireless nodes 
discover their neighbors and acquire synchronism. Given 
this basic bootstrapping capability, our work addresses the 
next level of automatic configuration that will be needed to 
realize envisioned sensor networks, namely, how to form the 
multi-hop topology [8]. Given the ability to send and receive 
packets, and the objective of forming an energy-efficient 
multi-hop network, we apply well-known techniques from 
MAC layer protocols to the problem of distributed topology 
formation. Similar techniques have been applied to multicast 
transport protocol adjustment of periodic messaging [9, 10]. 
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In the following section we present a sensor network 
scenario, stating our assumptions and contributions. Section 
III describes ASCENT in more detail. In Section IV, we 
present some initial simulation and experimental results 
using ASCENT. Related work is reviewed in Section V. 

II. DISTRIBUTED SENSOR NETWORK SCENARIO 

To motivate our research, consider a habitat monitoring 
sensor network that is to be deployed in a remote forest. 
Deployment of this network can be done, for example, by 
dropping a large number of sensor nodes from a plane, or 
placing them by hand. In this example, and in many other 
anticipated applications of ad-hoc wireless sensor networks, 
the deployed systems must be designed to operate under the 
following conditions and constraints: 
• Ad-hoc deployment: we cannot expect the sensor field 
to be deployed in a regular fashion (e.g. a linear array, 2-
dimensional lattice). More importantly, uniform deployment 
does not correspond to uniform connectivity owing to 
unpredictable propagation effects when nodes, and therefore 
antennae, are close to the ground and other surfaces. 
• Energy constraints: The nodes (or at least some 
significant subset) will be untethered for power as well as 
communications and therefore the system must be designed 
to expend as little energy as is possible in order to maximize 
network lifetime. 
• Unattended operation under dynamics: the anticipated 
number of elements in these systems will preclude manual 
configuration, and the environmental dynamics will preclude 
design-time pre-configuration. 

In many such contexts it will be far easier to deploy larger 
numbers of nodes initially than to deploy additional nodes or 
additional energy reserves at a later date (similar to the 
economics of stringing cable for wired networks). In this 
paper we present one way in which nodes can exploit the 
resulting redundancy in order to extend system lifetime. 

If we use too few of the deployed nodes, the distance 
between neighboring nodes will be too great and the packet 
loss rate will increase; or the energy required to transmit the 
data over the longer distances will be prohibitive. If we use 
all deployed nodes simultaneously, the system will be 
expending unnecessary energy, at best, and at worst the 
nodes may interfere with one another by congesting the 
channel. In the process of finding an equilibrium, we are not 
trying to use a distributed localized algorithm to identify a 
single optimal solution. Rather this form of adaptive self-
configuration using localized algorithms is well suited to 
problem spaces that have a large number of possible 
solutions; in this context a large solution space translates 
into dense node deployment. Our simulation and 
experimental results confirm that this is the case for our 
application. 

We enumerate the following assumptions that apply to the 
remainder of our work: 

• We assume a Carrier Sense Multiple Access (CSMA) 
MAC protocol with capacity to work in promiscuous mode. 
This clearly introduces the possibilities for resource 
contention when too many neighboring nodes participate in 
the multihop network. Our approach should be relevant to 
TDMA MACs as well because distributed slot allocation 
schemes will also have degraded performance with increased 
load. Future work will investigate the use of ASCENT with 
other MAC protocols under development [31]. 
• Our algorithm reacts when links experience high packet 
loss. The ASCENT mechanism does not detect or repair 
network partitions.  Partitions are more prevalent when node 
density is low, and our approach is not applicable because in 
general all nodes will be needed to form an effective 
network. Of course network partitions can occur even in 
dense arrays when a swath of nodes are destroyed or 
obstructed. When such network partitions do occur, 
complementary system mechanisms will be needed; for 
example, detecting partitions in the multi-hop sensor 
network by exploiting information from long range radios 
deployed on a subset of nodes, and used sparingly because 
of the power required. We leave such complementary 
techniques for network partition detection and repair to 
future work. 

The two primary contributions of our design are: 
• The use of adaptive techniques that permit applications to 
configure the underlying topology based on their needs 
while trying to save energy to extend network lifetime. Our 
work does not presume a particular model of fairness, degree 
of connectivity, or capacity required. 
• The use of self-configuring techniques that react to 
operating conditions measured locally. Our work is not 
restricted to the radio propagation model, the geographical 
distribution of nodes, or the routing mechanisms used.  

The following section describes the ASCENT protocol in 
some detail. 

III. ASCENT DESIGN 

ASCENT adaptively elects “active” nodes from all nodes 
in the network. Active nodes stay awake all the time and 
perform multi-hop packet routing, while the rest of the nodes 
remain “passive” and periodically check if they should 
become active. 

Consider a simple sensor network for data gathering 
similar to the network described in Section 2. We cannot 
expect the sensor field to have uniform connectivity due to 
unpredictable propagation effects in the environment. 
Therefore, we would expect to find regions with low and 
high density. As we pointed out in Section 2, ASCENT does 
not deal with complete network partitions; we assume that 
there is a high enough node density to connect the entire 
region. Fig. 1 shows a simplified schematic for ASCENT 
during initialization in a high-density region. For the sake of 
clarity, we show only the formation of a two-hop network. 
This analysis may be extended to networks of larger sizes.



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Initially, only some nodes are active. The other nodes remain 
passively listening to packets but not transmitting. This 
situation is depicted in Fig. 1(a). The source starts transmitting 
data packets toward the sink. Because the sink is at the limit of 
radio range, it gets very high message loss from the source. 
We call this situation a communication hole; the receiver gets 
high packet loss due to poor connectivity with the sender. The 
sink then starts sending help messages to signal neighbors that 
are in listen-only mode –also called passive neighbors– to join 
the network. 

When a neighbor receives a help message, it may decide to 
join the network. This situation is illustrated in Fig. 1(b). 
When a node joins the network it starts transmitting and 
receiving packets, i.e. it becomes an active neighbor. As soon 
as a node decides to join the network, it signals the existence 
of a new active neighbor to other passive neighbors by 
sending a neighbor announcement message. This situation 
continues until the number of active nodes stabilizes on a 
certain value and the cycle stops. When the process completes, 
the group of newly active neighbors that have joined the 
network make the delivery of data from source to sink more 
reliable. The process will re-start when some future network 
event (e.g. node failure) or environmental effect (e.g. new 
obstacle) causes message loss again.  

In this section, we describe the ASCENT algorithm and 
their components. Several design choices present themselves 
in this context. We elaborate on these design choices while we 
describe the design. Our initial simulations, and experiments 
(Section 4) focus only on a subset of these design choices. 

A. ASCENT state transitions 
In ASCENT, nodes are in one of four states: sleep, passive, 

test, and active. Fig. 2 shows a state transition diagram. 
Initially, a random timer turns on the nodes to avoid 

synchronization. When a node starts, it initializes in the test 
state. Nodes in the test state exchange data and routing control 
messages. In addition, when a node enters the test state, it sets 
up a timer Tt, and sends neighbor announcement messages. 
When Tt expires, the node enters the active state. If before Tt 
expires the number of active neighbors is above the neighbor 
threshold (NT), or if the average data loss rate (DL) is higher 
than the average loss before entering in the test state, then the 
node moves into the passive state. If multiple nodes make a 
transition to the test state, then we use the node ID in the 
announcement message as a tie breaking mechanism (higher 
IDs win). The number of active nodes cannot exceed the NT 
value. The intuition behind the test state is to probe the 
network to see if the addition of a new node may improve 
connectivity. 

When a node enters the passive state, it sets up a timer Tp. 
When Tp expires, the node enters the sleep state. If before Tp 
expires the number of neighbors is below NT, and either the 
DL is higher than the loss threshold (LT) or DL is below the 
loss threshold but the node received a help message from an 
active neighbor, it makes a transition to the test state. While in 
passive state nodes have their radio on, and are able to 
overhear all packets transmitted by their active neighbors 
(even if the packets are not addressed to the passive node, the 
radio is in promiscuous mode). No routing or data packets are 
forwarded in this state, since this is a listen-only state. The 
intuition behind the passive state is to gather information 
regarding the state of the network without causing interference 
with the other nodes. Nodes in the passive and test states 
continuously update the number of active neighbors and data 
loss rate values. Energy is still consumed in the passive state, 
since the radio is still on when not receiving packets. A node 
that enters the sleep state turns the radio off, sets a timer Ts 
and goes to sleep. When Ts expires, the node moves into 
passive state. Finally, a node in active state continues 
forwarding data and routing packets until it runs out of energy. 
If data loss rate is greater than LT, the active node sends help 
messages. 

B. ASCENT parameters tuning 
ASCENT has many parameters that can affect its final 

behavior. Parameters like the timers Tt, Tp, Ts, neighbor 
threshold (NT), and loss threshold (LT) are choices left to the 
applications. In this section, we explain the choices made in 
the current ASCENT algorithm. A particular application may 
select different parameter settings, for instance, perhaps 
trading energy savings for greater sensing coverage.  

The neighbor threshold (NT) value determines the average 
degree of connectivity of the network. When the sensing range 
of the micro-sensors is lower than the radio communication 
range, the minimum number of nodes necessary to provide 
communication coverage may not be sufficient for sensing 
coverage. There is a trade-off between the energy consumed 
and/or the level of interference (packet loss) vs. the desired 
sensing coverage. An application could adjust this value 
dynamically depending on the events occurring in a certain 
area of the network. In this study, we set this value to 4. 

The loss threshold (LT) determines the maximum amount 
of data loss an application can tolerate before it requests help 
to improve network connectivity. This value is very 
application dependent. For example, average temperature 
measurements from a sector of a forest will not tend to vary 
drastically, and the application may tolerate high packet loss. 
In contrast, tracking of a moving target by the sensor network 
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may be more sensitive to packet losses. In our implementation 
this value was set to 20%. 

The test timer Tt and the passive timer Tp determine the 
maximum time a node remains in the test and passive states, 
respectively. They face a similar trade-off of power 
consumption vs. decision quality. The larger the timers, the 
more robust the decision in presence of transient packet losses 
(that also affects the neighbor determination, see next section), 
but the greater the power consumed with the radio on, and 
vice versa. Similarly, the sleep timer Ts represents the amount 
of time the node sleeps to preserve energy. The larger the Ts 
timer, the larger the energy savings, but the larger also the 
probability of no node listening when necessary (slower 
reaction time to dynamics). In our implementation, the relation 
between these timers was set to 2:5:30 for Tt, Tp, and Ts 
respectively. The final choice of timer values should be 
dependent on the application needs. 

In the sleep state, nodes turn their radios off and sleep for a 
certain amount of time. This is only one possible form of 
adaptation. For example, nodes could also reduce their radio 
range, using less energy and reducing channel contention. The 
experimental platform we used for our experiments did not 
have this capability, but we plan to repeat the experiments 
using more capable hardware. 

C.  Neighbor and Data Loss determination 
The number of active neighbors and the average data loss 

rate are values measured locally by each node while in passive 
and test state. 

The number of neighbors can greatly increase the energy 
consumption in contention for resources. We have chosen to 
define a neighbor as a node from which we receive a certain 
percentage of packets over time. This implies having a history 
function that keeps track of the packets received from each 
individual node over a certain period (time and/or number of 
messages), and a fixed or dynamic neighbor loss threshold. 

In ASCENT, each node adds a unitary monotonically 
increasing sequence number to each packet transmitted 
(including data and control packets). This permits neighbor 
link loss detection when a sequence number is skipped. In 
addition, we assume application data packets also have some 
mechanism to detect losses (data payload sequence numbers in 
our implementation).  

The number of active neighbors N is defined as the number 
of neighbors with link packet loss smaller than the neighbor 
loss threshold. 

We have chosen the following formula for neighbor loss 
threshold (NLS): 

N
NLS

1
1−=            (1) 

with N being the number of neighbors calculated in the 
previous cycle. 

When a node perceives a neighbor’s packet loss (i.e. the 
link packet loss calculated for all the packets sent by that 
neighbor) larger than the NLS, it no longer considers that node 
as a neighbor and deletes it from its neighbor list. The 
intuition behind this formula is the following: as we increase 
the number of neighbors in the region, the likelihood of any 
pair of them not listening to each other (or having high losses) 
increases. Therefore, as we increase the number of neighbors, 

we should correspondingly increase the neighbor’s loss 
threshold. Not doing so may result in getting a lower neighbor 
count even though nodes in the region may still interfere with 
each other. Correspondingly, as we decrease the number of 
neighbors, we should decrease the neighbor’s message loss 
threshold accordingly. (We experimented with some other 
functions, like an inversely decaying function of 1/N and an 
exponentially decaying function of 1/N; but the simple 
formula above worked best). 

The average data loss rate (DL) is calculated based on the 
application data packets. Data losses are detected using data 
sequence numbers. Depending on the routing strategy, a node 
may receive multiple copies of the same application data 
packet. We only consider a data loss if the message was not 
received from any neighbor during a certain configurable 
period of time (this allows out of order delivery based on the 
application needs). Control messages (help, neighbor 
announcements and routing) are not considered in this 
calculation. 

D. ASCENT interactions with routing 
ASCENT runs above the link and MAC layer and below the 

routing layer. ASCENT is not a routing or data dissemination 
protocol. ASCENT simply decides which nodes should join 
the routing infrastructure. Ad-hoc routing [15, 18, 20], 
Directed Diffusion [13], or some other data dissemination 
mechanism, then runs over this multihop topology. In this 
respect, routing protocols are complementary to ASCENT. 

ASCENT nodes become active or passive independent of 
the routing protocol running on the node. In addition, 
ASCENT does not use state gathered by the routing protocol, 
since this state may vary greatly for different protocols (e.g. 
ad-hoc routing tables & directed diffusion gradients), or 
requires changing the routing state in any way. Currently, if a 
node is testing the network and it is actively routing packets 
when it becomes passive, ASCENT depends on the routing 
protocol to quickly re-route traffic. This may cause some 
packet loss, and therefore an improvement that has not been 
implemented is to inform the routing protocol of ASCENT’s 
state changes so traffic could be re-routed in advance. 

We emphasize that, even though we have discussed the 
ASCENT algorithm in some detail, much experimentation and 
evaluation of the various mechanisms and design choices is 
necessary before we fully understand the robustness, scale and 
performance of self-configuration. The following section 
presents our initial findings based on simple analysis, 
simulation, and an experimental implementation. 

IV. PERFORMANCE EVALUATION 

In this section, we report results from a preliminary 
performance evaluation of ASCENT. We use a simple 
mathematical model to determine an idealized level of packet 
loss, delay, and energy savings as we increase node density. 
Since our analysis cannot capture the complexity of a full 
ASCENT scenario, we use simulations and real experiments to 
further validate the performance evaluation. 

A. Analytic performance analysis 
To understand the relation between packet collisions and 

density of nodes we first use a simple mathematical analysis. 
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Assume that the communication range of each node is R, 

and the number of nodes per πR2 area is n. Further assume a 
simple CSMA MAC with a random back-off. This random 
component is chosen from a discrete pool of S slots with a 
uniform probability distribution. 

Thus, the probability of collisions for T nodes transmitting 
in the area of radius R is given by: 

1
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From this formula we see that as we increase the density of 
transmitting nodes T, the probability of collisions increases 
proportionally. When all the nodes in the network are able to 
transmit and receive packets, we find that T = n, since every 
node in the πR2 area can transmit packets. Increasing the 
density of nodes increases the probability of collisions in the 
area. ASCENT fixes the number of transmitters in the area to 
the neighbor threshold (NT) value, resulting in T = NT, 
independent of the total number of nodes, n, deployed. Fig. 3 
shows the analytical relation between packet losses vs. density 
of nodes for different S and NT values. 

The relation between the hop-by-hop delay introduced by 
the randomization and the density of nodes can be analyzed 
similarly. The average delay experienced per hop is related to 
the number of random slots S and the total number of active 
nodes T. After reception of a message to be forwarded toward 
the destination, each of the T active nodes picks a random slot, 
say .,,2,1 TSSS �  The mean number of all the random slots 

chosen will tend to be S/2, since it is a uniform probability 
distribution. Assuming no collision losses, i.e.: 

jSiSTji ≠⇒∈≠∀ ,,2,1 � , the hop-by-hop delay is 

determined by the first message to be forwarded. The delay d 
is then:  

( )TSSSd ,,2,1min �=        (3) 

We want to find P(d), the probability distribution of the 
smaller random time slot picked by T nodes. We define: 
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P(d) as we defined above is: 
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Fig. 4 shows the P(d) distribution for different values of T 
and S=20. When all the nodes in the network are able to 
transmit and receive packets, we find that T = n. As n 
increases, the mean value of P(d) decreases. This result 
corresponds to the intuition that as we increase the total 
number of transmitting nodes, the likelihood of any of them 
picking a smaller random value increases. In the ASCENT 
case, T = NT independently of the density n, and the mean 
value of P(d) remains constant. Finally, we would like to 
understand the energy savings that could be obtained by using 
ASCENT. When the system is not running ASCENT, all the 
nodes have their radios on, consuming Idle power1. When the 
system is running ASCENT, NT nodes have their radios on, 
while the rest alternate between sleeping and listening. The 
energy savings (ES) are: 

TaTp

Ta
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+
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The 2nd term in the denominator indicates the energy of non-
active nodes when in passive state, and the 3rd term indicates 
the energy consumed while in the sleep state. We define α to 
be the ratio of the passive timer Tp to the sleep timer Ts. We 
also define β to be the ratio of the power consumed by the 
radio in sleep mode to the power consumed by the radio in 
idle mode. Then, we obtain the following equation for ES: 

1
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Fig. 5 shows the energy savings as we increase the density of 
nodes for a fixed value of β (see next Section). For a fixed NT 
value and a small value of β, as we increase density the power 
consumption is dominated by the passive nodes in the passive-
sleep cycle. The intuition is that the smaller the α, the larger 
the Ts in relation to Tp, and consequently, the larger the 
energy savings the system can achieve. Note that these savings 
come at a cost; the larger the Ts, the larger the reaction time of  
 

                                                      
1 The difference in power consumption for Idle, Tx, and Rx is not 

significant (see Section IV.C). 
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the system in case of dynamics. Eq. (8) shows the upper bound 
of the energy savings as we increase density. 

B. Goals and Metrics 
Our goals in evaluating ASCENT were three-fold: First, in 
order to validate some of the assumptions made during design 
of the algorithm, perform simulations and real experiments and 
conduct comparative performance evaluation of the system 
with and without ASCENT. Second, understand the energy 
savings that can be obtained by using ASCENT. Finally, study 
the sensitivity of ASCENT performance to the choice of 
parameters. 

We choose 4 metrics to analyze the performance of 
ASCENT: Packet Loss measures the percentage of packets not 
received by any node in the network2. When all the nodes are 
turned on –we call this the Active case– the packet loss 
includes all nodes. In the ASCENT case, it includes all nodes 
but the ones in the sleep state. This metric indicates the real 
bandwidth available to the nodes in the sensor network. Event 
Delivery Ratio is the ratio of the number of distinct event 
packets received by the sink to the number originally sent by 
the source. A similar metric has been used in ad-hoc routing 
[2]. Energy Savings is the ratio of the energy consumed by the 
Active case to the energy consumed by the ASCENT case. 
This metric defines the amount of energy savings we gain by 
using the ASCENT algorithm. Network Lifetime is defined as 
the time it takes for 90% of the transit nodes3 to run out of 
energy. This metric provides an estimate of the longevity of the 
network. 

C. Simulation and Experimental Methodology 
 Simulator: ASCENT was simulated using a high level, 

discrete event driven simulator. The simulator uses simulated 
time, not real time. Each node instance sets up its own stack, 
consisting of one or more modules. Nodes send events to a 
main event queue. Event messages are inserted in the event 
queue and removed from there during delivery. When removed 
from the queue, messages are first sent to a radio propagation 
module, and from there sent to the first module in the node’s 
stack. Each module decides whether to continue the 
propagation of the message further up in the stack or not. 

The simulator uses a simple propagation model. 
Transmissions with a distance between transmitter and receiver 
(T-R) within 0 to A range have probability 1 of being 
successful. Transmissions with a T-R within A to B have a 

                                                      
2 Losses are detected using sequence numbers (Section III.C) 
3 Nodes that are in the transit path from the source to the sink. 

linearly decreasing probability from 1 to 0 of being successful. 
Finally, transmissions with a T-R larger than B are not 
successful. Note that we chose a very simple propagation 
model for our simulator, since we complemented our 
simulations with real experimental results over real 
propagation channels. 

Nodes have a collision module in their stack. This module 
does not propagate events further in the stack if two or more 
events are received within the contention period. Thus, the 
probability of collisions is determined by the length of the 
contention period and the number of neighbors forwarding 
messages.  

Experimental Testbed: Fig. 6 shows pictures of the 
hardware components of our testbed. The basic node used in 
our testbed is the PC-104 node (Fig. 6(a)). It consists of a basic 
computing platform based on the PC-104 stack [19], and an 
RPC radio [23] (Fig. 6(c)). The DebugStations (Fig. 6(b)) are 
similar to our PC-104 nodes, except that they have an Ethernet 
connector, and 8-port serial port card, and they do not have 
RPC radios. The PC-104 nodes connect to the DebugStations 
through ppp-serial connections, and from there to Ethernet. 
This connection is used as an out of band channel for logging 
and management purposes. After connecting the 
DebugStations to Ethernet and the PC-104 nodes to the 
DebugStation through a serial connection, the entire process 
runs automatically. PC-104 nodes connect to the Master Debug 
Host at boot time to check if they need to update the software 
running. If they need it, they do the update and boot again. All 
the experiments’ traces are reliably logged on the Master 
Debug Host for post- processing.   

As we mentioned in section III.D, the ASCENT 
implementation runs on top of our radio MAC/device driver 
and below the diffusion routing daemon used (see Routing 
section below). 

Scenarios and environment: In order to study the 
performance of ASCENT’s algorithms as a function of density, 
we run experiments ranging from 5 to 25 nodes in increments 
of 5 nodes. One of the experiments consisted of placing 2 
nodes near the maximum communication range from each 
other, and the rest of the nodes distributed between them. We 
did this for 2 reasons. First, we had a limited amount of nodes 
(30), and we wanted to stress ASCENT as much as possible by 
increasing local density. Second, we needed to validate our 
simulations with as high density as possible in order to further 
explore the scalability of our algorithm. We also ran some 
experiments with a multihop topology, albeit a small one. In 
addition to our limited node supply, the RPC radio range was 



around 10-15 meters. indoors with a 10dB attenuator (the 
range cannot be adjusted). This radio range made it difficult to 
effectively set up a large multi-hop topology due to the limited 
dimensions of our office environment. All the experiments 
were done in an indoors environment, with obstacles such as, 
furniture, walls, doors, etc. The simulations replicate the same 
scenarios tried in the experiments. For each simulation, we 
vary the density of nodes from 5 to 80 nodes. In addition, for 
larger multihop simulations, we incremented the number of 
sources and sinks from 1 to 5. In all the experiments and 
simulations, the source(s) and the sink(s) were placed at the 
edge of the network to maximize the number of hops and usage 
of transit nodes. Each experimental point in the graphs 
presented in the following sections is the average of three 
trials, and each simulation point in the graphs represents the 
average of 10 simulations (all of them with standard 
deviation). 

Traffic: In each experiment, one source sends 
approximately 100 messages with temperature and light sensor 
readings (since the sensor card was not finished at the time the 
experiments were performed, the readings were stored values). 
The data rate was set to 3 sensor reading messages per minute, 
unless otherwise indicated. In each simulation, one or more 
sources send approximately 400 messages each. The data rate 
was 1 message every 200 units of simulation time. In all our 
experiments and simulations we operate the sensor network far 
from overload. Hence, our sensor nodes do not experience 
congestion. Understanding the performance implications of 
congestion on our algorithms is the subject of future research. 
In spite of experimenting with uncongested networks, our 
nodes can incur message losses due to dynamics and 
interference. 

Packet fragmentation and randomization: The size of the 
packets used range from 100 to 150 bytes. The RPC maximum 
fragment size is 27 bytes, which implies that between 4 to 6 
radio fragments are sent per packet. The loss of a fragment 
leads the loss of the entire packet (our MAC discards all the 
associated fragments received, there is no fragment 
retransmission mechanism). The RPC driver [24] implements a 
CSMA-style MAC with a simple collision avoidance 
mechanism. It does not emit packets until a (randomized) quiet 
interval has passed, i.e. an interval during which no packets 
have been received from other radios. We call this mandatory 
waiting time between receiving and sending the hold-off 
period. This simple scheme works because packet inter-arrival 
times are usually correlated due to fragmentation. Multiple 
nodes that are waiting to transmit will hopefully not collide 
due to the randomization of the hold-off period. In our 
experiments, the hold-off period was set to 100 ms and the 
randomization time to 200 ms. We set these values by carefully 
measuring the minimum time required by the RPC hardware 
and driver to transmit consecutive fragments. In our 
simulations we did not include any details regarding low-level 
fragmentation. Since at each hop multiple nodes may try to 
forward the same message, there is some contention for 
channel utilization. We provide application level 
randomization for packet forwarding that is set to a maximum 
of 10 seconds for all the experiments. We also added a similar 
level of randomization in our simulations. 

Routing: We use directed diffusion as our routing protocol. 
Due to lack of space, we refer to [13] for a complete 

description of the protocol. In our implementation, the interest 
timeout was set to 100 sec., and the gradient timeout was set to 
180 sec. Due to a limitation in our implementation, we were 
not able to turn off the radio and shut down the directed 
diffusion daemon when ASCENT was in the sleep state. 
Packets received while in sleep state were filtered and ignored 
as if they weren’t received by ASCENT. This situation 
artificially inflated the packet losses experienced due to 
collisions of data from active nodes and diffusion control 
packets from sleep nodes. We did not consider these collisions 
in the results. 

Energy Model: To model the energy consumption, we took 
measurements of the Radiometrix RPC RPS-418-40 radio [23]. 
In addition, we looked at the manual specifications of the RFM 
Tx-6000 [22], another low power radio used in our testbed. We 
found that the values for Tx:Rx:Idle:Sleep in mW were 
75:100:100:0.4 for the RPC, and 40:40:36:0.015 for the RFM. 
Note that the Tx power of the RPC is smaller than the Rx and 
Idle power. We believe this is due to power consumption of the 
RPC’s leds; the Tx led is significantly smaller than the other 
two. Several studies [4, 29] have reported differences of the 
order of 10:1 between Idle and Sleeping power consumption 
for 802.11 wireless LAN cards. For the low power radios we 
study, this difference is in the order of 100:1. This relation is 
important since it is the β factor defined in the previous 
section. In our model, we did not consider the energy 
consumed by the CPU.  

The remainder of this section presents our simulation and 
experimental results. 

D. Network Capacity 
Our first simulations and experiments compare the packet 

loss rate and the event delivery ratio of the system with and 
without ASCENT. Fig. 7 shows the packet loss as a function of 
the density in a 2-hop network. We present analytical, 
simulation, and experimental results for the system with and 
without ASCENT. The results are encouraging. To a first 
degree, there are no important differences between the 
expected behavior and the real behavior up to 25 nodes, the 
maximum number of nodes in our experiments. In the Active 
case (no self-configuration, all nodes are turned on), all the 
nodes join the network and transmit packets. This case has 
high packet loss because as we increase the density of nodes, 
the probability of collisions increases accordingly. It rapidly 
reaches around 70% with 15 nodes, and enters into a saturation 
region after that. ASCENT limits the number of active nodes to 
the NT value, and therefore does not increase channel 
contention with larger densities. Fig. 8 shows the event 
delivery ratio, i.e. the percentage of events transmitted by the 
source that reached the sink. The experiments were done on a 
small multi-hop topology with a maximum density of 15 nodes 
per radio range (using all our nodes). On average, each packet 
traverses 3 hops. The simulations were done on a larger 
network, with packets traversing on average 6 hops from 
source to sink. We can see that ASCENT outperforms the 
Active case. ASCENT’s performance remains stable as the 
density increases, which demonstrates the scalability properties 
of our algorithms as the number of nodes increases. The Active 
case does not perform as bad as one would expect based on the 
packet loss shown in the previous graph. This is because the 
event delivery ratio metric only requires that at least one copy  
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Fig. 7. Packet loss as a function of node density. Each packet traverses an 
average of two hops. ASCENT limits the number of active nodes to NT and 
reduces the contention for the channel. 
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Fig. 8. Event delivery ratio as a function of node density. Each packet traverses 
three hops in the experiments and 6 hops in the simulations.  ASCENT 
delivery rate is stable for the range of densities we tried. 

of the original message sent by the source reach the sink. Even 
in a high-density environment with high losses, the likelihood 
of receiving one copy of the message is still high using 
diffusion routing [13]. 

E. Energy Savings 
This section evaluates ASCENT’s ability to save energy and 

increase network lifetime. 
In these experiments and simulations, we did not consider the 
energy spent by the source(s) or the sink(s). For the 
experiments, the values are not direct measurements of energy 
consumption but indirect measurements using the time the 
nodes spent in the different ASCENT’s states. 

Fig. 9 shows the average energy consumption per node in a 
2-hop network. From these results, we find that ASCENT 
provides a significant amount of energy savings over the 
Active case. We also find that as density increases, energy 
savings do not increase proportionally. This result may seem 
counterintuitive because in ASCENT the number of active 
nodes remains constant as density increases, and one would 
expect to save more energy as the fraction of active nodes 
decreases. From the analysis shown in Section IV.A, we see 
that the energy savings, as we increase density, depends on the 
passive-sleep cycle of the passive nodes, and not on the 
fraction of active nodes. 

Fig. 10 shows the network lifetime as a function of density. 
The figure is normalized to the lifetime of the Active case. The 
results include simulations of a multihop network with an  
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Fig. 9. Ratio of energy used by the Active case to the energy used by 
ASCENT. ASCENT provides significant amount of energy savings over the 
Active case. 
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Fig. 10. Network lifetime, defined as the time it takes for 90% of the transit 
nodes to run out of energy, as a function of density. It is normalized to the 
lifetime of the Active case. ASCENT is a factor of 3 better than without. 

average hop count of 6. The results do not include 
experiments. Network lifetime with ASCENT is always larger 
than without it, and for large densities it is a factor of 3 better. 

F. Impact of Various Factors 
To explain how ASCENT reacts to different configuration 
parameters, we conducted sensitivity experiments and 
simulations on two parameters, randomization and data rate. 

Fig. 11 shows the packet loss as a function of density for 
different randomization values. We clearly see that for larger 
randomization values we get fewer packet losses. However, 
there is a trade-off since larger randomization values increase 
the end-to-end delay for data delivery. For the different levels 
of randomization we tried, ASCENT case always outperforms 
the Active case, even when the former has less randomization 
than the latter.  

Fig. 12 shows the packet loss as a function of the data rate 
for different experiments and simulations with density of 20 
nodes. For all the cases we see that as we increase the data rate, 
the packet loss increases accordingly, albeit more slowly for 
ASCENT. 

G. Discussion 
Finding the right level of abstraction when performing a 

simulation is always a difficult problem. Too little detail may 
lead to misleading or incorrect results, and too much detail 
increases the development time, and the probability of errors 
[12]. In our case, having an experimental platform to run 
experiments and validate our simulations proved to be 



extremely valuable. In some cases we were correct in making 
certain simplifications to our simulation. For instance, we did 
not simulate the low level packet processing details, such as, 
fragmentation, MAC level collision avoidance mechanisms, 
and low-level timers. Our simple collision module, based on a 
configurable collision window, proved to be good enough. For 
the scenarios and level of dynamics we tried, the differences in 
the simulation and experimental results were not significant. In 
some other cases, the simplifications assumed in simulations 
did not reflect the reality. One observation from the 
experiments is that nodes that were geographically distant from 
a forwarder node, could in fact help and relay packets to nodes 
that were geographically closer to the forwarder. Even though 
this fact did not change our results (since ASCENT is based on 
connectivity, not on geographical position), this situation never 
happened in our simulations. This is an artifact of our simple 
propagation model. We believe that better propagation models, 
like Log-normal Shadowing, could improve this situation and 
we plan to run further simulations with more complex 
propagation models. Nevertheless, from our experiments in 
indoors environments, we detected the occurrence of blind 
spots that are not easily captured by probabilistic propagation 
models. This fact reinforces the viability of our design in 
practice. Distributed algorithms for wireless sensor networks 
must adapt and self-configure to the conditions measured 
locally. We believe that schemes based on geographical 
proximity or assuming certain propagation conditions may not 
work in practice for indoors environments. 

V. RELATED WORK 

Our work has been informed and influenced by a variety of 
other research efforts.  

K. Sohrabi and G. Pottie [28] have made significant 
progress in self-configuration and synchronization in sensor 
networks at the single cluster level with a TDMA scheme. This 
work shares with us similar design principles, although it’s 
more focused on low-level synchronization necessary for 
network self-assembly, while we concentrate on efficient 
multi-hop topology formation. J. L. Gao’s thesis [11] presented 
an adaptive local network formation/routing algorithm that 
facilitates cooperative signal processing. An election algorithm 
is used to select a central node among a small group of nodes 
that cooperate in information processing. While these 
algorithms were designed to operate for a relatively short time 
span in a reduced area near the target event, our objective is 
stable, long range topology formation that covers the entire 
sensor network. 

The adaptive techniques we use were studied extensively to 
make the MAC layer self-configuring and adaptive more than 
20 years ago during the refinement of contention protocols [14, 
17]. More recently SRM [10] and RTCP [27] borrowed these 
techniques to adaptively adjust parameters such as session 
message frequency and randomization intervals. In this work 
we use those techniques to adapt the topology of a multi-hop 
wireless network. 

Mobile ad-hoc networks [15, 18, 20] and directed diffusion 
[13] adaptively configure the routing or data dissemination 
paths, but they do not adapt the basic topology. Q. Li and D. 
Rus [16] presented a scheme where mobile nodes modify their 
trajectory to transmit messages in the context of disconnected  

0

20

40

60

80

100

10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s 

(%
)

Node Density

Packet Loss vs. Node Density
Different randomization values

Experiment Active S:10
Simulation Active S:10
Experiment ASCENT S:10
Simulation ASCENT S:10
Experiment Active S:30
Simulation Active S:30
Experiment ASCENT S:30
Simulation ASCENT S:30

 
Fig. 11. Effect of randomization on packet loss as a function of density. The 
system always gets fewer losses with ASCENT than without it for any 
randomization level. 
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Fig. 12. Packet loss as a function of data rate. The losses tend to increase for 
larger data rates, although they do it more slowly for ASCENT. 
 
ad-hoc networks. This work shares with us the notion of 
adaptation of the basic topology for efficient delivery of 
messages, but it does so by sending location updates between 
neighbors and using active messages to incrementally 
propagate them toward the destination. Our work uses 
measurements of neighbor density and packet loss to exploit 
the redundancy of dense areas in the system in an energy 
efficient way. This work may complement ours in case of 
mobile nodes deployment and in the presence of network 
partitions. Ramanathan et. al. [25] proposed some distributed 
heuristics to adaptively adjust node transmit powers in 
response to topological changes caused by mobile nodes. This 
work assumes that a routing protocol is running at all times and 
provides basic neighbor information that is used to 
dynamically adjust transmit power. In our case, ASCENT 
decides which nodes should run the routing algorithm, and it 
makes this determination based on packet loss in addition to 
density.  

In Y. Xu et al. GAF [30], nodes use geographic location 
information to divide the network into fixed square grids. 
Nodes in each grid alternate between sleeping and listening, 
and there is always one node active to route packets per grid. 
ASCENT does not need any location aids, since it is based on 
connectivity. In addition, geographic proximity may not 
always lead to radio connectivity; this is why ASCENT uses 
local connectivity measurements. B. Chen et al. [4] proposed 
SPAN, an energy efficient algorithm for topology 
maintenance, where nodes decide whether to sleep or join the 
backbone based on connectivity information supplied by a 



routing protocol. ASCENT does not depend on routing 
information, nor needs to modify the routing state; it decides 
whether to join the network or sleep based on measured local 
connectivity and packet loss information. In addition, our work 
does not presume a particular model of fairness or network 
capacity that the application requires.  

Self-configuration based on local measured parameters takes 
some inspiration from biological systems, in particular the 
models of ant colony behavior [5]. Bulusu et. al. [3], have 
proposed different algorithms for incremental beacon 
placement in sensor networks. This work share with us the 
same design principles, such as the use of localized algorithms, 
and adaptation based on locally measured parameters. While 
their work is oriented to solve the localization problem, ours is 
more oriented to energy efficient communication and sensing 
coverage. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we described the design, implementation, 
analysis, simulation, and experimental evaluation of ASCENT, 
an adaptive self-configuration topology mechanism for 
distributed wireless sensor networks. There are many lessons 
we can draw from our preliminary experimentation. First, 
ASCENT has the potential for significant reduction of packet 
loss and increase in energy efficiency. Second, ASCENT 
mechanisms were responsive and stable under systematically 
varied conditions. 

In the near future, we will perform experiments with larger 
numbers of nodes to further explore the scalability of our 
algorithms. We will investigate the use of load balancing 
techniques to distribute the energy load, and explore the use of 
wider area links to detect network partitions. We will also 
expand this work to address other modalities beyond 
communication and sensing coverage, such as, actuation. 

This work is an initial foray into the design of self-
configuring mechanisms for wireless sensor networks. Our 
distributed sensing network simulations and experiments 
represent a non-trivial exploration of the problem space. Such 
techniques will find increasing importance as the community 
seeks ways to exploit the redundancy offered by cheap, widely 
available microsensors, as a way of addressing new dimensions 
of network performance such as network-lifetime. 
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